Proceedings of Institute of Mathematics of NAS of Ukraine 2002, Vol. 43, Part 2, 645651

A Symmetric Treatment of Damped Harmonic
Oscillator in Extended Phase Space

S. NASIRI % and H. SAFARI f

t Institute for Advanced Studies in Basic Science, IASBS, Zanjan, Iran
E-mail: Nasiri@iasbs.ac.ir, hsafary@iasbs.ac.ir

Y Dept. of Physics, Zanjan University, Zanjan, Iran

Extended phase space (EPS) formulation of quantum statistical mechanics treats the ordi-
nary phase space coordinates on the same footing and thereby permits the definition of the
canonical momenta conjugate to these coordinates. The extended Lagrangian and extended
Hamiltonian are defined in EPS by the same procedure as one does for ordinary Lagrangian
and Hamiltonian. The combination of ordinary phase space and their conjugate momenta
exhibits the evolution of particles and their mirror images in the same manner. As an examp-
le the resultant evolution equation in EPS for a damped harmonic oscillator DHO, is such
that the energy dissipated by the actual oscillator is absorbed in the same rate by the image
oscillator leaving the whole system as a conservative system. We use the EPS formalism to
obtain the dual Hamiltonian of a damped harmonic oscillator, first proposed by Bateman, by
a simple extended canonical transformations. The extended canonical transformations are
capable of converting the damped system of actual and image oscillators to an undamped
one, and transform the evolution equation into a simple form. The resultant equation is
solved and the eigenvalues and eigenfunctions for damped oscillator and its mirror image
are obtained. The results are in agreement with those obtained by Bateman. At last, the
uncertainty relation are examined for above system.

1 Introduction

Although the formulation of dissipative systems from the first principles are cumbersome and
little transparent, however, it is not so difficult to account for dissipative forces in classical
mechanics in a phenomenological manner. Stokes’ linear frictional force proportional to the ve-
locity v, Coulomb’s friction ~ v/v, Dirac’s radiation damping ~ © and the viscous force ~ V2v
are noteworthy examples in this respect. Unfortunately, the situation is much more complicated
in quantum level (see Dekker [1], and the references there in). In his review article on classical
and quantum mechanics of the damped harmonic oscillator, Dekker outlines that: “Although
completeness is certainly not claimed, it is felt that the present text covers a substantial portion
of the relevant work done during the last half century. All models agree on the classical dy-
namics ... however, the actual quantum mechanics of the various models reveals a considerable
variety in fluctuation behavior. ... close inspection further shows that none of them ... are
completely satisfactory in all respects”. As an example of the dissipative systems, the DHOs
is investigated through different approaches by different people. Caldirola [2] and Kanai [3]
using the familiar canonical quantization procedure, obtained the Schrédinger equation which
gives the eigenvalue and eignfunctions for damped oscillator. However the difficulty with this
approach is that it violates the Heisenberg uncertainty relation in the long time limit. Another
approach is the Schrédinger—Langevin method, which introduces a nonlinear wave equation for
the evolution of the damped oscillator [4]. In this method the superposition principle is obvi-
ously violated. Using the Wigner equation, Dodonov and Manko [5] introduced the loss energy
state for DHO as consequence of the Bateman dissipation, by introducing a dual Hamiltonian
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considered the evolution of the DHO in parallel with its mirror image [6]. In this method the
energy dissipated by the actual oscillator of interest is absorbed at the same rate by the image
oscillator. The image oscillator, in fact, plays the role of the physical reservoir. Therefore, the
energy of the total system, as a closed one, is a constant of motion.

Here we use the EPS method [7] to investigate the evolution of the DHO. The method
looks like the Bateman approach, however, the uncertainty principle, when looked upon from
a different point of view, is not violated. That is, the extended uncertainty relation is satisfied for
combination of actual and image oscillators, while reducing into ordinary uncertainty relations
for actual and image oscillators, separately, in zero dissipation limit.

This paper is organized as follows. In Section 2, a review of the EPS formulation is given.
In Section 3, we investigate the quantization procedure for the DHO. In Section 4, we use the
path integral technique directly to calculate the exact propagators, and then the uncertainties
of position and momentum for the actual and image oscillator system. Section 5 is devoted to
concluding remarks.

2 A review of the EPS formulation

A direct approach to quantum statistical mechanics is proposed by Sobouti and Nasiri [7], by
extending the conventional phase space and applying the canonical quantization procedure to
extended quantities in this space. Assuming the phase space coordinates ¢ and p to be inde-
pendent variables on the virtual trajectories allows one to define momenta 7, and m,, conjugate
to ¢ and p, respectively. This is done by introducing the extended Lagrangian

where £9 and LP are the ¢ and p space Lagrangians of the given system. Using equation (1) one
may define the momenta, conjugate to ¢ and p, respectively, as follows
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In the EPS defined by the set of variables {q, p, 74, 7}, one may define the extended Hamiltonian

H(qvpaﬂ-qvﬂ-p):q'ﬂ-q—i_pﬂ-p_‘a:H(p—i_ﬂ-qaCJ)_H(pvq—i_ﬂ-p)
1 (o"H , O"H
:Zﬁ{apnﬂq_ 3qn7rp}’ (4)

where H(q,p) is the Hamiltonian of the system. Using the canonical quantization rule, the
following postulates are outlined:

a) Let ¢, p, mqy and m, be operators in Hilbert space X, of all square integrable complex
functions, satisfying the following commutation relations

0

(14, q] = —ih, Ty = —iha—q, (5)
[7p, p| = —ih, Tp = _iha%’ (6)
lq,p] = [anTrp] =0. (7)

By virtue of equations (5)—(7), the extended Hamiltonian H, will be an operator in X.
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b) A state function x(q,p,t) € X is assumed to satisfy the following dynamical equation

dx .0 L0
%—”X—{ (p=inggea) = (pr=in )
onH ” _9"H
-G - G by ®)

The general solution for this equation is

X(4,p,t) = b(q)d* (p)e” 7P, 9)

where 1(q) and ¢(p) are the solutions of the Schrédinger equation in g and p space, respectively.
c) the averaging rule for an observable O(q,p), a c-number operator in this formalism, is
given as

(O(¢,p)) = / O(¢, p)X* (¢, p. )dpdg. (10)

For details of selection procedure of the admissible state functions, see Sobouti and Nasiri [7].

3 Damped harmonic oscillator in EPS

Extended Hamiltonian of equation (4) for undamped harmonic oscillator is given by
1 1
H = §7rq2 +pmg — §7rp2 — qTmp. (11)
By a canonical transformation of the form

q = q, 7TQ1 :_Wq_pv pP1 =D, 7Tp1 :_ﬂ-p_Qa

equation (10) yields
1 1 5 154

H = §7qu + ql — 57’('])1 — 5[)1 (12)
This extended Hamiltonian evidently represents the subtraction of Hamiltonians of two inde-
pendent identical oscillators, which is called actual and image oscillators [5]. The position ¢
and momentum 7, denote the actual oscillator, while p and 7, denote the image oscillator. The
minus sign has its origin in equation (4) and has an important role in this theory [7]. The
following canonical transformation

% =q, Tgy = Tq — Aq1, P2 = pi, Tpy = Tp, + AP1. (13)

changes the extended Hamiltonian of an undamped harmonic oscillator into that of the damped
one, i.e.

1 1
Hy = 3 {7r22 + 2Mqomg, + wzqg} -3 {7r12,2 — 2\poTrp, + wgpg} , (14)
where w = 1+ ¢\. One further transformation generated by
F2(Q27P2a 7Tq37 7Tp3) = QQﬂ—qg,ei)\’t + p27rp36)\t7 (15)

finally leads to

1 1
Hy = 5 {que 2)\t_|_w2q262)\t} 5 {ngez\t_i_w p2€—2)\t} (16)
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The first part of the extended Hamiltonian in equation (16) is Caldirola-Kanai Hamiltonian,
which is widely used to study the dissipation in quantum mechanics [3]. Using equation (16),
the extended Hamilton equations [7] gives the following classical evolution equations for actual
and image oscillators, respectively

43 + 2Mg3 + w?qz = 0, (17)
and
P3 — 2\ps + w’ps = 0. (18)

Almost trivially, the energy dissipated by actual oscillator, with phase space coordinates (g3, 7g;)
is completely absorbed at the same pace by the image oscillator with phase space coordinates

(p3, 7Tp:s)'

To quantize the above system as usual, the dynamical variables (g3, 7g,) and (ps3, mp, ) are con-
sidered as operators in a linear space. They obey the commutation relations in equations (5)—(7).
The dynamical equation (8), now becomes

, 1 1 _
Zha — Hy = <2 {que 2)\t+w2q2€2)\t} 5 {Wp§e2/\t+w2p§e 2)05}) Y. (19)

By an infinitesimal canonical transformation which in quantum level corresponds to the following
unitary transformation

A
U =exp (2h { 2)‘tq + e M 2} + - {Q47Tq4 p477p4}> ) (20)

equation (19) may be written as

dx (1 d? 1 5 02
mat_HX_<§{ ha——i—w q4}—§{ hap2+w pa V) x. (21)

where w' = w + i\. The eigenvalues of equation (21) may be obtained as follows [7],
Emn = En — Epy = (n —m)h'. (22)
The corresponding eigenfunctions are,

an(Q4,p4, t) = Uan(q37p37 t)
" 1_
— exp (;h { D2 4 o 2}> o (e)\t q4) o (efxtm) cmiman (93

where ¥,,(q) and ¢, (p) eigenfunctions of the harmonic oscillator in configuration and momentum
space (Hermit functions). The result obtained above are in agreement with those obtained by
Bateman [6]. However, here in contrast to the Bateman approach, the Heisenberg uncertainty
relation is looked upon from a different point of view and is not violated. This is discussed in
the next section using the eigenfunctions in equation (23).

4 Uncertainty relations for actual and image oscillators

In this section we calculate the uncertainties in position and momentum for the actual and the
image oscillators. We calculate the extended propagator [8] for the combined actual and the
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image oscillators as follows

K(a,p,t,ainpists) = | — o
@0t piot) = 5 ) | G e
/ )\(t-i-ti)
X exp [% (saicf’(ﬁ) {e)‘(t_ti)cf (cosw/(t —t;) — %sin(w’(t - tl))>

+ e Mt g2 <cos W't —t;) + gsin(w’(t - tl))> - 2qqu

1 /€_>\(t+ti) A b\
- - —A(t—t;),.,2 / . . ! .
X exp [2 <7si =) {e D <cosw (t—t)+— sin(w'(t — tz))>

+ e’\(t_“)pz2 <cos (t—t) — i/ sin(w'(t — tz))) - 2ppiH . (24)
w

When A — 0, then equation (24) reduces to the familiar form of the undamped extended
harmonic oscillator propagator [8]. We assume that the initial state function for combined

_1
system in ground state is xoo(g,p,0) = (70?) 2 exp (— ngg’z), where 0 is the width of the
extended wave packet. Then one gets using equation (9)

Xoo(q, p, ) _//dqz‘dpiK(q,p,t,q¢7pi,0)><oo(Q¢,pi,0)
_<7T) 1 W cosw’t+)\ -3
\52/ 1262 2k \sinw't
1
w'e > @1 oy 1 [ h\? A\ 2
8 <2m'ﬁsinw’t) exp[ 2 1 32°¢ T 5 (w’) + (w’) sin® w

A -1 W €2 A A
+- sin 2wt —id = ——|cosw't — = sinw't — | cosw't + = sinw't
w! h sinw't w! W'

-1
1 /h\? A\ 2 A
X 1+—(—) +2(—) —1] sin2w’t+—sin2w’t}}
5\ W/ w! W'
1 1
L L ! cosw’t+—A 2 —wle™At 2 [
— 4+ - — —  exp |- —=e
262 2 sinw't W' 2mihsin w't P 2 | 62

w
h
1 h 2 )\ 2 -2 / A . / -
ﬁ (J) + 2 (J) — 1] SIn- w — J sin 2w't
+' wl 672)‘t , A ) , o A . ,
14 —— coswt—i——/smwt— coswt——/smwt
w w

-1
1 2 2 .
1+ 5 (ZL/) +2 (3) - 1] sin 2w't — %Sin Qw’t}} e (25)

Using equations (10) and (25) the uncertainties of positions and momenta we can calculate for
the actual and the image oscillators as follows

1
4 2
b h 1\?  /2)? A
<Aq>:Ee*M 1+ (%) <J> +(J> -1 sinzw/t—l-gsinZw’t : (26)
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Figure 1. Uncertainty relation for actual oscil- Figure 2. Uncertainty relation for image oscil-
lator as a function of time, for A = 0.1w. lator as a function of time, for A = 0.1w.

1
4 2
5 h 1\ /A A
e M1+ (£> <—/> + (—,) -1 sin2w’t—a7$in2w't , (27)

4 2 2 2
(Ap) = 0 M1+ (?) <i> —|—(i> -1 sin2w’t—§sin2w't , (28)

and

D=

5 NAWELNES % A
(Am,)) = —=eM 14 (—) <—> + <—> — 1| sin® W't + S sin20't . (29)
V2 ) w’ w’ w’

The above results for actual and image oscillators, in separate form, are in agreement with those
obtained by Bateman. It is clear that the Heisenberg uncertainty relation is not valid for each
oscillator independently. In fact for A # 0 it is not possible to separate the oscillators, and
the Heisenberg uncertainty relations would not hold for them separately, as shown in Figs. 1
and 2. In the presence of dissipation, i.e. A # 0, the actual and image oscillators are coupled
with each other and the area which is preserved during the evolution is I'(t) = Am,Am,AgAp
in EPS. In contrast to the case of undamped harmonic oscillator, neither I'/(t) = An,Aq nor
I'P(t) = Am,Ap are preserved for DHO in ¢ and p representation of quantum mechanics. This
is shown in Fig. 3, where I'(¢) is plotted versus time. It is clear that I'(¢) never goes the zero. In
other words, I'(¢) and I'P(t) which goes to zero and infinity in the long time limit, respectively,
behave in such a manner that their product I'(¢), always keeps a positive and finite value.

5 Concluding remarks

The EPS formulation of quantum mechanics seems to be a suitable method to handle the
dissipative systems. Introducing the notion of mirror image oscillator beside the actual oscillator
is a possibility that the extension of the ordinary phase space allows one to consider. This
possibility introduces a conservative system of combined actual and image oscillators evolving
together in the course of time. The eigenvalues and eigenfunctions obtained in this way is in
agreement with those obtained by Bateman by introducing a dual Hamiltonian. However, the
uncertainty principle, as one of the major problems on the way of the different approaches to the
dissipative systems, including the Bateman approach, is valid in the extended form. This means
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Figure 3. Uncertainty relation for combined system (actual and image oscillator) as a function of time,
for A = 0.1w.

that the dissipative systems can not be considered as isolated systems and it really interacts
with its surrounding medium. The effect of the medium must be included as well. The mirror
image oscillator plays the role of the interacting medium for the total conservative system, and
the uncertainty relation is still valid.
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