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The additional mechanism of the super-high-frequency power absorption in the quasy-one-
dimensional antiferromagnet was considered. This absorption works due to the generation of
the stationary nonlinear excitations of kinks type. The estimation of the effect is obtained
for the real physical system. The shape of the signal of absorption is analyzed for some
values of the external magnetic field. The quantity of the effect is detectable.

1 Introduction

We investigate theoretical problem of the super-high-frequency (SHF) field absorption by a gas
of kink type solitons in the model of one-dimensional easy axis antiferromagnet (AFM) to show
that the effect of linear response can be visible. The frequencies of solitons are comparable to the
frequencies of magnons, and can be in intersection with the second ones. The external stationary
homogeneous magnetic field, applied along the easy axis, causes the phase of system state, the
eigenvalue frequencies spectrum of this phase and the value of the gap, particularly. The external
microwave magnetic field is applied at the same direction. The shape of the expected absorption
signal has the marked intense and is analyzed for some values of the external constant magnetic
field.

The paper has the following structure. In the Section 2, the known results about the magne-
tization created by one kink [1, 2, 3], we obtain using the method of adiabatic approximation.
This way turns out very convenient for the following calculation of the contribution of the weak
uniform magnetic field into the energy of interaction between the kink and magnetic field, and
to the magnetization also (see (1), (6) and (7)). The Section 3 is devoted to the calculation of
the average energy absorbed from the external field over one period of our system. The theo-
retical investigations are illustrated by the numerical calculated curves of the dependence of the
absorbed capacity on the frequency for some values of external magnetic field. The calculation
of the quantity of the effect is based on the data of computer simulation, and was done with
papameters of well-investigated quasi-one-dimensional AFM system, which admits the existence
of the soliton excitations [4, 5]. We discuss obtained results in the Conclusion.

2 “Mechanical” aspects of solitons

Familiar model of one-dimensional two-sublattice AFM in an external magnetic field was consid-
ered in the paper of Bar’yakhtar and Ivanov [2]. This system was described in terms of weak FM
�m and AFM �l vectors, such that (�m,�l) = 0, �m2 +�l 2 = 1 (here �m = �M1+ �M2

2M0
, �l = �M1− �M2

2M0
, and �M1,

�M2 are the sublattices magnetizations, | �M1| = | �M2| = M0). This formulation of the effective
equations for magnetizations of the two subblattices was obtained for the natural assuming for
AFM that the energy of relativistic interaction is small comparing to the exchange energy. The
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magnetization �m, created by one kink, was expressed in terms of �l and ∂�l/∂t

�m(x, t) =
2

ω0δ

[
∂�l

∂t
,�l

]
+

2
δ

[
�h − (�h,�l)�l

]
, (1)

where ω0 = 2µ0M0/�, µ0 is the Bohr magneton, and M0 is an equilibrium magnetization. In
angular variables θ and ϕ for vector �l, |�l| = 1, lz = cos θ, lx + ly = sin θ exp(ıϕ),

The well-known [2] nonperturbed kink type solutions were obtained

cos θ = σ tanhB(x − vt − x0),
ϕ = ωt − ϕ0 + ∆(x − vt − x0), (2)

where σ = ±1, B = κ(v;ω)
1−v2 , κ2(v; ω) = γ2(1 − v2) − (ω − h3)2, γ = (c/ω0)

√
(β/α), ∆ =

v
1−v2 (h3 − ω).

The method of adiabatic approximation proposed in our paper allows to justify the results
obtained earlier [1, 2, 3] as well as to study the further applications.

The dynamics of free kink in 4-dimensional phase-space (X, Φ, I1, I2) is defined by the Hamil-
tonian equations

dI1

dt
= −∂H0

∂X
,

dI2

dt
= −∂H0

∂Φ
, v =

dX

dt
=

∂H0

∂I1
, ω =

dΦ
dt

=
∂H0

∂I2
. (3)

Here X and Φ are the parameters defining the kink spatial arrangement and form, correspon-
dingly, I2 is the adiabatic invariant of two-parameter solution of the Landau–Lifshitz equations,
I1 is the field impact, H0 is an unperturbed Hamiltonian. For the first two variables we can
write the definitions Φ(t) =

∫
dtω(t), X =

∫
dtv(t). The variables I1 = I1(v, ω), I2 = I2(v, ω)

will be defined later. The solution (2) can be rewritten in the form

ϕ = Φ + ∆(v, ω)(x − X), cos θ = σ tanhB(x − X).

The Lagrange function L0 in new variables can be obtained as follows:

L0 = I1
dX

dt
+ I2

dΦ
dt

− E0(I1, I2),

where I1 = 2γ2v/κ(v, ω), I2 = 2(ω − h3)/κ(v, ω).
In [11] it was shown that with a week uniform magnetic field �h(t) = �h0 cos 2Ωt, ( �h0, �M) � H0,

which is polarized along the easy magnetization axis, the breather dynamics equations (the
adiabatic approximation equations) will have the form (3) as before, where H = H0 + Hint.
Moreover, it was investigated the FM linear response to the SHF field with the frequency the
same with the initial soliton one. It was expected that under the weak uniform magnetic field the
resonance interaction between the breathers having frequency ω = Ω and the external magnetic
field can exist, but the numerical calculations showed that the effect was small sufficiently.

The relation for Hint for our AFM system (the energy of interaction between the kink and
magnetic field) obtained by us is the following:

Hint = H1 exp(ıΦ) + H̄1 exp(ıΦ), (4)

where

H1 = h0
iπσ

2B2

v

(1 − v2)
cosh−1

(
π∆
2B

) {
γ2 + h3(ω − h3)

}
. (5)
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The whole magnetization created by one kink can be written as

Mx =
∫

dx mx = M1 exp(ıΦ) + M̄1 exp(−ıΦ). (6)

The calculating of M1 leads to the following relation

M1 = −γ2
( ıπσ

δB2

) v

(1 − v2)
cosh−1

(
π∆
2B

)
. (7)

3 High-frequency properties of solitons

Investigations of the contribution of the solitons of different types to the specific heat, magne-
tization and the dynamical structure factor, defining non-elastic neutron dissipation and so on,
are actual problems of the solid state physics during last years [6–10].

The magnet state involving a great number of kinks, the average distance between which
is much larger than the average size of the kinks (a “gas” of kinks), can be described by the
distribution function ρ(X, Φ, I1, I2), determining the number of quasiparticles per an element
of phase volume �Γ. It would appear reasonable that in the thermodynamic equilibrium state
ρ = ρ0 = exp(−β̃E0), where the inverse energetic temperature β̃ = (M0a)2αω0/cT , T is the
temperature.

The kinetic equation in general case has the form ∂ρ
∂t + div(ρ�u) = −ρ−ρ0

τ , where τ is the
relaxation time. The kinetic equation determining the small nonequilibrium correction ρ1, owing
to the presence of a weak external magnetic field which varies in time, has the following form in
the linear approximation:

∂ρ1

∂t
+

∂E0

∂I2

∂ρ1

∂Φ
+

ρ1

τ
=

∂ρ0

∂I2
cos(Ωτ)

∂Hint

∂Φ
. (8)

The average energy Q̄ absorbed from the external field over one period is given by the
expression

Q̄ = − 1
TLa2

∫
dt

∫
d3x

∂�h

∂t
�M, Mx =

∫
dΓ

(2π�)2
ρ(Γ)Mx,

where L is the length, �M is the total magnetization of a sample, T = 2π/Ω which is determined
by the kink distribution function ρ, and Mx is the whole magnetization, created by one kink.

The equation (8) can be solved by means of relations (4)–(7). The term with ρ0 will vanish
by averaging t over.

It is essentially to point out that the range of the kinks existence defined by the inequalities
v2 + (ω−h3)2

γ2 < 1 (0 < h3 < γ) is the ellipse. It is important that there exists the region of
negative frequencies. We can accept that the external SHF field can have negative frequencies
also. So, the appropriate frequencies of field are defined by the inequality |Ω| < γ + h3. By this
means we have three domains of frequencies:

I. Ω2 < Ω < Ω1, qI = J(Ω),
II. Ω4 < Ω < Ω2, qII = J(Ω) + J(−Ω),

III. Ω5 < Ω < Ω4, qIII = J(−Ω),
(9)

where Ω1 = γ + h3, Ω2 = γ − h3, Ω4 = −(γ − h3), Ω5 = −(γ + h3).
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Figure 1.

Now we introduce the expression for the absorbed energy in the linear-response appro-
ximation. Here for convenience we use the substitution x = γv/κ(ṽ), dx = (γ3ṽv)dv/κ3, in
which J(Ω) has the form:

J = J(Ω; h3, h0) = J0(h0) |Ω| F (Ω; h3)
ṽ

∫ ∞

1

√
x2 − 1

[
1 +

(Ω − h3)2

γ2 ṽ2
x2

]2

× cosh−2

[
π

2

(
Ω − h3

γ

)√
x2 − 1

]
exp

[
−2γβ̃

F (Ω; h3)
ṽ

x

]
dx, (10)

where

J0 = 2h2
0π

3ε2β̃/δ, F (Ω; h3) = 1 +
h3

γ

(
Ω − h3

γ

)
, ṽ =

√
1 − (Ω − h3)2

γ2
,

Note that J depends on one variable Ω, but thereafter we will include the parameters h0 and h3

as arguments of J to emphasize their important role.
Conceptually, the parameter 2γβ̃ (see (2)) causes the quantity of the effect. For this one to

be nonzero, it is essential to 2γβ̃ ≤ 1.

4 Conclusion

The numerical calculated curves of (1/J0)qI,II(Ω; h3, h0) (see (9), (10) for definition) for several
values of external field h3 are obtained. For this calculation we used the parameters of exchange
J = 3K and anisotropy HA = 500 Oe of the well investigated quasi-one-dimensional AFM
system CsMnCl3 ·2H2O, which admits the existence of the soliton excitations [5]. This choice of
parameters of the crystal leads to the following values of the dimensionless parameters: ε = 0.62,
J0 = 1.5 · 10−13, β̃ = 3.46 · 10−3, δ = 3.63 · 103. The result is represented on Fig. 1 for the most
interesting case of h3 close to the spin-flop field hsf , i.e. h3 = 120, hsf = 135 (take into account
that the frequency, field and other variables and parameters are dimensionless).

The fluent peak observed at the Ωm = 120 with the capacity value Qm = 103 Erg/sec · cm3 is
the most important for our investigation. This peak is the respective signal connected with the
additional contribution of the kinks into our system SHF absorption [4]. The sharp increasing
of capacity observed at the frequency Ω = 255, coincided closely with the upper AFM resonance
frequencies, is not taken into account. The kinks in this region of frequencies are out of the
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physical interest. The value of the imaginary part of the susceptibility is χ′′
m = 0.22. Thus,

the maximum at the frequency Ωm = 120 is of interest, since it is renegated out of the uniform
resonance line, has the marked intensily and therefore can be analyzed in the experiments aimed
at the finding of the additional line form in the absorption spectrum, the frequency-field, angle,
temperature and other dependencies, followed from the theory, presented in this paper.
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