On Four Orthogonal Projections that Satisfy the Linear Relation $\alpha_1 P_1 + \alpha_2 P_2 + \alpha_3 P_3 + \alpha_4 P_4 = I, \ \alpha_i > 0$

Stanislav KRUGLYAK † and Anatolii KYRYCHENKO ‡

[†] National Academy of Security Service of Ukraine, Kyiv, Ukraine

[‡] Kyiv National University of Building and Architecture, 31 Povitroflotsky Prosp., Kyiv 03037, Ukraine E-mail: AAKirichenko@rambler.ru

In the article we investigate the sets of orthogonal projections which satisfy the linear relation $\sum_{i=1}^{n} \alpha_i P_i = I$, $\alpha_i > 0$, up to unitary equivalence. A problem of unitary classification of four projections that satisfy the linear relation $\alpha_1 P_1 + \alpha_2 P_2 + \alpha_3 P_3 + \alpha_4 P_4 = I$, $\alpha_i > 0$ is considered in [1–4]. We present a new method for solving this problem that is based on functors of Coxeter, which are analogous to those introduced in [5].

Let $\mathfrak{P}_{n,\vec{\alpha}} = \mathbb{C}\langle p_1, p_2, \ldots, p_n | p_i^2 = p_i = p_i^*, \sum_{i=1}^n \alpha_i p_i = e \rangle$ be a *-algebra, where the vector $\vec{\alpha} = (\alpha_1, \alpha_2, \ldots, \alpha_n), \alpha_i > 0, i = 1, \ldots, n; A = \sum_{i=1}^n \alpha_i$. We study its representations, up to unitary equivalence, in the category of Hilbert spaces. Define Σ_n as a set of $\vec{\alpha}$ such that the category of representations $\operatorname{Rep} \mathfrak{P}_{n,\vec{\alpha}}$ is not empty.

1. Let us consider some properties of $\mathfrak{P}_{n,\vec{\alpha}}$.

Lemma 1. If $\vec{\alpha} \in \Sigma_n$ then $A \ge 1$.

Proof. Let π be a representation of the algebra $\mathfrak{P}_{n,\vec{\alpha}}$: $\sum_{i=1}^{n} \alpha_i \pi(p_i) = I$ then $\sum_{i=1}^{n} \alpha_i (I - \pi(p_i)) = (A - 1)I$. Since the operator at the left hand-side is positive then $A \ge 1$.

Lemma 2. If A = 1 then $\vec{\alpha} \in \Sigma_n$ and the algebra $\mathfrak{P}_{n,\vec{\alpha}}$ has (up to unitary equivalence) only one irreducible representation $\pi : \pi(p_i) = 1$.

Proof. If
$$A = 1$$
 then $\sum_{i=1}^{n} \alpha_i (I - \pi(p_i)) = 0$ and for all $i = 1, ..., n$: $\pi(p_i) = I$.

Definition 1. The algebra $\mathfrak{P}_{n,\vec{\alpha}}$ and the vector $\vec{\alpha}$ are called reduced if there exists such a number i_0 that for all representations π of the algebra we have $\pi(p_{i_0}) = 0$ or there exists a number j_0 that for all representations π of the algebra we have $\pi(p_{j_0}) = I$.

Remark 1. In the case of mapping of a reduced algebra to its enveloping C^* -algebra the elements p_{i_0} and $p_{j_0} - e$ belong to the *-radical, and the corresponding C^* -algebra will be generated by less than n linear connected projections.

Lemma 3. If $\vec{\alpha} \in \Sigma_n : \exists \alpha_{i_0} > 1$ then for all representations π of the algebra $\mathfrak{P}_{n,\vec{\alpha}} : \pi(p_{i_0}) = 0$, e.g. the algebra $\mathfrak{P}_{n,\vec{\alpha}}$ is reduced.

Proof. Take an arbitrary representation π of the algebra $\mathfrak{P}_{n,\vec{\alpha}}$ then $\sum_{i \neq i_0} \alpha_i \pi(p_i) = I - \alpha_{i_0} \pi(p_{i_0})$.

The operator at the left-hand side is positive. But the operator at the right-hand side is positive when $\pi(p_{i_0}) = 0$ only.

Lemma 4. If $\vec{\alpha} \in \Sigma_n$ and the algebra $\mathfrak{P}_{n,\vec{\alpha}}$ is not reduced then $A \leq n$.

Proof. If A > n, then there exists a number $i_0 : \alpha_{i_0} > 1$ and according to the Lemma 3 the algebra $\mathfrak{P}_{n,\vec{\alpha}}$ will be reduced.

Let $\Sigma_n^1 = \Sigma_n \bigcap (0,1)^n$ e.g. Σ_n^1 consists of such points $\vec{\alpha} \in \Sigma_n$ that $0 < \alpha_i < 1$.

Our aim is to describe the set Σ_n^1 $(1 \le A < n)$ and the set of representations of corresponding algebras. There are reduced and nonreduced ones among such class of algebras.

We define functors S and T (analogy with [5]), which act on the set of categories $\operatorname{Rep} \mathfrak{P}_{n,\vec{\alpha}}$. They are equivalences of categories (if $\operatorname{Rep} \mathfrak{P}_{n,\vec{\alpha}}$ is not empty, then $S(\operatorname{Rep} \mathfrak{P}_{n,\vec{\alpha}})$ (or $T(\operatorname{Rep} \mathfrak{P}_{n,\vec{\alpha}})$) is not empty and they are equivalent).

Let us define the functor T (functor of hyperbolic reflection).

Let
$$\alpha \in \Sigma_n$$
, $A > 1$, $\pi \in \operatorname{Rep} \mathfrak{P}_{n,\vec{\alpha}}$, then $\sum_{i=1}^n \alpha_i \pi(p_i) = I$ and $\sum_{i=1}^n \alpha_i (I - \pi(p_i)) = (A - 1)I$ or
 $\sum_{i=1}^n \frac{\alpha_i}{A-1} (I - \pi(p_i)) = I$. Define $T(\pi)(p_i) = I - \pi(p_i)$. Thus, we obtain the functor

 $T:\operatorname{Rep}\mathfrak{P}_{n,(\alpha_1,\alpha_2,\ldots,\alpha_n)}\to\operatorname{Rep}\mathfrak{P}_{n,\left(\frac{\alpha_1}{A-1},\frac{\alpha_2}{A-1},\ldots,\frac{\alpha_n}{A-1}\right)}$

which is defined when A > 1.

It is easy to check that this functor is equivalence of categories (the corresponding algebras are isomorphic).

Let us define the functor S (functor of linear reflection).

Let $\vec{\alpha} \in \Sigma_n^1$, $\sum_{i=1}^n \alpha_i \pi(p_i) = I$ and π be a representation of the algebra $\mathfrak{P}_{n,\vec{\alpha}}$ in the Hilbert space H_0 . Since $\pi(p_i)$ is a projection then $\pi(p_i) = \Gamma_i \Gamma_i^*$, where Γ_i is the natural isometry of the space $H_i = \text{Im } \pi(p_i)$ to H_0 .

Let $H = H_1 \oplus H_2 \oplus \cdots \oplus H_n$. Define the linear operator $\Gamma : H \to H_0$ that is given by the matrix

$$\Gamma = \begin{pmatrix} \sqrt{\alpha_1} \, \Gamma_1 & \sqrt{\alpha_2} \, \Gamma_2 & \cdots & \sqrt{\alpha_n} \, \Gamma_n \end{pmatrix}.$$

Since $\Gamma\Gamma^* = \sum_{i=1}^n \alpha_i \Gamma_i \Gamma_i^* = \sum_{i=1}^n \alpha_i \pi(p_i) = I_{H_0}$, Γ^* is a partial isometry from H_0 to H. Let $\hat{H}_0 = (\operatorname{Im} \Gamma^*)^{\perp}$ and Δ^* is the natural isometry of \hat{H}_0 to H then $U^* = (\Gamma^*, \Delta^*)$ be a unitary operator from $\hat{H}_0 \oplus H_0$ to H. As $H = H_1 \oplus H_2 \oplus \cdots \oplus H_n$, the operators Δ and U have the Peirce decomposition

$$\Delta = \begin{pmatrix} \sqrt{1 - \alpha_1} \Delta_1 & \sqrt{1 - \alpha_2} \Delta_2 & \cdots & \sqrt{1 - \alpha_n} \Delta_n \end{pmatrix},$$
$$U = \begin{pmatrix} \sqrt{\alpha_1} \Gamma_1 & \sqrt{\alpha_2} \Gamma_2 & \cdots & \sqrt{\alpha_n} \Gamma_n \\ \sqrt{1 - \alpha_1} \Delta_1 & \sqrt{1 - \alpha_2} \Delta_2 & \cdots & \sqrt{1 - \alpha_n} \Delta_n \end{pmatrix}.$$

Since U is a unitary operator and $\Gamma_i^*\Gamma_i = I_{H_i}$, it is easy to obtain that $\Delta_i^*\Delta_i = I_{H_i}$ and $\Delta_i\Delta_i^* = Q_i$ are orthoprojections in the space \hat{H}_0 . From $\Delta\Delta^* = I_{\hat{H}_0}$ (Δ is an isometry) it follows that $\sum_{i=1}^n (1-\alpha_i)\Delta_i\Delta_i^* = I_{\hat{H}_0}$, $\sum_{i=1}^n (1-\alpha_i)Q_i = I_{\hat{H}_0}$.

Define $S : \pi \to \hat{\pi}$, where $\hat{\pi}(p_i) = Q_i$. From the condition $\sum_{i=1}^n (1 - \alpha_i)Q_i = I$ we have $\hat{\pi} \in \operatorname{Ob}\operatorname{Rep}\mathfrak{P}_{n,(1-\alpha_1,1-\alpha_2,\dots,1-\alpha_n)}$. One can see (in analogy with [5]), that the functor

 $S:\operatorname{Rep}\mathfrak{P}_{n,(\alpha_1,\alpha_2,\ldots,\alpha_n)}\to\operatorname{Rep}\mathfrak{P}_{n,(1-\alpha_1,1-\alpha_2,\ldots,1-\alpha_n)},$

where $0 < \alpha_i < 1$ (therefore, 0 < A < n), is an equivalence of categories.

Let π be a representation of the algebra $\mathfrak{P}_{n,\vec{\alpha}}$ in a finite-dimensional space H. We shall call the vector $(d; d_1, d_2, \ldots, d_n)$, where $d = \dim H$, $d_i = \dim \operatorname{Im} \pi(p_i)$, the generalized dimension of the representation π .

The functors T and S induce actions on the set of vectors $\vec{\alpha}$, on sums of their coordinates A and on generalized dimensions of representations of algebras $\mathfrak{P}_{n,\vec{\alpha}}$.

It it easy to check that

$$T(\alpha_1, \alpha_2, \dots, \alpha_n) = \left(\frac{\alpha_1}{A-1}, \frac{\alpha_2}{A-1}, \dots, \frac{\alpha_n}{A-1}\right), \qquad T(A) = \frac{A}{A-1},$$
$$T(d; d_1, d_2, \dots, d_n) = (d; d-d_1, d-d_2, \dots, d-d_n),$$
$$S(\alpha_1, \alpha_2, \dots, \alpha_n) = (1-\alpha_1, 1-\alpha_2, \dots, 1-\alpha_n), \qquad S(A) = n-A,$$
$$S(d; d_1, d_2, \dots, d_n) = \left(\sum_{i=1}^n d_i - d; d_1, d_2, \dots, d_n\right).$$

Define the functors of Coxeter as $\Phi^+ = TS$ and $\Phi^- = ST$. Φ^+ is defined when A < n - 1, $\vec{\alpha} \in \Sigma_n^1$. Φ^- is defined when A > 1, $T(\vec{\alpha}) \in (0, 1)^n$. Since $T^2 = Id$, $S^2 = Id$, then $\Phi^+ \Phi^- = Id$ and $\Phi^- \Phi^+ = Id$.

Let $\Phi^{+(k)} = \Phi^+ \Phi^{+(k-1)}$.

Lemma 5.
$$\lim_{k \to \infty} \Phi^{+(k)} \left(1 + \frac{1}{n-2} \right) = \frac{n - \sqrt{n^2 - 4n}}{2}$$
 and intervals
 $\left[1, 1 + \frac{1}{n-2} \right), \left[1 + \frac{1}{n-2}, \Phi^+ \left(1 + \frac{1}{n-2} \right) \right), \dots, \left[\Phi^{+(k-1)} \left(1 + \frac{1}{n-2} \right), \Phi^{+(k)} \left(1 + \frac{1}{n-2} \right) \right), \dots$
do not intersect and cover the interval $\left[1, \frac{n - \sqrt{n^2 - 4n}}{2} \right].$

Proof. It is easy to show that $\Phi^+(1) = 1 + \frac{1}{n-2}$ and the sequence $\Phi^{+(k)}\left(1 + \frac{1}{n-2}\right)$ is increasing. Since it is bounded by 2, the limit *a* of the sequence exists and it is a fixed point of the map $\Phi^+(A) = 1 + \frac{1}{n-A-1}$. From the equation $1 + \frac{1}{n-a-1} = a$ (taking into account that a < 2) we obtain $a = \frac{n-\sqrt{n^2-4n}}{2}$.

Lemma 6. $\vec{\alpha} \in \Sigma_n^1, 0 < A \leq \frac{n}{2}$, if and only if $T(\vec{\alpha}) \in \Sigma_n^1$ and $\frac{n}{2} \leq T(A) < n$.

Proof. Obviously, the map S sets one-to-one correspondence between points of Σ_n^1 with the sum A < n and points Σ_n^1 with the sum n - A.

Lemma 7. If n - 1 < A < n then $\vec{\alpha} \notin \Sigma_n^1$.

Proof. If n-1 < A < n then 0 < S(A) < 1, whence, by the Lemma 1, $S(\vec{\alpha}) \notin \Sigma_n$ and it means that $\vec{\alpha} \notin \Sigma_n^1$.

Lemma 8. If $\vec{\alpha} \in \Sigma_n$, $A \neq 1$ and $\mathfrak{P}_{n,\vec{\alpha}}$ is not reduced then $\frac{\alpha_i}{A-1} \leq 1$ and $A \geq \frac{n}{n-1}$.

Proof. If there exists a number i_0 that $\frac{\alpha_{i_0}}{A-1} > 1$, then the algebra $\mathfrak{P}_{n,T(\vec{\alpha})}$ will be reduced. Take any representation π of the algebra $\mathfrak{P}_{n,\vec{\alpha}}$. Denote $\hat{\pi}$ as the correspondent representation of the algebra $\mathfrak{P}_{n,T(\vec{\alpha})}$ then by the lemma $3 \hat{\pi}(p_{i_0}) = 0$, so $\pi(p_{i_0}) = I$ and $\mathfrak{P}_{n,\vec{\alpha}}$ is reduced.

If for all $i: \frac{\alpha_i}{A-1} \leq 1$ then $\frac{A}{A-1} \leq n$ and from here $A \geq \frac{n}{n-1}$.

2. Now we describe Σ_n^1 , when n = 3 and n = 4.

Lemma 9. Let $\vec{\alpha} = (\alpha_1, \alpha_2, \alpha_3) \in \Sigma_3$. Then for some subset $J \subseteq \{1, 2, 3\}$: $\sum_{i \in J} \alpha_i = 1$ or $\alpha_1 + \alpha_2 + \alpha_3 = 2$. To every pointed subset J, there corresponds a unique one-dimensional irreducible representation π : $\pi(p_i) = 1$, $i \in J$, and $\pi(p_i) = 0$, $i \notin J$. If $\alpha_1 + \alpha_2 + \alpha_3 = 2$ then, furthermore, the algebra has a unique, up to unitary equivalence, irreducible two-dimensional representation.

Proof. The proof reduces to an easy computation, when taking into account that an irreducible pair of orthoprojections is a one-dimensionally or unitary equivalent to a pair

$$P_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \qquad P_2 = \begin{pmatrix} \tau & \sqrt{\tau - \tau^2} \\ \sqrt{\tau - \tau^2} & 1 - \tau \end{pmatrix}, \qquad 0 < \tau < 1.$$

Lemma 10. If $\vec{\alpha} \in \Sigma_4^1$, 0 < A < 2, is reduced then the following condition, which we will call the R-condition, is satisfied: $\exists J \subset \{1, 2, 3, 4\}$: $\sum_{i \in J} \alpha_i = 1$ or $\exists \alpha_{i_0} : 2 - A = \alpha_{i_0}$.

Proof. There are two possible cases.

1) Let $\pi(p_{i_0}) = 0$ then $\sum_{i \neq i_0} \alpha_i \pi(p_i) = I$. Let $\vec{\alpha}'$ be obtained from $\vec{\alpha}$ by omitting the coordinate α_{i_0} . Obviously, $\vec{\alpha}' \in \Sigma_3^{i_{\neq i_0}}$ So $\sum_{i \in I} \alpha_i = 1$, for some subset $J \subset \{1, 2, 3, 4\} \setminus \{i_0\}$, (if $\sum_{i \neq i_0} \alpha_i = 2$, then A > 2).

2) If for all $\pi : \pi(p_{i_0}) = I$ then $\sum_{i \neq i_0} \alpha_i \pi(p_i) = (1 - \alpha_{i_0})I$. The operator at the left hand-side is positive. From here $\alpha_{i_0} \leq 1$. If $\alpha_{i_0} = 1$, then the *R*-condition is satisfied, else $\sum_{i \neq i_0} \frac{\alpha_i}{1 - \alpha_{i_0}} \pi(p_i) = I$. From the previous lemma we have either: a) $\sum_{i \in J} \frac{\alpha_i}{1-\alpha_4} = 1$, for some subset $J \subset \{1, 2, 3, 4\} \setminus \{i_0\}$, hence $\sum_{i \in J} \alpha_i + \alpha_4 = 1$ or b) $\frac{\alpha_1}{1-\alpha_4} + \frac{\alpha_2}{1-\alpha_4} + \frac{\alpha_3}{1-\alpha_4} = 2$, $\alpha_1 + \alpha_2 + \alpha_3 = 2(1-\alpha_4)$ and $2-A = \alpha_4$.

Note, that if $\vec{\alpha}$ satisfies *R*-condition then $\vec{\alpha}$ is not necessary reduced.

Lemma 11. If $\vec{\alpha} \in \Sigma_4 \setminus \Sigma_4^1$ then $T(\vec{\alpha})$ satisfies *R*-condition.

Proof. From the condition $\vec{\alpha} \in \Sigma_4 \setminus \Sigma_4^1$, we obtain $\alpha_{i_0} \ge 1$ for some i_0 . Suppose $\alpha_{i_0} > 1$, $\pi \in \operatorname{Rep} \mathfrak{P}_{4,T(\vec{\alpha})}$ then, by the Lemma 3, $T(\pi)(p_{i_0}) = 0$. From here $\pi(p_{i_0}) = I$, so $\vec{\alpha}$ is reduced.

Assume
$$\alpha_{i_0} = 1$$
. From $T(\vec{\alpha}) = \left(\frac{\alpha_1}{A-1}, \frac{\alpha_2}{A-1}, \frac{\alpha_3}{A-1}, \frac{\alpha_4}{A-1}\right) = \left(\frac{\alpha_1}{\sum\limits_{i\neq i_0} \alpha_i}, \frac{\alpha_2}{\sum\limits_{i\neq i_0} \alpha_i}, \frac{\alpha_3}{\sum\limits_{i\neq i_0} \alpha_i}, \frac{\alpha_4}{\sum\limits_{i\neq i_0} \alpha_i}\right)$, the sum $\sum_{j\neq i_0} \left(\frac{\alpha_j}{\sum\limits_{i\neq i_0} \alpha_i}\right) = 1$, so $T(\vec{\alpha})$ satisfies *R*-condition.

From Lemmas 2, 3, 8, 10, it follows

Lemma 12. If $1 \le A < 1 + \frac{1}{n-2}\Big|_{n=4} = \frac{3}{2}$ then $\vec{\alpha}$ satisfy *R*-condition.

Using the lemmas proved above, we obtain:

Theorem 1. Let $\vec{\alpha} = (\alpha_1, \alpha_2, \alpha_3, \alpha_4), \ 0 < \alpha_i < 1, \ A = \sum_{i=1}^4 \alpha_i, \ \Sigma_4^1$ be the set of such $\vec{\alpha}$ that the algebra $\mathfrak{P}_{4,\vec{\alpha}}$ has a nonzero representation.

1) Dimensions of all irreducible representations of the algebra $\mathfrak{P}_{4,\vec{\alpha}}$ are finite.

2) If A = 1 then $\vec{\alpha} \in \Sigma_4^1$ and the corresponding algebra $\mathfrak{P}_{4,\vec{\alpha}}$ has a unique irreducible representation π , which is a one-dimensional representation and $\pi(p_i) = 1$.

3) If A = 2 then $\vec{\alpha} \in \Sigma_4^1$ and all irreducible representations has dimension one or two (their description see in [4]).

4) The functor S is equivalence of categories of representations of "symmetry" algebras $\mathfrak{P}_{4,(\alpha_1\alpha_2,\alpha_3,\alpha_4)}$ and $\mathfrak{P}_{4,(1-\alpha_1,1-\alpha_2,1-\alpha_3,1-\alpha_4)}$, $\vec{\alpha} \in \Sigma_4^1$, with the center of symmetry A = 2. 5) Every point $\vec{\alpha} \in \Sigma_4^1, 1 < A < 2$, or satisfies *R*-condition or $\Phi^-(\alpha)$ belongs to Σ_4^1 .

6) $\vec{\alpha} \in \Sigma_4^1$, 1 < A < 2 if and only if $\Phi^{-(k)}(\vec{\alpha})$ satisfy R-condition for some k. The number k is bounded by $N: \Phi^{-(N)}(A) \in [1, \frac{3}{2})$. The functor $\Phi^{-(k)}$ is equivalence of categories of representations of algebra $\mathfrak{P}_{n,\vec{\alpha}}$ and reduced algebra $\mathfrak{P}_{n,\Phi^{-(k)}(\vec{\alpha})}$.

The theorem allows us to reduce the solution of the problem about belonging of a point $\vec{\alpha}$ to Σ_4^1 to verifying R-condition for some another point.

Acknowledgements

Partially supported by project 01.07/071 SFFR of Ukraine.

- [1] Bespalov Y.N., Sets of orthoprojections conected by linear relation, Ukr. Math. J., 1992, V.44, N 3,309–317.
- [2] Galinsky D.V. and Muratov M.A., On representations of algebras, generated by sets of three and four orthoprojections, spectral and evolytionary problems, in Proceedings of the Eighth Crimean Autumn Mathematical School-Symposium (KROMSH VIII), Tavria, Simferopol, V.8, 1998, 15–22.
- [3] Galinsky D.V. and Kruglyak S.A., Representation of *-algebras generated by linearly connected orthoprojectors, Visnyk of Kyiv University, 1999, N 2, 24–31.
- Galinsky D.V., Representations of *-algebras generated by orthogonal projections satisfying a linear relations, Methods of Functional Analisis and Topology, V.4, N 4, 1998, 27–32.
- [5] Kruglyak S.A., Functors of Coxeter for one class of *-quivers, Ukr. Math. J., 2002, V.55, N 6, to appear.