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Canonical Realization of Poincaré Algebra:
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The canonical realization of the Poincaré group for the systems of the pointlike particles
coupled with the electromagnetic, massive vector and scalar fields is constructed. The
reduction of the canonical field degrees of freedom is done in the linear approximation in the
coupling constant. The Poincaré generators in terms of particle variables are found. The
relation between covariant and physical particle variables in the Hamiltonian description is
written. The approximation up to c−2 is examined.

1 Introduction

So many field-theoretical models in the classical relativistic mechanics are based on the La-
grangian formalism due to its conceptual simplicity [1, 2]. However, the transition from La-
grangian description, when the fields are eliminated by means of substitution of the formal
solutions of the field equations, to Hamiltonian one is not simple and demands the use of va-
rious approximations. For this reason, it is natural to construct the Hamiltonian description of
the “particle plus field” systems, and then to exclude field degrees of freedom. Such a program
is discussed in the series of papers by Lusanna with collaborators (see [3]).

Here at the beginning we apply simpler approach of the use of the geometrical forms of dy-
namics [2] fixing chronometrical invariance of the action integral. We construct the Hamiltonian
description of charged particles with electromagnetic field, and perform the canonical transfor-
mation which isolates nonphysical (gauge) degrees of freedom of the electromagnetic field. We
also consider the massive scalar and vector interactions and obtain generators of time evolution
and Lorentz transformations on the physical phase space. In Section 3 the procedure of the
exclusion of the field degrees of freedom is described within the linear approximation in the cou-
pling constant. We obtain the canonical generators of the Poincaré group (the direct-interaction
theory) for considered interactions. We demonstrate that the approximation up to c−2 agrees
with the well known results of various approaches.

2 Hamiltonian formulation of the “field+particle” systems

Let particles be described by their world lines in the Minkowski space-time1 γa : τ �→ xµ
a(τ). The

electromagnetic interaction between charges is mediated by the field Fµν(x) = ∂µAν(x)−∂νAµ(x)
with the electromagnetic potential Aµ(x); ∂ν ≡ ∂/∂xν . An action for the system of N charges

1The Minkowski space-time is endowed with a metric ‖ηµν‖ = diag(1,−1,−1,−1). The Greek indices µ, ν, . . .
run from 0 to 3; the Roman indices from the middle of alphabet, i, j, k, . . . run from 1 to 3 and both types of
indices are subject of the summation convention. The Roman indices from the beginning of alphabet, a, b, label
the particles and run from 1 to N . The sum over such indices is indicated explicitly.
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is

S = −
N∑

a=1

∫
dτa

{
ma

√
u2

a(τa) + eau
ν
a(τa)Aν [xa(τa)]

}
− 1

4

∫
Fλσ(x)F λσ(x)d4x, (1)

where ma and ea are the mass and the charge of particle a, respectively, and uµ
a(τa)=dxµ

a(τa)/dτa.
The action is manifestly invariant under reparametrization of the particle world lines and ordi-
nary gauge transformation of the electromagnetic potential:

τa �→ φ(τa), φ′ > 0, (2)
Aµ �→ Aµ + ∂µΛ. (3)

Moreover, action (1) is invariant under (global) transformations of the Poincaré group; this
invariance results in the conservation of the symmetric energy-momentum tensor [4]:

θµν(x) =
N∑

a=1

∫
ma

uµ
a(τa)uν

a(τa)√
u2

a(τa)
δ4(x − xa(τa))dτa − FµλF ν

λ +
ηµν

4
FλσF λσ, (4)

θµν(x) = θνµ(x), ∂νθ
µν(x) = 0. (5)

We fix the freedom in the parametrization of particle world lines by means of gauge condition:

x0 = f(t, x), x =
(
x1, x2, x3

)
, (6)

which defines the form of relativistic dynamics. Then, the Minkowski space-time is foliated
by the family of space-like or isotropic hypersurfaces Σt parametrized by t. The functions
xi = xi

a(t), i = 1, 2, 3, completely determine the parametric equations of the particle world lines
in a given form of dynamics:

x0 = f(t, xa(t)), xi = xi
a(t). (7)

The variable t serves as a common evolution parameter of the system.
Accounting (6), we come to a single-time form of the action [5]

S =
∫

dtL (8)

with Lagrangian L(t) depending on the functions xa(t), Aµ(t, x) and their first order derivatives
with respect to evolution parameter, ẋa(t) = dxa(t)/dt and Ȧµ(t, x).

The conservation of the energy-momentum tensor (4) gives us ten conserved quantities in a
given form of dynamics:

Pµ =
∫

Σt

θµνdσν , Mµν =
∫

Σt

(xµθνρ − xνθµρ) dσρ. (9)

However, the Lagrangian L still remains invariant under gauge transformation (3) and leads
to the constrained Hamiltonian description. It is demonstrated in [5] that the form of dynamics
determines the structure of the corresponding constraints. In the following we confine ourselves
by the most common case of the instant form of dynamics (x0 = t). The Lagrangian function
in this form of dynamics is represented by

L = −
N∑

a=1

{
ma

√
1 − ẋ2

a + ea

[
A0(t, xa) + ẋi

aAi(t, xa)
]}− 1

4

∫ (
2EiE

i + FijF
ij

)
d3x, (10)

where Fij = ∂iAj − ∂jAi and Ei = ∂iA0 − Ȧi.
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In the Hamiltonian formulation of our system we start with canonical variables xi
a(t), Aµ(t, x)

and conjugated momenta pai(t), Eµ(t, x) which are subject of the first class constraints [6]

E0 ≈ 0, Γ ≡ 	 − ∂iE
i ≈ 0, (11)

where ≈ means “weak equality” in the sense of Dirac and 	(t, x) =
N∑

a=1
eaδ

3(x − xa(t)) is a

charge density.
Now we break the field phase space by means of canonical transformation so that the physical

part is described by the gauge invariant variables aα =
(
δi
α − δi

3∂α/∂3

)
Ai, Eα; α = 1, 2, and

unphysical part is parametrized by the canonical pairs (Q, Γ) and (A0, E
0).

The time evolution of the physical degrees of freedom is generated by the Hamiltonian

H =
N∑

a=1

√
m2

a + [pa − eaA⊥(xa)]2 − 1
2

∫ (
A⊥

i ∆A⊥
i − Ei

⊥Ei
⊥ + 	∆−1	

)
d3x, (12)

where

Ei
⊥ =

(
δi
α − δi

3∂α/∂3

)
Eα, A⊥

i =
(
δα
i + ∂i∆−1∂α

)
aα. (13)

Inverse differential operators are defined so that

1/∂3δ
3(x) = (1/2)δ

(
x1

)
δ
(
x2

)
sgn

(
x3

)
, ∆−1δ3(x) = −1/(4π|x|). (14)

Reexpression of the conserved quantities (9) in the terms of canonical variables leads to the
canonical realization of the Poincaré group. On the physical subspace the generator P 0 coincides
with the Hamiltonian (12), and the generator of the Lorentz transformation is given by

Mk0 =
N∑

a=1

{
xk

a

√
m2

a + [pa − eaA⊥(xa)]
2 − tpk

a

}
− 1

2

∫
xk	∆−1	d3x

+
∫

xk

(
1
4
F⊥

ij F⊥
ij +

1
2
Ei

⊥Ei
⊥ + El

⊥∂l∆−1	

)
d3x − t

∫
El

⊥∂kA⊥
l d3x. (15)

where F⊥
ij = ∂iA

⊥
j − ∂jA

⊥
i .

Let us consider in a similar manner the Hamiltonian description of the system of particles
with massive vector and scalar interactions. In the first case a system is described by action
that differs from (1) by the massive term 1

2µ2AνAν . The instant form Hamiltonian description
of the system is based on the canonical variables xi

a(t), Aµ(t, x) and pai(t), Eµ(t, x). Moreover,
there is a pair of the second class constraints:

E0 ≈ 0, Γ − µ2A0 ≈ 0, (16)

which can be excluded by means of the Dirac bracket. The canonical Hamiltonian is

H =
N∑

a=1

√
m2

a + [pa − eaA(t, xa)]
2

+
∫ [

1
4
FijFij +

1
2
EiEi − 1

2
µ2AiA

i + A0

(
Γ − 1

2
µ2A0

)]
d3x. (17)
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After exclusion of the constraints (16) one obtains for the boost generator

Mk0 =
N∑

a=1

{
xk

a

√
m2

a + [pa − eaA(t, xa)]2 − tpk
a

}

+
∫

xk

[
1
4
FijFij +

1
2
EiEi − 1

2
µ2AiA

i +
1

2µ2
Γ2

]
d3x

− t

∫ [
Ej∂kAj − 1

2
µ2AkΓ

]
d3x. (18)

In the case of a system of particles interacting by means of the scalar field ϕ(x) we construct
the standard Hamiltonian formalism without constraints with the Hamiltonian

H =
N∑

a=1

√
p2

a + [ma − eaϕ(t, xa)]2 +
1
2

∫ [
π2 + (∇ϕ)2 + µ2ϕ2

]
d3x, (19)

and the boost generator

Mk0 =
N∑

a=1

{
xk

a

√
p2

a + [ma − eaϕ(t, xa)]2 − tpk
a

}

+
1
2

∫
xk

[
π2 + (∇ϕ)2 + µ2ϕ2

]
d3x − t

∫
π∂kϕd3x. (20)

In the next section we will see that elimination of the field degrees of freedom into the three
considered cases gives us the canonical generators of a similar structure.

3 Elimination of the field degrees of freedom

In the systems, where the free radiation is not essential, the physical field degrees of freedom
can be excluded. As a result, we obtain the description of our systems in the terms of particle
variables only.

Let us perform the field reduction by three steps [7]. First, we must find a solution of the field
equations of motion. Here, using coupling constant expansion, we solve the linearized equations.
However, we touch the problem of choice of Green’s function. Fortunately, in the first-order
(linear) approximation in the coupling constant the advanced, retarded, or symmetric solutions
coincide. We use here the time-symmetric Green’s function G(x2) = G

(
x2

0 − x2
)
. It is well

known [1] that the Green’s function determines the nonrelativistic potential u(r):

u(r) =
∫

dαG
(
α2 − r2

)
. (21)

The general solution of the field equations is a sum of the source free field Arad
s (s is the number

of the physical field components), which satisfies the homogeneous equation, and the solution
of the inhomogeneous equation As in the terms of canonical particle variables.

Second, we perform a canonical transformation [7]:

As = Arad
s + As, Es = Es

rad + Es, (22)

xi
a = qi

a +
∫ [(

Arad
s +

1
2
As

)
∂Es

∂kai
−

(
Es

rad +
1
2
Es

)
∂As

∂kai

]
d3x, (23)

pai = kai −
∫ [(

Arad
s +

1
2
As

)
∂Es

∂qi
a

−
(

Es
rad +

1
2
Es

)
∂A⊥

k

∂qi
a

]
d3x, (24)

here the free field terms (Arad
s , Es

rad) are treated as the new canonical variables.
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Third step consists in elimination of the field variables by means of constraints

Arad
s ≈ 0, Es

rad ≈ 0. (25)

The Dirac bracket for the systems with additional canonical constraints (25) coincides with the
particle Poisson bracket {qi

a, kbj} = −δabδ
i
j .

It is true, in order to simplify the form of the Poincaré generators for the system with vector
interaction, we need to canonically transform the particle variables. Finally, the canonical
generators of the Poincaré group for the considered interactions in the linear approximation are

H = c
N∑

a=1

k0
a +

c

2

N∑′

a,b=1

eaeb
f(ωab)

k0
a

u(ρab), k0
a =

√
m2

ac
2 + k2

a, (26)

P k =
N∑

a=1

kk
a , M ij =

N∑
a=1

(
qi
ak

j
a − qj

ak
i
a

)
, (27)

Mk0 =
N∑

a=1

(
qk
a

c
k0

a − tkk
a

)
+

1
2c

N∑′

a,b=1

eaebq
k
b

f(ωab)
k0

a

u(ρab), (28)

where the prime over sum denotes that a �= b (a = b terms is excluded by means of mass
renormalization); ρ2

ab = q2
ab +

(
kaqab/k0

a

)2, qab = qa − qb, qab = |qab|, ωab = kµ
akbµ/mambc

2,
and f(ω) = 1 for the scalar interaction and f(ω) = ω for the vector interaction. It can easy be
demonstrated that the expressions (26)–(28) satisfy the commutation relations of the Poincaré
group in a given approximation with arbitrary functions u(r) and f(ω).

According to (23), the covariant particle positions xi
a are connected with the canonical vari-

ables as

xi
a = qi

a +
1
2

∫ [
As

∂Es

∂kai
− Es ∂As

∂kai

]
d3x. (29)

It can be verified directly that in a given approximation the expression (29) satisfies the world
line condition{

xi
a, M

k0
}

= xk
a

{
xi

a, H
} − tδik. (30)

The Poisson brackets between particle positions do not vanish,{
xi

a, x
j
b

}
=

∫ (
∂As

∂kbj

∂Es

∂kai
− ∂Es

∂kbj

∂As

∂kai

)
d3x, (31)

in a full agreement with the famous no-interaction theorem [8].
Similarly, the direct-interaction theory can be obtained in the different forms of relativistic

dynamics. They are physically equivalent. So, the Poincaré generators in the front form (x0 =
t+x3), which corresponds to foliation of the Minkowski space-time by the isotropic hypersurfaces,
are connected with the instant form generators (“in”) by means of the following canonical
transformation:

qi
a → qi

a − q3
a

ki
a + δi

3ha

ha
, ki

a → ki
a + δi

aha, (32)

Gin − Gfr = {F, Gin}, (33)

ha =
k2

a + m2
a

2ka3
, F =

∫ (
exp

(−x3∂t

) − 1
)Fd3x, (34)

where ∂tF is equal to the spatial density of the instant form interaction term.
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Now let us examine the generators (26), (28) up to c−2 approximation. We immediately find
that

u(ρab) = u(qab) +
(qabka)2

2qabm2
ac

2

du(qab)
dqab

, f(ωab) = 1 +
f ′(0)
2c2

(
ka

ma
− kb

mb

)2

. (35)

Performing the canonical transformation generated by the function

Λ =
1

4c2

N∑
a<b

eaebu(qab)
[
qab

(
ka

ma
− kb

mb

)]
, (36)

finally, we obtain the expressions

H = H(0) + H(1), (37)

Mk0 =
N∑

a=1

(qk
ama − tkk

a) +
1

2c2

N∑′

a,b=1

eaebq
k
b u(qab). (38)

where

H(0) =
N∑

a=1

(
mac

2 +
k2

a

2ma

)
+ U (0), U (0) =

N∑
a<b

eaebu(qab), (39)

H(1) = −
N∑

a=1

k4
a

8m3
ac

2
−

N∑
a<b

eaeb

{
1

2c2mamb
[kakbu(qab)

+(kaqab)(kbqab)
du(qab)
qabdqab

]
− A

2c2

(
ka

ma
− kb

mb

)2

u(qab)

}
, (40)

and A = f ′(0) − 1. Specifically, A = −1 for the scalar and A = 0 for the vector interactions.
The latter in the massless case produces by the Darwin’s Lagrangian for electromagnetic inter-
action. Expression (40) agrees with the post-Newtonian Hamiltonians obtained within various
approaches [1].
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