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Using three-parameter subgroups of the extended Poincaré group P̃ (1, 3) we have con-
structed ansatzes reducing the Maxwell equations to systems of ordinary differential equa-
tions. This enables us to construct a number of new exact solutions of the Maxwell equations.

1 Introduction

The electromagnetic field is described by the electric E = E(x0, x) and magnetic H = H(x0, x)
fields. In the absence of charges, we have the system of vacuum Maxwell equations

rot E = −∂H

∂x0
, div H = 0, rotH =

∂E

∂x0
, div E = 0. (1)

As it is well-known [1, 2], the maximal point symmetry group admitted by the Maxwell equa-
tions (1) is the 16-parameter group which is the direct product of the 15-parameter conformal
group C(1, 3) and of the one-parameter Heaviside–Larmor–Rainich group H. It contains as
a subgroup the extended Poincaré group P̃ (1, 3) generated by the following vector fields:

Pµ = ∂xµ , J0a = x0∂xa + xa∂x0 + εabc(Eb∂Hc − Hb∂Ec),
Jab = xb∂xa − xa∂xb

+ Eb∂Ea − Ea∂Eb
+ Hb∂Ha − Ha∂Hb

,

D = xµ∂xµ − 2(Ea∂Ea + Ha∂Ha). (2)

Here µ = 0, 1, 2, 3; a, b, c = 1, 2, 3; summation over repeated indices is understood, the index µ
taking the values 0, 1, 2, 3 and the indices a, b taking the values 1, 2, 3; εabc is the totally anti-
symmetric third-order tensor, ∂xµ = ∂

∂xµ
, ∂Ea = ∂

∂Ea
, ∂Ha = ∂

∂Ha
.

The large symmetry group admitted by the Maxwell equations allows one to construct many
exact solutions by the symmetry reduction method [3, 4, 5, 6, 7, 8]. Using three-parameter
subgroups of the Poincaré group P (1, 3) with generators Pµ, Jµν (2) enabled us to obtain in
[9, 10] a number of exact solutions of the system (1).

The aim of the present report is to give an exhaustive description of P̃ (1, 3)-invariant ansatzes
for the Maxwell field (E, H) reducing equations (1) to systems of ordinary differential equations.
Using them we will construct new exact solutions of the Maxwell equations.

Let p̃(1, 3) be the Lie algebra of the Poincaré group with the generators (2) and p̃(1)(1, 3) be
the Lie algebra having as basis elements

P (1)
µ = ∂xµ , J (1)

µν = xµ∂xν − xν∂xµ , D(1)
µ = xµ∂xµ ,

where µ, ν = 0, 1, 2, 3; lowering of the indices µ, ν is performed with the help of the metric tensor
of the Minkowski space-time gµν .

Next, let L be a subalgebra of the algebra p̃(1, 3) having rank r, and let the projection of the
algebra L onto p̃(1)(1, 3) have rank r(1). It follows from the general theory of invariant solutions of
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differential equations ([3]) that subalgebras of the algebra L satisfying the additional condition
r = r(1) = 3 give rise to ansatzes reducing (1) to systems of ordinary differential equations.
It is not difficult to see that in the case dim L = 3 and a basis of functionally independent
invariants of the algebra L consists of seven functions Ωi = Ωi(x0, x, E, H) (i = 1, 2, . . . , 6) and
ω = ω(x0, x). The structure of an invariant ansatz is completely determined by the form of the
functions Ωi.

Let us introduce the notations

V = (E1 E2 E3 H1 H2 H3)
T , W =

(
Ẽ1 Ẽ2 Ẽ3 H̃1 H̃2 H̃3

)T
.

Then the general form of the basis elements of the three-dimensoinal Lie algebra L = 〈Xa|a =
1, 2, 3〉 reads as

Xa = ξaµ(x0, x)∂xµ + ρalkVk∂Vl
.

Here, and in the following, m, n, k, l = 1, 2, . . . , 6; µ, ν = 0, 1, 2, 3.
As the basis elements (2) realize a linear representation of the algebra p̃(1, 3) and, the condi-

tion r = r(1) holds, the general form of an ansatz invariant with respect to a three-dimensional
subalgebra L ∈ p̃(1, 3) reads [8, 9, 10]

V = ΛW (ω), (3)

where Λ = Λ(x0, x) is a 6 × 6 matrix nonsingular in some domain of the space R0,3 = {(x0, x) :
xµ ∈ R, µ = 0, 1, 2, 3} which, together with a smooth scalar function ω = ω(x), satisfies the
following system of partial differential equations:

ξaµ
∂Λmn

∂xµ

+ fmlρaln = 0, (4)

ξaµ
∂ωmn

∂xµ

= 0. (5)

Here the symbol Λmn stands for the (m, n) entry of the matrix Λ.
Thus, the problem of symmetry reduction of the Maxwell equations by scale-invariant ansat-

zes contains as a subproblem integration of systems of the form (4), (5) for each inequivalent
three-dimensional algebra. Remarkably, there is no need to consider all inequivalent algebras,
since the following results hold:

Lemma 1 ([9]). Let E, H be functions of x1, x2, ξ = 1
2(x0 − x3) only. Then the Maxwell

equations can be integrated, and their general solution is given by

E1 =
1
2
(R + R∗ + T1 + T ∗

1 ), E2 =
1
2
(iR − iR∗ + T2 + T ∗

2 ), E3 = S + S∗,

H1 =
1
2
(iR − iR∗ − T2 − T ∗

2 ), E2 =
1
2
(R + R∗ − T1 − T ∗

1 ), E3 = iS − iS∗,

where Ta = ∂2σa
∂ξ2 , a = 1, 2; S = ∂σ1

∂ξ + i∂σ2
∂ξ + λ(z), R = −2

(
∂σ1
∂z + i∂σ2

∂z

)
+ dλ

dz ξ; σ = σa(z, ξ),
z = x1 + ix2 and λ = λ(z) are arbitrary analytic functions.

Lemma 2 ([11]). Let E, H be functions of x0, x3 only. Then the Maxwell equations can be
integrated, and their general solution is given by the formulae below

E1 = f1(ξ) + g1(η), E2 = f2(ξ) + g2(η), E3 = C1,

H1 = f2(ξ) − g2(η), H2 = −f1(ξ) + g1(η), H3 = C2,

where f1, f2, g1, g2 are arbitrary smooth functions, ξ = x0 − x3, η = x0 + x3 and C1, C2 are
arbitrary real constants.
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Consequently, to obtain new solutions of the Maxwell equations it is sufficient to restrict
our considerations to those three-dimensional subalgebras of p̃(1, 3) which are not conjugate to
subalgebras of p(1, 3) and, in addition, fulfill the conditions

1) r = r(1) = 3; 2) 〈P0 ± P3〉 �⊂ L, 〈P0, P3〉 �⊂ L; 3) 〈P1, P2〉 �⊂ L.

Making use of the classification of inequivalent subalgebras of the algebra p̃(1, 3) obtained in
[9, 10] we have checked that the above conditions are satisfied by the following seven subalge-
bras [11]:

L1 = 〈J12, D, P0〉; L2 = 〈J12, D, P3〉; L3 = 〈J03, D, P1〉;
L4 = 〈J03, J12, D〉; L5 = 〈G1, J03 + αD, P2〉 (0 < |α| ≤ 1);
L6 = 〈J03 − D + P0 + P3, G1, P2〉; L7 = 〈J03 + 2D, G1 + P0 − P3, P2〉,

where G1 = J01 − J13.

As direct verification shows, the basis elements of the above algebras satisfy the condition
r = r(1) = 3. Consequently, each of them gives rise to an ansatz of the type given in (3).
Furthermore, these ansatzes can be represented in a unified way, namely

E1 = θ{(Ẽ1 cos θ3 − Ẽ2 sin θ3) cosh θ0 + (H̃1 sin θ3 + H̃2 cos θ3) sinh θ0

+ 2θ1Ẽ3 + 2θ2H̃3 + 4θ1θ2Σ1 + 2(θ2
1 − θ2

2)Σ2},
E2 = θ{(Ẽ2 cos θ3 + Ẽ1 sin θ3) cosh θ0 + (H̃2 sin θ3 − H̃1 cos θ3) sinh θ0

− 2θ1H̃3 + 2θ2Ẽ3 + 4θ1θ2Σ2 − 2(θ2
1 − θ2

2)Σ1},
E3 = θ{Ẽ3 + 2θ1Σ2 + 2θ2Σ1},
H1 = θ{(H̃1 cos θ3 − H̃2 sin θ3) cosh θ0 − (Ẽ1 sin θ3 + Ẽ2 cos θ3) sinh θ0

+ 2θ1H̃3 − 2θ2Ẽ3 − 4θ1θ2Σ2 + 2(θ2
1 − θ2

2)Σ1},
H2 = θ{(H̃2 cos θ3 + H̃1 sin θ3) cosh θ0 + (Ẽ1 cos θ3 − Ẽ2 sin θ3) sinh θ0

+ 2θ1Ẽ3 + 2θ2H̃3 + 4θ1θ2Σ1 + 2(θ2
1 − θ2

2)Σ2},
H3 = θ{H̃3 + 2θ1Σ1 − 2θ2Σ2},

where

Σ1 = [(H̃2 − Ẽ1) sin θ3 − (Ẽ2 + H̃1) cos θ3]e−θ0 ,

Σ1 = [(Ẽ2 + H̃1) sin θ3 + (H̃2 − Ẽ1) cos θ3]e−θ0 ,

and the functions θ = θ(x0, x), θβ = θβ(x0, x) (β = 0, 1, 2), ω = ω(x0, x) are ([11]):

L1 : θ = x2
3, θ1 = arctan

x2

x1
, θ0 = θ2 = 0, ω =

x2
1 + x2

2

x2
3

;

L2 : θ = x2
0, θ1 = arctan

x2

x1
, θ0 = θ2 = 0, ω =

x2
1 + x2

2

x2
0

;

L3 : θ = x2
2, θ0 = ln

∣∣(x0 + x3)x−1
2

∣∣ , θ1 = θ2 = 0, ω =
(
x2

0 − x2
3

)
x−2

2 ;

L4 : θ = x2
0 − x2

3, θ0 =
1
2

ln
∣∣(x0 + x3)(x0 − x3)−1

∣∣ , θ1 = arctan
x2

x1
, θ2 = 0,

ω =
(
x2

1 + x2
2

) (
x2

0 − x2
3

)−1 ;
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L5 : 1) θ = x0 − x3, θ0 = −1
2

ln |x0 − x3|, θ1 = 0, θ2 = −1
2
x1 (x0 − x3)

−1 ,

ω = x0 + x3 − x2
1(x0 − x3)−1 for α = −1;

2) θ = x2
0 − x2

1 − x2
3, θ0 =

1
2α

ln
∣∣x2

0 − x2
1 − x2

3

∣∣ , θ1 = 0, θ2 = −1
2
x1(x0 − x3)−1,

ω = 2α ln |x0 − x3| + (1 − α) ln
∣∣x2

0 − x2
1 − x2

3

∣∣ for α �= −1;

L6 : θ = x0 − x3, θ0 = −1
2

ln |x0 − x3|, θ1 = 0, θ2 = − x1

2(x0 − x3)
,

ω = x0 + x3 − x2
1(x0 − x3)−1 + ln |x0 − x3|;

L7 : θ =
(
4x1 − (x0 − x3)2

)2
, θ0 =

1
2

ln
∣∣4x1 − (x0 − x3)2

∣∣ , θ1 = 0,

θ2 = −1
4
(x0 − x3), ω =

[
x0 + x3 − x1(x0 − x3) +

1
6
(x0 − x3)3

]∣∣4x1 − (x0 − x3)2
∣∣− 3

2 .

Substituting the ansatzes obtained in this way into the initial system (1) yields systems of
ordinary differential equations for the unknown functions Ẽa, H̃a (a = 1, 2, 3). If, for example,
we take the ansatz invariant under the algebra L1 and insert it into the Maxwell equations,
then, after some algebraic manipulations, we obtain the following system for Ẽa(ω), H̃a(ω)
(a = 1, 2, 3):

2ω(1 + ω) ¨̃E3 + (7ω + 2) ˙̃E3 + 3Ẽ3 = 0, 2ω(1 + ω) ¨̃H3 + (7ω + 2) ˙̃H3 + 3H̃3 = 0,

f = h = −2
√

ω(Ẽ3 + (1 + ω) ˙̃E3), g = −ρ = 2
√

ω(H̃3 + (1 + ω) ˙̃H3),

where

f = Ẽ1 + H̃2, g = Ẽ2 − H̃1, h = Ẽ1 − H̃2,

ρ = Ẽ2 + H̃1,
˙̃E3 =

dẼ3

dω
, ¨̃E3 =

d2Ẽ2

dω2
.

Taking into account that we have ω ≥ 0, we represent the general solution of the above system
as follows

Ẽ3 = (1 + ω)−
3
2

[
C1

(
ln

∣∣∣∣
√

1 + ω − 1√
1 + ω + 1

∣∣∣∣ + 2
√

1 + ω

)
+ C2

]
,

H̃3 = (1 + ω)−
3
2

[
C3

(
ln

∣∣∣∣
√

1 + ω − 1√
1 + ω + 1

∣∣∣∣ + 2
√

1 + ω

)
+ C4

]
,

where C1, C2, C3, C4 are integration constants, and we easily get the corresponding exact
solutions of the Maxwell equations (1):

Ea = − 2C1xa

x3

(
x2

1 + x2
2

) + xaσ
− 3

2 A12, E3 = x3σ
− 3

2 A12,

Ha = − 2C3xa

x3

(
x2

1 + x2
2

) + xaσ
− 3

2 A34, H3 = x3σ
− 3

2 A34.

Here Aij = Ci

(
ln

∣∣∣√σ−x3√
σ+x3

∣∣∣ + 2x−1
3

√
σ
)

+ Cj , σ = x2
1 + x2

x + x2
3, a = 1, 2.

Let us note that the systems of ordinary differential equations obtained via reduction of the
Maxwell equations by ansatzes invariant under the remaining algebras L2–L7 are also integrable
in terms of elementary functions.
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