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It is shown that by generalized understanding of symmetry the d’Alembert equation for one
component field is invariant with respect to arbitrary reversible coordinate transformations.

1 Introduction

Symmetries play an important role in particle physics and quantum field theory [1], nuclear
physics [2], mathematical physics [3]. It is proposed some receptions for finding the symmetries,
for example, the method of replacing the variables [4], the Lie algorithm [3], the theoretical-
algebraic approach [5]. The purpose of the present work is the generalization of the method of
replacing the variables. We start from the following Definition of symmetry.

2 Definition of symmetry. Examples

Definition 1. Let some partial differential equation L̂′φ′(x′) = 0 be given. By symmetry of this
equation with respect to the variables replacement x′ = x′(x), φ′ = φ′(Φφ) we shall understand
the compatibility of the engaging equations system Âφ′(Φφ) = 0, L̂φ(x) = 0, where Âφ′(Φφ) = 0
is obtained from the initial equation by replacing the variables, L̂′ = L̂, Φ(x) is some weight
function. If the equation Âφ′(Φφ) = 0 can be transformed into the form L̂(Ψφ) = 0, the
symmetry will be named the standard Lie symmetry, otherwise the generalized symmetry.

Elements of this Definition were used to study the Maxwell equations symmetries [6, 7, 8]. In
the present work we shall apply Definition 1 for investigation of symmetries of the one-component
d’Alembert equation:
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Let us introduce arbitrary reversible coordinate transformations x′ = x′(x) and a transformation
of the field variable φ′ = φ(Φφ), where Φ(x) is some unknown function, as well as take into
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where ξ = Φφ. After replacing the variables we find that the equation �′φ′ = 0 transforms into
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itself, if the system of the engaging equations is fulfilled:
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Here x = (x1, x2, x3, x4), x4 = ict, c is the speed of light, t is the time. Let us put the solution
of d’Alembert equation φ into the first equation of the set (1). If the obtained equation has
a solution, then the set (1) will be compatible. According to Definition 1 it will mean that the
arbitrary reversible transformations x′ = x′(x) are the symmetry transformations of the initial
equation �′φ′ = 0. Owing to presence of the expressions (∂Φφ/∂xj)2 and (∂Φφ/∂xj)(∂Φφ/∂xk)
in the first equation from the set (1), the latter has non-linear character. Since the analysis of
non-linear systems is difficult we suppose that

∂2φ′

∂ξ2
= 0. (2)

In this case the non-linear components in the set (1) turn to zero and the system will be linear.
As result we find the field transformation law by integrating the equation (2)

φ′ = C1Φφ + C2 → φ′ = Φφ. (3)

Here we suppose for simplicity that the constants of integration are C1 = 1, C2 = 0. It is this
law of field transformation that was used within the algorithm [7, 8]. It marks the position of the
algorithm in the generalized variables replacement method. Taking into account the formulae (2)
and (3), we find the following form for the system (1):
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Since here Φ(x) = φ′(x′ → x)/φ(x), where φ′(x′) and φ(x) are the solutions of d’Alembert
equation, the system (4) has a common solution and consequently is compatible. This means that
the arbitrary reversible transformations of coordinates x′ = x′(x) are symmetry transformations
for the one-component d’Alembert equation if the field is transformed with the help of weight
function Φ(x) according to the law (3). The form of this function depends on d’Alembert
equation solutions and the law of the coordinate transformations x′ = x′(x).

Next we shall consider the following examples.
Let the coordinate transformations belong to the Poincaré group P10:

x′
j = Ljkxk + aj ,

where Ljk is the matrix of the Lorentz group L6, aj are the parameters of the translation
group T4. In this case we have
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The last term in the second equation (4) turns to zero. The set reduces to the form

�Φφ = 0, �φ = 0. (5)

According to Definition 1 this is a sign of the Lie symmetry. The weight function belongs to the
set in [8]:
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,

where Pj , Mjk are the generators of Poincaré group, j, k, l = 1, 2, 3, 4. In the space of d’Alembert
equation solutions the set defines a rule of the change from a solution to solution. The weight
function Φ(x) = 1 ∈ ΦP10(x) determines transformational properties of the solutions φ′ = φ,
which means the well-known relativistic symmetry of d’Alembert equation [9, 10].

Let the transformations of coordinates belong to the Weyl group W11:

x′
j = ρLjkxk + aj ,

where ρ = const is the parameter of the scale transformations of the group ∆1. In this case we
have
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The set (4) reduces to the set (5) and has the solution ΦW11 = CΦP10 , where C = const. The
weight function Φ(x) = C and the law φ′ = Cφ means the well-known Weyl symmetry of
d’Alembert equation [9, 10]. Let here C be equal ρl, where l is the conformal dimension1 of the
field φ(x). Consequently, d’Alembert equation is W11-invariant for the field φ with arbitrary
conformal dimension l. This property is essential for the Voigt [4] and Umov [12] works as will
be shown just below.

Let the coordinate transformations belong to the Inversion group I:
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The set (4) reduces to the set:

−4xj
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The substitution of Φ(x) = x2Ψ(x) transforms the equation (6) for Φ(x) into the equation �Ψφ =
0 for Ψ(x). It is a sign of the Lie symmetry. The equation has the solution Ψ = 1. The result is
Φ(x) = x2. Consequently, the field transforms according to the law φ′ = x2φ(x) = ρ−1(x)φ(x).
This means the conformal dimension l = −1 of the field φ(x) in the case of d’Alembert equation
symmetry with respect to the Inversion group I in agreement with [5, 10]. In a general case the
weight function belongs to the set:
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1The conformal dimension is the number l characterizing the behavior of the field under scale transformations
x′ = ρx, φ′(x′) = ρlφ(x) [11].
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Let the coordinate transformations belong to the Special Conformal Group C4:
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The substitution of Φ(x) = σ(x)Ψ(x) transforms the equation (8) into the equation �Ψφ = 0
which corresponds to the Lie symmetry. From this equation we have Ψ = 1, Φ(x) = σ(x). There-
fore φ′ = σ(x)φ(x) and the conformal dimension of the field is l = −1 as above. Analogously
to (7), the weight function belongs to the set:
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From here we can see that φ(x) = 1/σ(x) is the solution of d’Alembert equation. Com-
bination of W11, I and C4 symmetries means the well-known d’Alembert equation conformal
C15-symmetry [5, 9, 10].

Let the coordinate transformations belong to the Galilei group G1:
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After putting these expressions into the set (4) we find [8]:
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In accordance with Definition 1 it means that the Galilei symmetry of d’Alembert equation is
the generalized symmetry. The weight function belongs to the set [7]:
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where H ′
1 = it′∂x′ is the generator of the Galilei transformations. For plane waves the weight

function Φ(x) is [6, 7, 8]:
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where k = (k, k4), k = ωn/c is the wave vector, n is the wave front guiding vector, ω is the
wave frequency, k4 = iω/c, k′

1 = (k1 + iβk4)/γ, k′
2 = k2/γ, k′

3 = k3/γ, k′
4 = k4, k′2 = k2 - inv.

(For comparison, in the relativistic case we have k′
1 = (k1 + iβk4)/(1− β2)1/2, k′

2 = k2, k′
3 = k3,

k′
4 = (k4 − iβk1)/(1 − β2)1/2, k′2 + k4

′2 = k2 + k4
2 - inv as is well-known).

The results obtained above we illustrate by means of the Table 1:

Group P10 W11 I C4 G1

WF Φ(x) 1 ρl x2 σ(x) exp{−i[(1 − γ)k · x − βω(nxt − x/c)]/γ}

For the different transformations x′ = x′(x), the weight functions Φ(x) may be found in a similar
way.

Let us note that in the symmetry theory of d’Alembert equation, the conditions (4) for
transforming this equation into itself combine the requirements formulated by various authors,
as can be seen in the Table 2:

Author
Coordinates
transform.

Group Conditions of invariance
F ields

transform.
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jiA
′
ki = ρ′2δjk φ′ = φ

Umov [12] x′
j = xj

′(x) W11
∂xj

∂x′
i

∂xk

∂x′
i

= ρ′2δjk, �′xj = 0 φ′ = φ

Di Jorio [13] x′
j = Ljkxk + aj P10 L′

jiL
′
ki = δjk,

∂2φ′

∂φα∂φβ
= 0 φ′ = mαφα + m0

α = 1, . . . , n

Kotel′nikov x′
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α(ψφ1, . . . , ψφ6) = 0 ξα = ψφα

�φβ = 0 α, β = 1, . . . , 6

Here mα, m0 are some numbers, Dαβ and Mαβ are the 6 × 6 numerical matrices.
According to this Table for the field φ′ = φ with conformal dimension l = 0 and the linear

homogeneous coordinate transformations from the group L6 ×�1 ∈ W11 with ρ = (1 − β2)1/2,
the formulae were proposed by Voigt [4, 9]. In the plain waves case they correspond to the
transformations of the 4-vector k = (k, k4) and proper frequency ω0 according to the law k′

1 =
(k1 + iβk4)/ρ(1 − β2)1/2, k′

2 = k2/ρ, k′
3 = k3/ρ, k′

4 = (k4 − iβk1)/ρ(1 − β2)1/2, ω′
0 = ω0/ρ,

k′x′ = kx - inv. In the case of the W11-coordinate transformations belonging to the set of
arbitrary transformations x′ = x′(x) the requirements for the one component field with l = 0
were found by Umov [12]. The requirement that the second derivative ∂2φ′/∂φα∂φβ = 0 with
Φ = 1 be turned into zero was introduced by Di Jorio [13]. The weight function Φ �= 1 and the
set (4) were proposed by the author of the present work [6, 7, 8].
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By now well-studied have been only the d’Alembert equation symmetries corresponding to
the linear systems of the type (5), (6), (8). These are the well-known relativistic and conformal
symmetry of the equation. The investigations corresponding to the linear conditions (4) are
much more scanty and presented only in the papers [6, 7, 8]. The publications corresponding to
the non-linear conditions (1) are absent completely. The difficulties arising here are connected
with analysis of compatibility of the set (1) containing the non-linear partial differential equation.

3 Conclusion

It is shown that under generalized understanding of the symmetry according to Definition 1,
d’Alembert equation for one component field is invariant with respect to any arbitrary re-
versible coordinate transformations x′ = x′(x). In particular, they contain transformations of
the conformal and Galilei groups realizing the type of standard and generalized symmetry for
Φ(x) = φ′(x′ → x)/φ(x). The concept of partial differential equations symmetry is conventional.
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