
Proceedings of Institute of Mathematics of NAS of Ukraine 2002, Vol. 43, Part 2, 666–671

The Maxwell–Dirac Equations,

Some Non-Perturbative Results

Chris RADFORD

School of Mathematical and Computer Sciences, University of New England,
Armidale NSW 2351, Australia
E-mail: chris@turing.une.edu.au

In this talk I will review some recent work on the Maxwell–Dirac equations. This system of
equations can be thought of as the classical equations for electronic matter, the quantisa-
tion of which yields that most successful of physical theories, QED. The talk will focus on
qualitative, non-perturbative properties of this highly non-linear system of equations. We
will be particularly interested in properties which might be used to describe a single isolated
electron.

1 Introduction

The Maxwell–Dirac system consists of the Dirac equation

γα(∂α − i e Aα)ψ + imψ = 0, (1)

with electromagnetic interaction given by the potential Aα; and the Maxwell equations (sourced
by the Dirac current, jα),

Fαβ = ∂αAβ − ∂βAα,

∂αFαβ = −4πejβ = −4πeψ̄γβψ. (2)

Most studies of the Dirac equation treat the electromagnetic field as given and ignore the
Dirac current as a source for the Maxwell equations, i.e. these treatments ignore the electron
“self-field”. A comprehensive survey of these results can be found in the book by Thaller [1].
This is not surprising, inclusion of the electron self-field via the Dirac current leads to a very
difficult, highly non-linear set of partial differential equations. So difficult in fact that the
existence theory and solution of the Cauchy problem for small initial data was only solved in
1997 (Gross [2], Chadam [3], Georgiev [4], Esteban et al [5], Bournaveas [6], and Flato, Simon
and Taflin [7]) – seventy years after Dirac first wrote down his equation!

There are no known non-trivial, exact solutions to the Maxwell–Dirac equations in 1 + 3
dimensions – all known solutions involve some numerical work. These solutions do, however,
exhibit interesting non-linear behaviour which would not have been apparent through perturba-
tion expansions. The particular solutions found in [8] and [9] exhibit just this sort of behaviour –
localisation and charge screening. See also Das [10] and the recent work of Finster, Smoller and
Yau [11].

Finster, Smoller and Yau also point out in [12] that solving the system (Einstein–Maxwell–
Dirac system in their case) gives, in effect, all the Feynman diagrams of the quantum field theory,
with the exception of the fermionic loop diagrams. Study of the Maxwell–Dirac system should
provide an interesting insight into non-perturbative QED.

In the discussion which follows we will focus on two broad reductions of the equations, the
static case (including the spherically symmetric sub-case) and the stationary case. Precise
statements of theorems will be given, however only brief indications as to the methods of proof
are supplied – details can be found in the original papers cited in the bibliography.
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2 The Maxwell–Dirac equations

In [8] the 2-spinor form of the Dirac equations was employed to solve (1) for the electromagnetic
potential, under the non-degeneracy condition jαjα �= 0. Requiring Aα to be a real four-vector
then gave a set of partial differential equations in the Dirac field alone, the reality conditions.

For 2-spinors uA and vB (see [13] for an exposition of the 2-spinor formalism) we have

ψ =
(

uA

vḂ

)
, with uCvC �= 0 (non-degeneracy),

where A, B = 0, 1, Ȧ, Ḃ = 0̇, 1̇ are two-spinor indices. The Dirac equations are

(
∂AȦ − i e AAȦ

)
uA +

im√
2
vȦ = 0,

(
∂AȦ + i e AAȦ

)
vA +

im√
2
uȦ = 0, (3)

where ∂AȦ ≡ σαAȦ∂α, AAȦ = σαAȦAα; here σαAȦAα are the Infeld-van der Waerden symbols.
The electromagnetic potential is (see [8] for details),

AAȦ =
i

e(ucvc)

{
vA∂BȦuB + uA∂BȦvB +

im√
2

(
uAuȦ + vAvȦ

)}
. (4)

The reality conditions are,

∂AȦ
(
uAuȦ

)
= − im√

2

(
uCvC − uĊvĊ

)
,

∂AȦ (vAvA) =
im√

2

(
uCvC − uĊvĊ

)
,

uA∂AȦv̄Ȧ − vȦ∂AȦuA = 0. (5)

The Maxwell equations are,

∂αFαβ = −4πe jβ = −4πe
√

2σAȦ
β

(
uAuȦ + vAvȦ

)
. (6)

The equations (4), (5) and (6) are entirely equivalent to the original Maxwell–Dirac equations,
(1) and (2).

3 The static Maxwell–Dirac equations

A Maxwell–Dirac system is said to be static if there exists a Lorentz frame in which the Dirac
current vector is purely timelike, i.e. jα = j0δα

0 , in this Lorentz frame there is no current flow.
As noted in [8] this definition implies,

vA = eiχ
√

2σ0AȦuȦ, with χ a real function.

The gauge may be fixed (see [8]) by the choice,

u0 = X e
i
2
(χ+η), u1 = Y e

i
2
(χ−η),

with X, Y , and η real functions on R
4.
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Defining the null vector L,

L =
(
σα

AȦ
uAūȦ

)
=

(
L0,

1√
2
V

)
, with L0 =

1√
2

(
X2 + Y 2

)
and

V =
(
2XY cos η, 2XY sin η, X2 − Y 2

)
,

our equations become,

∂

∂t

(
X2 + Y 2

)
= 0,

∇.V = −2m
(
X2 + Y 2

)
sin χ,

∂V

∂t
+ (∇χ)×V = 0. (7)

With electromagnetic potential

A0 =
m

e
cos χ +

(
X2 − Y 2

)
2 e (X2 + Y 2)

∂η

∂t
+

(∇χ) .V

2e (X2 + Y 2)
,

A =
1

2e (X2 + Y 2)

[
∂χ

∂t
V +

(
X2 − Y 2

) ∇η − ∇ × V

]
, where A =

(
A1, A2, A3

)
. (8)

The full system is given by the above two sets of equations and the Maxwell equations.
Further simplification can be made to the system by imposing the stationary condition:

A Maxwell–Dirac system is said to be stationary if there is a gauge in which ψ = eiωtφ, with the
bi-spinor φ independent of t. Such a gauge will be referred to as a stationary gauge. We will be
examining isolated, stationary, static systems in Section 3.2. A stationary gauge is not unique.

3.1 Spherical symmetry

Spherical symmetry of the stationary and static Maxwell–Dirac system is imposed (in a gauge
independent way) by demanding that the null vector L, defined above, is spherically symmetric.
This has the following consequences, in terms of spherical polar coordinates,

X =
√

R cos(θ/2), Y =
√

R sin(θ/2), and η = φ.

The equations are

A =
1
2 e

cot θ

r
φ̂, A0 =

m

e
cos χ +

1
2 e

dχ

dr
,

d

dr

(
r2R

)
= −2mr2R sinχ,

d

dr

(
r2 dA0

dr

)
= 8πer2R,

with χ and R functions of r only. The Dirac field is

ψ =
√

R




−e
i
2
(χ−φ) sin

(
θ
2

)
e

i
2
(χ+φ) cos

(
θ
2

)
−e

−i
2

(χ+φ) sin
(

θ
2

)
e

−i
2

(χ−φ) cos
(

θ
2

)


 .

The first thing one notices is that there is a central magnetic monopole, with Dirac magnetic
charge 1

2e . In fact, we can obtain a reasonably complete characterisation of these solutions [8].
Briefly, under quite weak (physically reasonable) assumptions, we find that the solutions can be
thought of as a central magnetically and electrically charged point source (external to the Dirac
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field) surrounded by an electrically (oppositely) charged Dirac field. Near ∞ the electrostatic
potential behaves as A0 ∼ −m

e + 1/(me)
r2 and near r = 0 the potential behaves as A0 ∼ −m

e + γ/e
r

(for some constant γ).
The object is highly compact, with a radius of about 1/m a (reduced) Compton wavelength.

Inside this radius it has an onion like structure consisting of an infinite series of spherical shells.
The system is electrically neutral, with the central Coulomb point source effectively screened by
the Dirac field for r > 1/m.

3.2 Isolated systems

In most physical processes that we would wish to model using the Maxwell–Dirac system we
would be interested in isolated systems – systems where the fields and sources are largely confined
to a compact region of R

3. This requires that the fields ‘die-off’ sufficiently quickly as |x| → ∞.
The best language for the discussion of such decay conditions and other regularity issues is the

language of weighted function spaces; specifically weighted classical and Sobolev spaces. In [14]
the weighted Sobolev spaces W k,p

δ are used following the definitions of [15]. These definitions
have the advantage that the decay rate is explicit: under appropriate circumstances a function
in W k,p

δ behaves as |x|δ with |x| → ∞. An element f of W k,p
δ has σ

−δ+|α|− 3
p ∂|α|f in Lp for each

multi-index α for which 0 ≤ |α| ≤ k; here σ =
√

1 + |x|2 and we are working on R
3 (or some

appropriate subset thereof) – see [15] or [16] and [17] (the later papers use a different indexing
of the Sobolev spaces).

We will be interested in the asymptotic region (spatially) of the Maxwell-Dirac system, which
we denote by Eρ = R

3\Bρ, where Bρ is the ball of radius ρ. A minimal condition that one may
impose on the Dirac field is that it have finite total charge in the region Eρ, this amounts to∫

Eρ

j0 dx =
∫

Eρ

(|uo|2 + |u1|2 + |v0|2 + |v1|2) dx < ∞.

This, of course, simply means that uA and vA are in L2.
Suppose we have a stationary system and we are in a stationary gauge for which Aα → 0

as |x| → ∞. Write, uA = e−iEtUA and v̄Ȧ = e−iEtV̄ Ȧ with UA, VA and Aα all independent of
time t. Then UA and VA must be in L2(Eρ) if the total charge due to the Dirac field is finite.
So U and V must have L2 decay as |x| → ∞, roughly U and V must decay faster than |x|− 3

2 .
We also note that Aα is given by equation (4) in terms of U and V and their first derivatives. If
we substitute this expression for the electromagnetic potential into the Maxwell equations then
we have equations that are of third order for U and V . For these equations to make sense we
require that U and V are three times differentiable (in the weak sense at least). This suggests
that U and V should be in W 3,2

−τ (Eρ), where τ > 3
2 .

To make this all a little more precise we introduce some more notation. Note that uCvC =
UCV C is a gauge and Lorentz invariant complex scalar function, this means we can introduce a
(unique up to sign) “spinor dyad” {oA, ιB}, with ιAoA = 1. The dyad is defined as follows, let
UCV C = Reiχ – where R and χ are real functions – then write,

UA =
√

Rei χ
2 oA and VA =

√
Rei χ

2 ιA.

Definition 1. A stationary Maxwell–Dirac system will be said to be isolated if, in some sta-
tionary gauge, we have

ψ = e−iEt
√

R

(
e

iχ
2 oA

e−
iχ
2 ῑȦ

)
,
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with E constant and
√

Rei χ
2 ∈ W 3,2

−τ (Eρ); oA, ιA ∈ W 3,2
ε (Eρ) and Aα ∈ W 2,2

−1+ε(Eρ), for some
τ > 3

2 and some ρ > 0 and any ε > 0.

Remark 1. This definition ensures, after use of the Sobolev inequality and the multiplication
lemma, that ψ = o(r−τ ) and Aα = o(r−1+ε).

Remark 2. Notice our condition places regularity restrictions on the fields in the region Eρ

only. In the “interior” Bρ there are no regularity assumptions.

The spherically symmetric solution in fact provides an excellent example of an isolated, sta-
tionary and static Maxwell–Dirac system.

The main theorem proved in [14] shows that the electric neutrality of the spherically sym-
metric solution is generic for these isolated, static systems.

Theorem 1. An isolated, stationary, static Maxwell–Dirac system is electrically neutral.

The theorem is remarkable in that it depends only on asymptotic regularity and decay –
almost anything can happen in Bρ! Another theorem of [14] shows that the association of
a magnetic monopole with the central, external Coulomb field, in the spherically symmetric
case, is also generic (at least for axial symmetry). That is, associated to each external Coulomb
point charge in a stationary, static Maxwell–Dirac system there is a magnetic monopole with
magnetic charge of Dirac value 1

2e .

4 Stationary isolated systems

To close this brief overview of the Maxwell–Dirac system we will take a quick look at some very
recent results [18].

The first observation one makes is that under the regularity and decay conditions assumed
(those of an isolated system) we can always perform a gauge transformation to the Lorenz
gauge. The Maxwell equation for Aα now becomes an elliptic equation (remember the system
is stationary)

� Aα = 4πe
√

2RσAȦ
β (oAoȦ + ιAιȦ). (9)

Writing aα = Eδα
0 + Aα the Dirac equations (3) are,

oA

2

(
∂AȦR

R
+ i∂AȦχ

)
+ ∂AȦoA − ieaAȦoA +

im√
2

ῑȦe−iχ = 0,

ιA
2

(
∂AȦR

R
+ i∂AȦχ

)
+ ∂AȦιA + ieaAȦιA +

im√
2

ῑȦe−iχ = 0. (10)

A straightforward “bootstrap” argument (based on elliptic regularity) can be made to show that
A and U and V must in fact be C∞ if U and V are taken to be in L2(Eρ) and A is in L1

loc.
One can show (using an argument based on Thaller, [1]) that the essential spectrum of the

Dirac operator in this case is the same as that for the free Dirac operator, i.e. (−∞,−m]∪[m,∞).
So we would expect to get bound states for E ∈ (−m, m) – cf. [5]. In fact under very weak
assumptions we can show that there are no embedded eigenvalues, i.e. E ∈ [−m, m] – cf. [1].

Under more restrictive assumptions there is also a version of the “electric neutrality” theorem.
The interested reader may find details of these and other results in the forthcoming paper.
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