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Boussineq-Type Equations and “Switching” Solitons
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It is well known that the Boussinesq equation is the bidirectional equivalent of the celebrated
Korteweg-de Vries equation. Here we consider Boussinesq-type versions of two classical uni-
directional integrable equations. A procedure is presented for deriving multisoliton solutions
of one of these equations – a bidirectional Kaup–Kupershmidt equation. These solitons have
the unusual property that they “switch” shape on switching their direction of propagation.

1 Introduction

In a recent article [1], we constructed a bidirectional version of the well-known Kaup–Kuper-
shmidt (KK) equation [2, 3]

ut + 45u2ux − 75
2

uxuxx − 15uu3x + u5x = 0, (1)

which has the nonlocal form

5 ∂−1
x utt + 5uxxt − 15uut − 15u ∂−1

x ut − 45u2ux +
75
2

uxuxx + 15uu3x − u5x = 0. (2)

In Ref. [1], equation (2) was designated the bidirectional Kaup–Kupershmidt (bKK) equation.
A second nonlinear evolution equation (NEE) that is also of interest here,

5 ∂−1
x utt + 5uxxt − 15uut − 15ux∂−1

x ut − 45u2ux + 15uxuxx + 15uu3x − u5x = 0, (3)

was formulated in [1] as a bidirectional counterpart of the classical Sawada–Kotera (SK) equa-
tion [4, 5]

ut + 45u2ux − 15uxuxx − 15uu3x + u5x = 0. (4)

The integrability of equations (2) and (3) was assured by finding their Lax pairs [1]. Indeed, by
obtaining the bilinear form of equation (3), we were able to identify this bidirectional equation
with the well-known Ramani equation [6] (see equation (7) below). The latter equation has
been studied extensively – though only in its more familiar bilinear form (7) – and is now
deemed to be completely integrable [6, 7, 8, 9]; we shall refer to equation (3) as the “bSK-
Ramani” equation. On the other hand, the bKK equation (2) has received little attention of
note in the literature (although the equation in its normal form (2) is listed in the Jimbo–Miwa
classification of integrable systems [10]). In Ref. [1] we reported its Lax pair, along with an
infinity of conservation laws. We also derived there the solitary-wave solution which has the
remarkable property that it “switches” shape on switching its direction of propagation.

In this paper, a procedure is described for obtaining multisoliton solutions of the bKK equa-
tion (2). The preliminary results presented here build on the work of the prior study [1] where it
was shown that the ‘anomalous’ character of these solitons arises quite naturally within Hirota’s
bilinear transform theory [11, 12]. Yet our approach also makes use of the strategy pursued
by one of us (A.P.) to obtain the soliton solutions of its unidirectional cousin, the KK equa-
tion (1) [13]. However, the current problem is complicated by the need to take account of
the bidirectional nature of the bKK solitons; like the solitary wave, they too are found to be
directionally dependent.
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2 Bilinear forms and solitary waves

Following Hirota [11], we make a change of dependent variable

u (x, t) = α ∂2
x ln f (x, t) , α = const. (5)

where ∂n
x denotes the nth partial derivative with respect to x. Under this transformation, we

find that the bSK-Ramani equation (3) has two bilinear forms [1]: when α = −1 we get
(
80D2

t + 20D3
xDt − D6

x

)
f · f − (

120DxDt − 30D4
x

)
f · g = 0,

D2
xf · f + 2f · g = 0, (6)

where Dx, Dt are the usual Hirota derivatives [12]

DxDt a (x, t) · b (x, t) = (∂x − ∂x′) (∂t − ∂t′) a (x, t) b
(
x′, t′

) ∣∣
x′=x, t′=t

and g (x, t) is an auxiliary function. The second bilinear form has α = −2 and is given by
(
5D2

t + 5D3
xDt − D6

x

)
f · f = 0. (7)

The single bilinear equation (7) identifies the bSK-Ramani equation (3) with Ramani’s equa-
tion [6], whereas the less well-known coupled system (6) appeared somewhat later [10].

Similarly, under the transformation (5), the bKK equation (2) admits two bilinear represen-
tations [1]: α = −1

(
80D2

t + 20D3
xDt − D6

x

)
f · f − 120DxDtf · g + 30D2

xf · h = 0,

D2
xf · f + 2f · g = 0,

D4
xf · f + 2f · h = 0; (8)

α = −2:

16
(
5D2

t + 5D3
xDt − D6

x

)
f · f − 30D4

xf · g + 30D2
xf · h = 0,

D2
xf · f + f · g = 0,

D4
xf · f + f · h = 0. (9)

Equations (8) and (9), in which g and h are auxiliary functions, are derived in Ref. [1].
Finding the multisoliton solutions of the bSK-Ramani equation (3) is straightforward since we

may solve the single bilinear form (7) rather than the coupled system (6). Thus, the N -soliton
solution of equation (7) is given by Hirota’s ansatz [11]

f (x, t) =
∑

µ=0,1

exp


 N∑

i=1

µiθi +
∑

1≤i<j≤N

µiµj lnAij


 , (10)

where θi = pix+ωit+ηi (i = 1, . . . , N) and pi, ωi, ηi are constant parameters. Following Ref. [13],
we will call the generic solution (10) the regular N -soliton: observe that it is described by a single
interaction coefficient Aij . The solitary wave is given by setting N = 1 in equation (10) and
yields the familiar sech2 pulse [1]

u (x, t) = −1
2

p2sech2 1
2

(px + ωt + η) , (11)

where ω(p) satisfies the quadratic dispersion relation

5ω2 + 5ωp3 − p6 = 0. (12)
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Figure 1. Solitary-wave solutions of the bKK equation: (a) a right-travelling single-humped wave,
(b) a left-travelling double-humped wave.

For the bKK equation, no reduction of the bilinear forms (8) and (9) to a single bilinear
equation, akin to the Ramani equation (7), is possible. We must therefore solve one or other
of the coupled systems (8) or (9) for which no prescribed ansatz, comparable to the regular
N -soliton (10), is available. However, we may exploit the close connection between the bKK and
bSK-Ramani equations – that is evident from equations (2) and (3) – to argue as follows. Since
the bilinear forms (6) and (7) of the bSK-Ramani equation are equivalent under f2 ↔ f [1], the
N -soliton solution of the coupled bilinear form (6) is the square of the regular N -soliton (10). But
then the duality of the bKK and bSK-Ramani equations suggests the following hypothesis: the
N -soliton solution of the bKK bilinear form (8) will mimic its counterpart for the corresponding
bSK-Ramani system (6). For example, if we apply this reasoning to the regular solitary wave
(set N = 1 in (10)), we obtain the solution of equation (8) [1],

f (x, t) = 1 + eθ +
1
16

a2e2θ, θ = px + ωt + η, (13)

where

a2 =
4ω − p3

ω − p3
(a > 0) (14)

and ω(p) satisfies the (bSK-Ramani) dispersion relation (12). Then, using u = −∂2
x ln f (equa-

tion (5) with α = −1), we obtain the ‘anomalous’ solitary wave of the bKK equation (2)

u (x, t) = −ap2 a + 2 cosh θ

(a cosh θ + 2)2
, (15)

which was first reported in Ref. [1]. The most significant feature of this solitary wave is that it
“switches” its shape on switching direction (cf. the bSK-Ramani solitary wave (11) that propa-
gates to the left or right with the same bell-shaped profile). The right-travelling single-humped
solitary wave is shown in Fig. 1(a), whilst the left-running wave has the double-humped profile
pictured in Fig. 1(b) (where here, and in subsequent figures, we plot the physical wave −u (x, t)).
Extending the argument, we conjecture that the N -soliton of the bKK equation (8) has the struc-
ture – though not the precise analytical form – of the squared regular N -soliton (10). We shall
use this duality hypothesis – which was formulated in Ref. [1] – to obtain higher-order soliton
solutions of the bKK equation; in effect, we choose to solve the coupled bilinear form (8) rather
than the alternate system (9).

3 Two-soliton solution of the bKK equation

Before proceeding, it will be helpful to introduce the following notation: if F (Dx, Dt) is any
bilinear operator, then we define F (p) = F (p, ω). Now, the regular two-soliton solution of the
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bSK-Ramani equation is given by (set N = 2 in equation (10))

f (x, t) = 1 + eθ1 + eθ2 + A12eθ1+θ2 , θi = pix + ωit + ηi, i = 1, 2, (16)

which solves equation (7) if

A12 = −FR(p1 − p2)
FR(p1 + p2)

= −5 (ω1 − ω2)
2 + 5 (ω1 − ω2) (p1 − p2)3 − (p1 − p2)6

5 (ω1 + ω2)
2 + 5 (ω1 + ω2) (p1 + p2)3 − (p1 + p2)6

(17)

and ωi(pi) satisfies the dispersion relation (cf. equation (12))

FR(pi) = 5ω2
i + 5ωip

3
i − p6

i = 0, i = 1, 2, (18)

where FR(Dx, Dt) = 5D2
t + 5D3

xDt − D6
x is the Ramani bilinear operator. According to our

duality hypothesis, the two-soliton solution of the bKK equation will mimic f2 (a solution of
the bSK-Ramani bilinear form (6)). We therefore seek a solution of the bilinear form (8) with

f (x, t) = 1 + eθ1 + eθ2 +
1
16

a2
1 e2θ1 +

1
16

a2
2 e2θ2 + b12 eθ1+θ2

+
A

16

(
a2

1 e2θ1+θ2 + a2
2 eθ1+2θ2

)
+

(
A

16

)2

a2
1 a2

2 e2(θ1+θ2), (19)

where (cf. equation (14))

a2
i =

4ωi − p3
i

ωi − p3
i

, i = 1, 2, (20)

and ωi(pi) satisfies the (bSK-Ramani) dispersion law (18). The expression (19) merits further
comment: firstly, it has been normalised by setting the coefficients of the terms eθi to unity
(ηi are arbitrary). Further, f is symmetrical under the exchange θ1 ↔ θ2. Finally, by applying
the “elastic” interaction property of colliding solitons [14, 15] – whereby (19) separates asympto-
tically into two distinct ‘solitary’ waves of the form (13)–(14) – we are left with just the two
unknown constants b12 and A. The parameter A arises quite naturally as a measure of the
post-interaction phase shifts of the constituent solitary waves, and so plays the same rôle as A12

in the bSK-Ramani two-soliton (16).
We now substitute the putative bKK two-soliton (19) into the bilinear form (8) and make

use of the standard result [12]

F (Dx, Dt) eθ1 · eθ2 = F (p1 − p2) eθ1+θ2 , θi = pix + ωit + ηi, i = 1, 2.

Following some routine but lengthy algebra (that is best carried out using a symbolic manipu-
lation programme such as Mathematica), we find that A = A12, equation (17), and

b12 =
∆12

2FR(pi + pj)
=

∆12

2D12
, (21)

where

∆12 = 20ω1ω2 + 10ω1p2

(
3p2

1 + p2
2

)
+ 10ω2p1

(
p2
1 + 3p2

2

) − p1p2

(
12p4

1 − 5p2
1p

2
2 + 12p4

2

)
(22)

and

D12 = 10ω1ω2 + 5ω1p2

(
3p2

1 + 3p1p2 + p2
2

)
+ 5ω2p1

(
p2
1 + 3p1p2 + 3p2

2

)
− p1p2

(
6p4

1 + 15p3
1p2 + 20p2

1p
2
2 + 15p1p

3
2 + 6p4

2

)
. (23)



348 A. Parker and J.M. Dye

-10
0

10
20

x
-20

-10

0

10

t0
0.25
0.5

0.75
1

-u(x,t) 

-10
0

10
20

x

(a)
-10

0

10

x-4

-2

0

2

4

t 0
0.2
0.4
0.6
  -u(x,t)

-10

0

10

x

(b)

Figure 2. A perspective view of the bKK two-soliton: (a) the interaction of two left-travelling double-
humped solitary waves, (b) the head-on collision of a single- and a double-humped pulse.

This completes the derivation of the two-soliton solution u (x, t) of the bKK equation (2) which
is obtained explicitly from (19) (with A → A12) and the relation u = −∂2

x ln f . Fig. 2(a) shows
a two-soliton comprised of a pair of double-humped ‘solitary’ waves propagating to the left,
whilst Fig. 2(b) pictures the head-on collision between a single-peaked and a double-peaked
‘solitary’ wave. Typically, the soliton pulses emerge from the interactions intact, except for the
clearly visible phase shifts. The bKK two-soliton (19) bears further comment. It shares the same
wave dynamics as the bSK-Ramani two-soliton, equation (16): their colliding solitary waves un-
dergo identical phase shifts that are determined by the common interaction coefficient A12,
equation (17). This bears out the intimate connection between the bKK and bSK-Ramani
equations that is already apparent through the shared dispersion relations (12) and (18), and
justifies the duality hypothesis on which our solution procedure is based. Another important
feature of (19) is the ‘new’ parameter b12, equation (21), which cannot be expressed in terms
of A12 alone (cf. the bSK-Ramani two-soliton (16)). It is instructive to compare this key param-
eter with its counterpart for the bSK-Ramani equation. Squaring (and normalising) the regular
two-soliton (16), and extracting the coefficient of eθ1+θ2 , we find

bR
12 =

1
2
(A12 + 1) =

∆R
12

2D12

with

∆R
12 = 20ω1ω2 + 10ω1p2

(
3p2

1 + p2
2

)
+10ω2p1

(
p2
1 + 3p2

2

) − p1p2

(
12p4

1 + 40p2
1p

2
2 + 12p4

2

)
.

Thus, b12 mimics bR
12 (they differ only in the p3

1p
3
2 term in their numerators) and suggests that our

duality hypothesis can be extended to include this crucial parameter. This further conjecture
will help us when we seek solitons of higher order.

4 Further soliton solutions of the bKK equation

For the sake of brevity, we must content ourselves with describing the main results. We will
leave a more complete presentation of these preliminary results – giving a full account of the
technical details – to a future work.

According to our duality hypothesis, to obtain the bKK three-soliton solution we start with
the regular three-soliton (put N = 3 in equation (10)). We then square (and normalise) this
expression, introducing a minimal number of undetermined coefficients to give the form of the
ansatz f (consistent with the symmetry in θi, i = 1, 2, 3). Rather than solve the coupled bilinear
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form (8) directly, we proceed by iteration on the solitons of lower order. (This soliton reduction
procedure was first developed in Ref. [13] to solve the related KK equation (1)). Once f has
been reduced to a solitary wave, equation (13), and then a two-soliton, equation (19), we arrive
at the three-soliton

f = 1 +
3∑

i=1

eθi +
1
16

3∑
i=1

a2
i e

2θi +
∑

1≤i<j≤3

bij eθi+θj +
1
16

∑
1≤i<j≤3

Aij

(
a2

i e
2θi+θj + a2

je
θi+2θj

)

+ b123eθ1+θ2+θ3 +
1

162

∑
1≤i<j≤3

A2
ija

2
i a

2
j e2(θi+θj)

+
1
16

[
a2

1b23A12A13e2θ1+θ2+θ3 + a2
2b13A12A23eθ1+2θ2+θ3 + a2

3b12A13A23eθ1+θ2+2θ3

]

+
1

162
A12A13A23

[
a2

1a
2
2A12e2(θ1+θ2)+θ3 + a2

1a
2
3A13e2θ1+θ2+2θ3 + a2

2a
2
3A23eθ1+2(θ2+θ3)

]

+
1

163
a2

1a
2
2a

2
3A

2
12A

2
13A

2
23 e2(θ1+θ2+θ3) (24)

in which all but one of the coefficients have been fixed. The parameters Aij and bij in (24)
generalise equations (17) and (21), respectively, in the obvious way. The only unknown is the
‘new’ parameter b123 which cannot be found by reducing f to a soliton of lower order. However,
we can deduce the following useful reductions in this way: with pi = (pi, ωi), we have

b123(p1, p2,0) = b12(p1, p2), b123(p1,0,0) = b23(0,0), b123(p1, p2, p2) =
1
8
a2

2A12. (25)

We now invoke our further conjecture that b123 will mimic its counterpart bR
123: this yields

b123 =
∆123

4D123
, D123 = D12D13D23, (26)

where Dij generalises (23) and

∆123 = 18 �p2
i p

2
jp

2
k

(
5ωi − 2p3

i

) (
5ωj − 2p3

j

)
∆ij � +810 �p10

i p4
jp

4
k� +324p6

1p
6
2p

6
3

− 4050� ωip
7
i p

4
jp

4
k� +405 �ωip

5
i p

6
jp

4
k� −2430 �ωip

3
i p

6
jp

6
k�

+ 1620 �ωipip
10
j p4

k� −8100 �ωiωjp
7
i pjp

4
k� −4050 �ωiωjp

5
i p

3
jp

4
k�

+ 810 �ωiωjp
5
i pjp

6
k� +16200 �ωiωjp

3
i p

3
jp

6
k� +3240 �ωiωjpipjp

10
k �

− 16200 �ωiωjωkp
7
i pjpk� −8100 �ωiωjωkp

5
i p

3
jpk� −81000ω1ω2ω3p

3
1p

3
2p

3
3. (27)

The symbol �� denotes the sum over all distinct permutations of (1, 2, 3) assigned to the
subscripts (i, j, k) of the enclosed product, and ∆ij generalises (22). All but two of the coefficients
in (27) are fixed by the reductions (25); the remaining two coefficients are obtained by using the
bilinear equation in (8) once more (though with a much simplified ansatz in place of (24)). The
explicit three-soliton solution u(x, t)of the bKK equation (2) follows from (24) and u = −∂2

x ln f .
Fig. 3 shows a three-soliton solution in which two left-running double-humped ‘solitary’ waves
collide head-on with a single-peaked pulse propagating to the right. Though we shall not do
so here, we could continue in the same way to derive the four-soliton solution by iterating on
the first three known solitons. In principle, we are now able to generate the N -soliton solution
of the bKK equation (2) by iteration on the solitons of lower order; however, the practical
difficulties should not be underestimated. The sheer complexity of the algebraic expressions
involved will present severe difficulties beyond the first few multisolitons (even with the aid of
symbolic software such as Mathematica).
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Figure 3. A three-soliton solution of the bKK equation showing the head-on interaction of a right-run-
ning single-peaked pulse with two left-running double-humped solitary waves.

5 Concluding remarks

A direct method has been presented for obtaining explicit multisoliton solutions of the bidi-
rectional Kaup-Kupershmidt equation (2). Not surprisingly, these solitons possess the same
remarkable property as the ‘anomalous’ solitary wave found in Ref. [1]; namely, their wave
profiles are directionally dependent. As far as we know, this type of soliton behaviour has not
been observed before now and these “switching” solitons are reported here for the first time.
The ‘anomalous’ character of the bKK solitons – whose description requires the introduction of
a new parameter at each order – arises quite naturally within the bilinear formalism as a squared
regular N -soliton. This canonical form, in conjunction with the duality of the bKK and bSK-
Ramani equations, provides the basis for the iterative procedure that is used to obtain the
solitons of higher order. From a wave perspective, this formulation – couched in terms of the
common interaction parameters Aij and shared dispersion laws (18) – would seem to be the
natural one. For not only does it make explicit the dynamical duality of the soliton solutions of
the bKK and bSK-Ramani equations, but it also underlines the intimacy between these funda-
mentally different integrable bidirectional equations. This mirrors the deep connection between
their better known undirectional cousins the KK equation (1) and the SK equation (4), respec-
tively [2, 13, 16, 17]. We intend to report a more comprehensive discussion of these preliminary
findings, together with the derivation of further multisolitons, in the near future.
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