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The Euler equations describing motion of an incompressible ideal fluid are investigated with
symmetry point of view. We review some results on Lie, partially invariant, and nonclassical
submodels of these equations.

1 Introduction

Hydrodynamics partial differential equations are traditional objects of investigation by means
of methods of group analysis [1]. It is well known [2, 3] that the maximal Lie invariance algebra
of the Euler equations (EEs)

�ut + (�u · �∇)�u + �∇p = �0, div �u = 0, (1)

which describe flows of an ideal incompressible fluid, is the infinite dimensional algebra A(E)
generated by the following basis elements:

∂t, Jab = xa∂b − xb∂a + ua∂ub − ub∂ua (a < b),
Dt = t∂t − ua∂ua − 2p∂p, Dx = xa∂a + ua∂ua + 2p∂p,

R(�m) = R(�m(t)) = ma(t)∂a + ma
t (t)∂ua − ma

tt(t)xa∂p,

Z(χ) = Z(χ(t)) = χ(t)∂p. (2)

Such anomalously wide Lie invariance is typical for hydrodynamics equations of incompressible
fluids, which are written in the Euler coordinates.

In the following �u = {ua(t, �x)} denotes the velocity of the fluid, p = p(t, �x) denotes the
pressure, �x = {xa}, ∂t = ∂/∂t, ∂a = ∂/∂xa, �∇ = {∂a}, � = �∇ · �∇ is the Laplacian, ma = ma(t)
and χ = χ(t) are arbitrary smooth functions of t (for example, from C∞((t0, t1), R)). The
fluid density is set equal to unity. Summation over repeated indices is implied, and we have
a, b = 1, 2, 3. Subscripts of functions denote differentiation with respect to the corresponding
variables.

2 Lie invariant solutions of Euler equations

A number of Lie submodels of (1) have been already constructed. For example, in [4, 5, 6, 7] EEs
are reduced to partial differential equations in two and three independent variables by means of
using the Lie algorithm.

Using well-known Lie symmetry group of EEs, we describe all its possible (inequivalent) Lie
submodels. Namely, we find complete sets of inequivalent one-, two-, and three-dimensional
subalgebras of A(E). Then, we construct the corresponding ansatzes of codimension one, two,
and three as well as reduced systems of partial differential equations in three and two indepen-
dent variables and reduced systems of ordinary differential equations. Lie symmetry properties
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of the reduced systems of partial differential equations are investigated. There exists a number
of reduced systems admitting Lie symmetries which are not induced by Lie symmetries of the
initial Euler equations. (Existence of such symmetries was firstly proved by L.V. Kapitanskiy
[8, 9] just for the axially symmetric Euler equations.) The reduced systems of ordinary differ-
ential equations are integrated or for them partial exact solutions are found. As a result, new
large classes of exact solutions of EEs, which contain, in particular, arbitrary functions, are
constructed. Numbers of investigated objects are the following ones:

5 families of one-dimensional inequivalent subalgebras
5 families of ansatzes of codimension one (all the families of subalgebras can be used to reduce

the EEs by the standard method)
4 classes of reduced systems (two classes of reduced systems can be united)
2 classes of reduced systems that have non-induced Lie symmetries

16 families of two-dimensional inequivalent subalgebras
14 families of ansatzes of codimension two (14 subalgebras can be used to reduce EEs by the

standard method)
11 classes of reduced systems (there exist 3 pairs of classes of reduced systems, which can be

united)
2 classes of reduced systems are completely integrated
1 reduced system is linearized on a subset of solutions

45 families of three-dimensional inequivalent subalgebras
21 families of ansatzes of codimension three (only 21 families of subalgebras can be used to

reduce EEs by the standard method)
10 classes of reduced systems solutions of which are not solutions of completely integrated

reduced systems with two independent variables

Now we consider two stationary Lie submodels of codimension 3, which do not have analogs
in the case of viscous fluids as their construction essentially bases on specific invariance of EEs
with respect the time dilations generated by the operator Dt. Moreover, integrating of these
nonlinear submodels can be reduced to solving of second order linear ODEs. Below we give the
corresponding subalgebras, ansatzes, reduced systems, and their solutions.

1. 〈∂t, J12 + α1D
t, R(0, 0, 1) + α2D

t〉, where (α1, α2) �= (0, 0);

u1 = (x1ϕ
1 − x2ϕ

2)eζ , u2 = (x2ϕ
1 + x1ϕ

2)eζ , u3 = ϕ3eζ , p = he2ζ ,

where ζ = −α2x3 − α1 arctanx2/x1, ω = (x2
1 + x2

2)
1/2, and new unknown functions ϕa = ϕa(ω)

and h = h(ω) satisfy the reduced system

ωϕ1ϕ1
ω − (α1ϕ

2 + α2ϕ
3)ϕ1 + (ϕ1)2 − (ϕ2)2 + ω−1hω = 0,

ωϕ1ϕ2
ω − (α1ϕ

2 + α2ϕ
3)ϕ2 + 2ϕ1ϕ2 − 2α1ω

−2h = 0,

ωϕ1ϕ3
ω − (α1ϕ

2 + α2ϕ
3)ϕ3 − 2α2h = 0,

ωϕ1
ω + 2ϕ1 − (α1ϕ

2 + α2ϕ
3) = 0. (3)

If ϕ1 = 0, then h = ϕ2 = α2ϕ
3 = 0 and we obtain a trivial solution of EEs. Let ϕ1 �= 0. It

follows from system (3) that

ϕ2 =
α1(ωϕ1

ω + 2ϕ1) + α2βω2ϕ1

α2
2ω

2 + α2
1

, ϕ3 =
α2(ωϕ1

ω + 2ϕ1) − α1βω2ϕ1

α2
2ω

2 + α2
1

,

h =
ω2

2
ω2ϕ1ϕ1

ωω − (ωϕ1
ω)2 − 4(ϕ1)2

α2
2ω

2 + α2
1

+
ω2

2
ϕ1 (α2

1 − α2
2ω

2)ωϕ1
ω + 2α1ϕ

1(α2βω2 + 2α1)
(α2

2ω
2 + α2

1)2
,
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where ϕ1 = ω−2(α2
2ω

2 + α2
1)

1/2ψ(ω), ψ is an arbitrary solution of the second order linear ODE

ψωω +
1
ω

ψω +

(
α2

2

α2
1 − α2

2ω
2

(α2
2ω

2 + α2
1)2

+
(

β +
α1α2

α2
2ω

2 + α2
1

)2

+ (α2
2ω

2 + α2
1)(ω

−2 + γ)

)
ψ = 0,

β and γ are arbitrary constants. For some values of parameters the general solution of the last
equation can be expressed via elementary or special functions. So, in the case α2 = 0

ψ = Zν(
√

β2 + α2
1γ ω) if β2 + α2

1γ �= 0, ν = α1
√−γ,

ψ = C1ω
β + C2ω

−β if β2 + α2
1γ = 0, β �= 0,

ψ = C1 lnω + C2 if β = γ = 0.

Here and below Zν is the general Bessel function of order ν, W is the Whittaker functions, C0,
C1, C2, and C3 are arbitrary constants. In the case α1 = 0

ψ = Z1(
√

β2 + α2
2 ω) if γ = 0,

ψ =
1
ω

W

(
β2 + α2

2

4α2
√−γ

;
1
2
; α2

√−γ ω2

)
if γ �= 0.

2. 〈∂t, Dx + αDt + κJ12 + R(0, 0, µt) + Z(ε1), R(0, 0, 1) + Z(ε2)〉, where α �= 0, µ(α − 1) = 0,
ε1(α − 1) = ε2(2α − 1) = 0;

u1 = r−α(x1ϕ
3 − x2(ϕ1 + κϕ3)), u1 = r−α(x2ϕ

3 + x1(ϕ1 + κϕ3)),

u3 = r1−αϕ2 + µ ln r, p = r2−2αh + ε1 ln r + ε2x3

where r = (x2
1 + x2

2)
1/2, ω = arctanx2/x1 − κ ln r, and new unknown functions ϕa = ϕa(ω) and

h = h(ω) satisfy the reduced system

ϕ1ϕ1
ω + (1 − α)ϕ3ϕ1 + ((1+κ

2)ϕ3+κϕ1)(ϕ1+κϕ3) − 2(1−α)κh + (1+κ
2)hω = κε1,

ϕ1ϕ2
ω + (1 − α)ϕ3ϕ2 + µϕ3 + ε2 = 0,

ϕ1ϕ3
ω + (1 − α)ϕ3ϕ3 − (ϕ1 + κϕ3)2 + 2(1 − α)h − κhω + ε1 = 0,

ϕ1
ω + (2 − α)ϕ3 = 0. (4)

There exist three different cases of integration of system (4). If α = 2 then any solution of (4)
belongs to a family from the following ones

ϕ1 = ϕ2 = 0, ϕ3 = C1, h = −1
2(1 + κ

2)C2
1 ;

ϕ1 = ϕ3 = h = 0, ϕ2 = ϕ2(ω);

ϕ1 = C1, ϕ2 = C2, ϕ3 = 0, h = −1
2C2

1 ;

ϕ1 = C1, ϕ2 = C2(ω + C3)−1, ϕ3 = −C1(ω + C3)−1, h = (κ(ω + C3)−1 − 1
2)C2

1 ;

ϕ1 = C1, ϕ2 = C2 cos−1(C3ω + C4), ϕ3 = C1C3 tan(C3ω + C4),

h = 1
2C2

1 (C2
3 (1 + κ

2) − 1) − κC1ϕ
3;

ϕ1 = C1, ϕ2 =
C2

B1eC3ω + B2e−C3ω
, ϕ3 = −C1C3

B1e
C3ω − B2e

−C3ω

B1eC3ω + B2e−C3ω
,

h = −1
2C2

1 (C2
3 (1 + κ

2) + 1) − κC1ϕ
3.

In the case α = 1 we obtain that ε2 = 0, ϕ2 = µ ln ϕ1+C0, ϕ3 = −ϕ1
ω, hω = κ(ϕ1ϕ1

ωω−(ϕ1
ω)2),

and (1 + κ
2)ϕ1

ωω − 2κϕ1
ω + ϕ1 = ε1(ϕ1)−1. If additionally ε1 = 0 then

ϕ1 =
(

C1 cos
ω

1 + κ2
+ C2 sin

ω

1 + κ2

)
exp

κω

1 + κ2
, h = −1

2
C2

1 + C2
2

1 + κ2
exp

2κω

1 + κ2
+ C3.
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Let α �∈ {1; 2}. Then ε1 = µ = 0, ε2(2α − 1) = 0, ϕ3 = −(2 − α)−1ϕ1
ω,

h = −1
2

( −2κ

2 − α
ϕ1ϕ1

ω +
1 + κ

2

(2 − α)2
(ϕ1

ω)2 + (ϕ1)2 − C0

(1 − α)(2 − α)
(ϕ1)2

1−α
2−α

)
,

ϕ2 = (ϕ1)
1−α
2−α (C3 + ε2

∫
(ϕ1)−

3−2α
2−α dω),

(1 + κ
2)ϕ1

ωω − 2κ(2 − α)ϕ1
ω + (2 − α)2ϕ1 = C0(ϕ1)−

α
2−α .

The last equation is easy solved if C0 = 0.

3 SO(3)-partially invariant solutions of Euler equations

The concept of partially invariant solutions was introduced by Ovsiannikov [1] as a generalization
of invariant solutions, which is possible for systems of partial differential equations (PDEs). The
algorithm for finding partially invariant solutions is very difficult to apply. For this reason it is
used more rarely than the classical Lie algorithm for constructing invariant solutions.

In this section we describe the process of constructing SO(3)-partially invariant solutions of
the minimal defect which is equal to 1 for the given representation of so(3) generated by the
operators Jab from A(E) (2) (see [10] for detail).

A complete set of functionally independent invariants of the group SO(3) in the space of
the variables (t, �x, �u, p) is exhausted by the functions t, |�x|, �x · �u, |�u|, p, so any SO(3)-partially
invariant solution of the minimal defect has the form

uR = v(t, R), uθ = w(t, R) sinψ(t, R, θ, ϕ), uϕ = w(t, R) cos ψ(t, R, θ, ϕ), p = p(t, R). (5)

Hereafter for convenience the spherical coordinates are used. Substituting (5) into EEs (1), we
obtain the system of PDEs for the functions v, w, ψ, p :

vt + vvR − R−1w2 + pr = 0, wt + vwR + R−1vw = 0,

w(ψt + vψR + R−1wψθ sinψ + R−1w cos ψ(sin θ)−1(ψϕ − cos θ)) = 0,

Rvr + 2v + wψθ cos ψ − (sin θ)−1w sin ψ(ψϕ − cos θ) = 0. (6)

It follows from (6) if w = 0 that v = ηR−2, p = ηtR
−1 − 1

2η2R−4 + χ, where η and χ are
arbitrary smooth functions of t. The corresponding solution of EEs

uR =
η

R2
, uθ = uϕ = 0, p =

ηt

R
− η2

2R4
+ χ (7)

is invariant with respect to SO(3). Note that flow (7) is a solution of the Navier–Stokes equations
too, and it is the unique SO(3)-partially invariant solutions of the minimal defect for them.

Below w �= 0. Then two last equations of (6) form an overdetermined system in the function ψ.
This system can be rewritten as follows

ψθ + Rw−1 sinψ(ψt + vψR) = −G cos ψ,

ψϕ + Rw−1 cos ψ(ψt + vψR) sin θ = G sinψ sin θ + cos θ, (8)

where G = w−1(RvR + 2v). The Frobenius theorem gives the compatibility condition of (8):

Gt + vGR = R−1w
(
1 + G2

)
. (9)

If condition (9) holds, system (8) is integrated implicitly and its general solution has the form

F (Ω1, Ω2, Ω3) = 0, (10)
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where F is an arbitrary function of Ω1, Ω2, and Ω3,

Ω1 =
sin θ sin ψ − G cos θ√

1 + G2
, Ω2 = ϕ + arctan

cos ψ

cos θ sin ψ + G sin θ
, Ω3 = h(t, r),

h = h(t, R) is a fixed solution of the equation ht + vhR = 0 such that (ht, hR) �= (0, 0). Equa-
tion (10) can be solved with respect to ψ in a number of cases, for example, if either FΩ1 = 0 or
FΩ2 = 0. Equation (9) and two first equation of (6) form the “reduced” system for the invariant
functions v, w, and p. It can be represented as the union of the system

R2ftR + ffRR − (fR)2 = g, R2gt + fgR = 0, f := R2v, g := (Rw)2, (11)

for the functions v and w (this system can be also considered a system for the functions f and
g) and the equation

pR = −vt − vvR − R−1w2 (12)

which is one for the function p if v and w are known. Therefore, to construct solutions for EEs,
we are to carry out the following chain of actions: 1) to solve system (11); 2) to integrate (12)
with respect to p; 3) to find the function ψ from (10).

Theorem 1. The maximal Lie invariance algebra of (11) is the algebra

A = 〈 ∂t, DR = R∂R + v∂v + w∂w, Dt = t∂t − v∂v − w∂w 〉.
A complete set of A-inequivalent one-dimensional subalgebras of A is exhausted by four

algebras 〈 ∂t 〉, 〈DR 〉, 〈 ∂t+DR 〉, 〈Dt+κDR 〉. In [10] we constructed the corresponding ansatzes
for the functions v and w as well as the reduced systems arising after substituting the ansatzes
into (11). Two first reduced systems were integrated completely. We also found all the solutions
of system (11), for which f and g are polynomial with respect to R.

4 Nonclassical symmetries of Euler equations

In this section we give results on Q-conditional symmetry [11, 12] of (1) with respect to single
differential operator Q = ξ0(t, �x, �u, p)∂t+ξa(t, �x, �u, p)∂a+ηa(t, �x, �u, p)∂ua +η0(t, �x, �u, p)∂p, which
were firstly presented in [13].

Theorem 2. Any operator Q of Q-conditional symmetry of the Euler equations (1) either is
equivalent to a Lie symmetry operator of (1) or is equivalent (modA(E)) to the operator

Q̃ = ∂3 + ζ(t, x3, u
3)∂u3 + χ(t)x3∂p, (13)

where ζu3 �= 0, ζ3 + ζζu3 = 0, ζt + (u3ζ + χx3)ζu3 + (ζ)2 + χ = 0.

It follows from Theorem 2 that there exist two classes of the possible reductions on one
independent variable for EEs, namely, the Lie reductions and the reductions corresponding to
operators of form (13). Lie reductions of EEs (1) to systems in three independent variables were
investigated in [5]. An ansatz constructed with the operator Q̃ has the following form:

u1 = v1, u2 = v2, u3 = x3v
3 + ψ(t, v3), p = q + 1

2χ(t)x2
3,

where va = va(t, x1, x2), q = q(t, x1, x2), the function ψ = ψ(t, v3) is a solution of the equation
ψt − ((v3)2 + χ)ψv3 + v3ψ = 0. Substituting this ansatz into (1), we obtain the corresponding
reduced system (i, j = 1, 2):

vi
t + vjvi

j + qi = 0, v3
t + vjv3

j + (v3)2 + χ = 0, vj
j + v3 = 0.
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The analogous problem for the Navier–Stokes equations (NSEs)

�ut + (�u · ∇)�u + ∇p − ν��u = �0, div �u = 0 (ν �= 0) (14)

describing the motion of an incompressible viscous fluid was solved by Ludlow, Clarkson, and
Bassom in [14]. Their result can be reformulated in the following manner: any (real) operator Q
of nonclassical symmetry of (14) is equivalent to a Lie symmetry operator of (14). Therefore, all
the possible reductions of NSEs on one independent variable are exhausted by the Lie reductions.
The maximal Lie invariance algebra of NSEs (14) is similar to one of EEs (see [15, 16]):

A(NS) = 〈∂t, Jab, Dt + 1
2Dx, R(�m(t)), Z(ζ(t))〉.

The Lie reductions of NSEs were completely described in [17].
It should be noted that non-classical invariance of hydrodynamics equation (in particular,

the Euler and Navier–Stokes equations) with respect to involutive families of two and three
operators have not been investigated. The complete solving of this complicated problem would
allow to describe all the possible reductions of the equations under considerations to systems of
PDEs in two independent variables and to systems of ODEs.
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