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On the Spectral Problem

for the Finite-Gap Schrödinger Operator
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Solving of the spectral problem for the finite-gap Schrödinger operator in terms of hyper-
elliptic Weierstrass functions is proposed. Corresponding solutions with help of unknown
coefficients are expressed through the Weierstrass functions which also contain unknown pa-
rameters. These unknown quantities are determined by corresponding band equations and
polynomial solutions of the inverse Jacobi problem. Corresponding equations can be reduced
to simple algebraic equations. The elliptic finite-gap case is considered in the framework of
the proposed approach.

1 Introduction

The spectral problem for finite-gap linear differential operator is interesting both of its own
and as an auxiliary problem in the finite-gap theory of integrable partial differential equations.
Furthermore it may be applied to electron spectra theory.

The spectral problem is reduced to building of finite-gap eigenfunctions and finding of their
parameters from the spectral linear differential equation. Symmetrized products of the functional
part of these parameters (so-called µ-functions) are expressed through functional coefficients
(so-called potentials) of a linear differential operator by the fundamental system of finite-gap
equations (see [1, 2]). This system follows from the comparison of asymptotic series developments
of general and finite-gap eigenfunctions.

Usually, solving of the spectral linear differential equation in µ-functions is realized with
help of the known Abelian transformation with a subsequent introducing of the corresponding
Riemann surface. In so doing, µ-functions are considered as points of this surface and its
symmetrized degrees are solutions of the Jacobi inversion problem (see [3, 4]). Corresponding
solutions are expressed in terms of the Riemann theta functions.

Thus, the system of the finite-gap equations and the Abelian transformation leads to solving
of the finite-gap spectral problem for linear differential operators through the Riemann theta
functions. The above mentioned solution of the Jacobi problem is connected with the comp-
licated analysis of properties of theta functions on the Riemann surface. At the same time
utilization of the known (see [5, 6, 7]) relations for 2-differential of second kind can lead to
essential simplification of the latter problem.

Taking above mentioned circumstances we suggest simplification for solving the spectral
problem for finite-gap linear differential operators in the case of the Schrödinger operator in
the class of hyperelliptic finite-gap functions. Consideration will be based on known relations
for fundamental 2-differential on the hyperelliptic Riemann curves and the system of finite-gap
equations connecting the hyperelliptic Weierstrass functions and its derivatives.

The paper is organized as follows. In Section 2 the building of the hyperelliptic finite-gap
eigenfunction and finite-gap equations of the spectral problem for the Schrödinger operator are
formulated. In Section 3 solving of the Jacobi inversion problem with the help of the known
relations for the fundamental 2-differential on the Riemann hyperelliptic curves is considered.
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In Section 4 on the basis of the finite-gap equation relation for the hyperelliptic Weierstrass
functions are obtained.

2 The finite-gap function and finite gap equations
for the Schrödinger operator

The general form of eigenfunctions for one-dimensional Schrödinger operator H = −∂2
x + U(x)

(where ∂n
x ≡ dn/dxn) is determined by the symmetry of the Schrödinger equation HΨ(x, E) =

EΨ(x, E), where Ψ(x, E) means the eigenfunction, x and E are space and spectral variables
respectively. Such symmetry is expressed in each specific case by corresponding integrals of
motion. In the case under consideration when the differential equation has two solutions Ψ1(x, E)
and Ψ2(x, E) this integral of motion has the form

Ψ2(x, E)∂xΨ1(x, E) − Ψ1(x, E)∂xΨ2(x, E) = 2G, (1)

where G means a constant.
Introducing the variable X(x, E) = Ψ1(x, E)Ψ2(x, E) we can write the evident relation

Ψ2(x, E)∂xΨ1(x, E) + Ψ1(x, E)∂xΨ2(x, E) = ∂xX(x, E). (2)

The system of two equations (1) and (2) result in the equation

∂x ln Ψ1(x, E) =
12
∂ x

ln X(x, E) +
G

X(x, E)
. (3)

The solutions of this equation

Ψ1,2(x, E) =
√

X(x, E) exp
(
±

∫ x

x0

dx
G

X(x, E)

)
(4)

determine the general form of the Schrödinger eigenfunctions taking into account the symmetry
of the system (see [8]).

The finite-gap case imposes on the X-function the polynomial dependence on E. Then the
differentiation (3) with taking into account this circumstance results in the equality (see [8])

U(x) =
1

2X
∂2

x − 1
2X2

(∂xX)2 +
(

G

X

)
.

Multiplication of the last on X2 at zero points x = ai (X(a)i) = 0) yields the relation

∂xX|x=ai = 4G. (5)

This relation is used for computation of the finite-gap eigenfunctions.
The above mentioned general Schrödinger eigenfunction in terms of the function χ = G/X

can be written in the form

Ψ(x, E) =
√

χ(x, E) exp
(∫ x

dxχ(x, E)
)

, (6)

where χ is real function with the asymptotic series

χ(x, E) =
√

E

(
1 +

∞∑
n=0

(−1)n

22n+1
χ2n+1(x)E−(n+1)

)
(7)
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(further we shall omit the argument of the coefficient functions χn). Coefficients of (7) satisfy
the known [1] recurrence relation

χn+1 =
d

dx
χn +

n−1∑
k=1

χkχn−k, χ1 = −U(x), (8)

from which follow that χn-functions are polynominal in the potential U ant its derivatives.
Thus power series (7) and the recurrence relation (8) determine the power series of χ-function

in the expression (4) for the general eigenfunction through the Schrödinger potential and its
derivatives.

The finite-gap spectrum of the Schrödinger operator imposes the condition of a polynomial
form of the X-function in the expression (4). In the case of g-gap spectra (which have g gaps
and 2g + 1 boundaries {Ei}) the quantities G and X are described by the expressions [1]

G =
√

P (E) =

√√√√2g+1∏
n=1

(E − En), X = Q(E, x) =
g∏

n=1

(E − µn(x)). (9)

Then the χ-function transforms to the form

χR(x, E) =

√
2g+1∑
n=0

anE−n

g∑
n=0

bnE−n

, a0 = 1, b0 = 1. (10)

Here an and bn are symmetrized products of spectral boundaries Ej and µ-functions of the nth
order, respectively;

an = (−1)n
2g+1∑

j1,�=j2,..., �=jn

n∏
i=1

Eji , bn = (−1)n
g∑

j1,�=j2,..., �=jn

n∏
i=1

µ(x)ji ,

The expression (10) as in the case (7) can be represented in the form of the asymptotic series

χR ∼
√

E

(
1 +

∞∑
n=1

AnE−n

)
, (11)

with coefficients

An =
1
n!

dn

dzn

√
2g+1∑
n=0

anzn

g∑
n=0

bnzn

∣∣∣∣∣
(z=0)

. (12)

Comparing coefficients at the same power of E−1 in the expressions (7) and (11) we obtain
finite-gap equations

(−1)n

22n+1
χ2n+1 =

1
(n + 1)!

∂n+1
z


√

2g+1∑
n=0

anzn

g∑
n=0

bnzn


∣∣∣∣∣
z=0

, b0 = 0. (13)
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The system (13) in accord with the definition (12) and (8) determines relations between coeffi-
cient functions bn (symmetrized products of µi-functions), an and polynomials of nth power in
the potential U(x) and its derivatives. The first g equations of this (13) are a system of alge-
braic equations which is solvable in respect to (b1, . . . , bg). This system at n ≥ g + 1 determines
relations between the Schrödinger potential and its derivatives.

Thus finite-gap Schrödinger eigenfunctions and potentials are determined by the finite-band
equations (13) presenting by relations between symmetrized products of µ-functions (bi-coeffi-
cient functions) and the Schrödinger potential (U) with its derivatives. But complete solution
of the spectral problem assumes computation of symmetrized products of µ-functions.

The general hyperelliptic finite-gap Schrödinger operator U in accord with the finite-band
equation (13) is described linear symmetrized combination of µ-functions by the expression

U(x) = 2
g∑

j=1

µj(x) −
2g+1∑
j=1

Ej . (14)

The linear combination of µ-functions in (14) can be obtained by substitution the above men-
tioned finite-gap function in the Schrödinger equation and using the Abelian change of variables.
In so doing, the solution is reduced to the Jacobi inverse problem. The latter is solving with
help of a theorem about theta function zeros.

3 Calculating the symmetrized products of µ-functions

Substitution of the finite-gap Schrödinger eigenfunction (4) taking into account (9) in the Schrö-
dinger equation results in the differential equation with respect to µi-functions. In the class of
the Abelian hyperelliptic functions it can be integrated by the Abelian transformation of the
form

v =
g∑

j=1

∫ µj(z)

P0

dv, dv = (2ω)−1du, duj =
zj−1

y(z)
, (15)

Here y2(z) =
2g+1∑
j=1

λjz
j means a hyperelliptic Riemann curve Γ; duj means holomorphic diffe-

rential of the first kind on Γ. Moreover, 2ω means a matrix of periods on the canonical basis
cycles aj (see [9]) on the Riemann surface Γ,

(2ω)i,j=1,...,g =
(∮

ai

duj

)
,

which exists together with a matrix 2ω′ of periods on the canonical basis cycles bj ,

(2ω′)i,j=1,...,g =
(∮

bi

duj

)
.

The first matrix of periods on the Riemann surface is obtained from the condition reducing the
canonical basis of holomorphic differentials duj to the normal form dvj .

Thus the finite-gap spectral problem for the Schrödinger operator was reduced to the problem
of the Abelian integral (15) conversion with respect to the symmetrized products of µi-functions,
i.e. the Jacobi inversion problem.

Taking into account (14) and using the known Riemann vanishing theorem for theta Riemann
function θ(z|τ) (which will be defined below) we can obtain the expression

U(x) = 2
∑
i,j

αiαj∂αi,αj ln θ(αx − K|τ), (16)

(where αi = (2ω)−1
gi ) for hyperelliptic U -potentials.
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Calculation of symmetrized products of higher degree can be realized with help of the so-
called fundamental 2-differential of the second kind which is defined through the function of the
form (see [7, 9])

F (z1, z2) = 2y2
2 + 2(z1 − z2)y2∂zy2 + (z1 − z2)2

g∑
j=1

zj−1
1

2g+1−j∑
k=j

(k − j + 1)λk+j+1z
k
2 , (17)

F (z1, z2) = 2λ2g+2z
g+1
1 zg+1

2 +
g∑

i=0

zi
1z

i
2(2λ2i + λ2i+1(z1 + z2)). (18)

Here any pair of points (y1, z1), (y2, z2) ∈ Γ.
Then the fundamental Abelian 2-differential of the second kind with the unique pole of the

second order along z1 = z2 can be written in the form

dω̂(z1, z2) =
2y1y2 + F (z1, z2)

4(z1 − z2)2
dz1

y1

dz2

y2
. (19)

Taking into account (17) the expression (19) can be rewritten in the form

dω̂(z1, z2) =
∂

∂z2

(
y1 + y2

2y1(z1 − z2)

)
dz1dz2 + duT (x1)dr(x2), (20)

where

drj =
2g+1−j∑

k=j

(k + 1 − j)λk+1+j
zkdz

4y
, j = 1, . . . , g (21)

is a canonical Abelian differential of the second kind.
Solution of the Jacobi inversion problem (15) is based on the known relation of the funda-

mental 2-differential (19) which can be written as∫ z

µ

g∑
i=1

∫ zi

µi

2yyi + F (z, zi)
4(z − zi)2

dz

y

dzi

yi

= ln


θ

(∫ z
a0

dv −
g∑

i=1

∫ zi

ai
dv

)
θ

(∫ z
a0

dv −
g∑

i=1

∫ µi

ai
dv

)
− ln


θ

(∫ µ
a0

dv −
g∑

i=1

∫ zi

ai
dv

)
θ

(∫ µ
a0

dv −
g∑

i=1

∫ µi

ai
dv

)
 . (22)

The right hand of this equation contains the known Riemann theta function (see [1])

R(z) = θ(w(z)|τ) =
∑

m∈Zn

exp
{
πı

(
mT τm

)
+ 2πı

(
w(z)T m

)}
. (23)

Here (a · b) means a scalar product,

w(z) =
∫ z

a0

dv +
g∑

k=1

∫ zi

z0

dv − Kz0 ,

where components of K defined as

Kj =
1 + τjj

2
−

∑
l �=j

∮
al

dvl(x)
∫ z

z0

dvj , j = 1, . . . , g
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is the vector of Riemann constants with respect to the base point z0. In the considered case

with the base point a the vector of Riemann constants has the form Ka =
g∑

k=1

∫ ai

a dv. Taking

into account definition of the hyperelliptic Weierstrass function through theta function (23) as

℘ij = ∂2
vi,vj

ln θ(v|τ)

and differentiating (22) on variables z and zr we can obtain the relation

g∑
i=1

℘ij

(∫ z

a0

dv +
g∑

k=1

∫ zk

ak

dv + Ka

)
zi−1zj−1

r =
F (z, zr) − 2yyr

4(z − zr)2
, (24)

which expresses a second kind 2-differential through the linear combination of the hyperelliptic
Weierstrass functions. In the limit case z → ∞ from (24) the relation follows

P(z; v) = zg −
g−1∑
j=1

∑
l,m

℘l,m(v)αlαj

 zj−1, (25)

in which points {zi} of the Riemann surface are presented as roots of the polynomial P (zj ≡ µj).
In so doing, symmetrized products of these points are expressed by linear combinations hyper-
elliptic Weierstrass functions through the period matrix of holomorphic differentials 2ω. The
α-coefficients are obtained from algebraic equations which can be obtained by substitution (16)
in the finite-band equation (13) taking into account (25). One will be demonstrated in next
section in the case elliptic finite-gap Schrödinger potentials.

The matrix 2ω can be calculated with help the known Thomae formulae of the form

θ4[ε(I0)] = ±det 2ω
∏

i,j∈J0

(Ei − Ej)
∏

n,m∈J̃0

(En − Em),

θ4
j [ε(I1)] = ±det(2ω)−2

16

∏
i,j∈J1

(Ei − Ej)
∏

n,m∈J̃1

(En − Em)
g∑

i=1

∮
ai

zj−1dz

y
Si−1(I1).

Here expressions

S0(I1) = 1, S1(I1) =
∑
j∈I1

Ej , . . . , Sg−1(I1) =
∏
j∈I1

Ej

denotes symmetrized products of the branching points of the Riemann surface.
Thus finite-gap Schrödinger eigenfunctions and potentials can be expressed through hyperel-

liptic Weierstrass functions containing theta-constants instead unknown elements of a 2ω-matrix.

4 The finite-gap relations for elliptic Weierstrass functions

The system of finite-gap equations (10) is solvable with respect to symmetrized products
µi-functions expressed as coefficient functions bi. Therefore excluding bi-functions at n > g
we can obtain the system of algebraic equations with respect to the Schrödinger potential and
its derivatives. These equations determine relations for the hyperelliptic Weierstrass functions.

We consider above mentioned relations in the case of the Riemann curves of low genus g which
correspond to small number of gaps in the eigenvalue spectrum of the Schrödinger operator.

One-gap spectrum. The Schrödinger potential U(z) is determined by the system of three
finite-gap equations of the form (13) at n = 0, 2. Substitution into these equations of the explicit
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expressions (12) for An and polynomial in U expressions for χn-functions which follow from (8)
yields the system

1
2
a1 − b1 = −1

2
U,

1
2

{(
a2 − 1

4
a2

1

)
+ 2

(
b2
1 − b2

)− a1b1

}
= − 1

23

{
U2 − U (2)

}
,

1
3!

{(
3
8
a3

1 −
3
2
a1a2 +

3
2
a3

)
+ 3

(
1
4
a2

1 − a2

)
b1 + 3a1

(
b2
1 − b2

)
+

(
12b1b2 − 4!b3 − 6b3

1

)}
=

1
25

{
U (4) − 5U (1)2 + 6UU (2) − 2U3

}
in which bn|n≥2 = 0 (in view of the relation bn|n≥g+1 = 0, where g is the number of gaps in
the eigenvalue spectrum of the Schrödinger equation. Excluding bn from the last system we can
obtain the equations

b2 = 0 =
1
8

(
3U2 − U (2)

)
+

1
4
a1U +

1
2
a2 − 1

8
a2

1,

b3 = 0 = − 1
32

(
U (4) + 10U3 − 5U (1)2 − 10UU (2)

)
− 1

16
a1

(
3U2 − U (2)

)
+

1
16

U
(
a2

1 − 4a2

)
+

1
2
a3 +

1
4
a1a2 − 1

16
a3

1.

Inserting into the latter system the expression U = 2α2
1℘1,1 − a1 (in accord with (25)) we can

obtain unknown parameters for 1-gap Schrödinger potentials.
Two-gap spectrum. The 2-gap Schrödinger potential is determined by the system of the

four finite-gap equations of the form (13) at n = 0, 3. Analogically to the one-gap case their
explicit form can be obtained by the substitution of the expressions (12) for An and expressions
for χn (following from (8)) into (13). In so doing, the first two equations are solvable with
respect to b1 and b2. Excluding the latter from the fourth and fifth equation and taking into
account the equality bn|n≥3 = 0 we can obtain the finite-gap system

b3 = 0 =
1
25

(
16a3 + 8a2U + 10U3 − 5U ′2 − 2a1U

′′ − 10UU ′′ + U (4)
)

,

b4 = 0 =
1
27

(−16a2
2 + 64 ∗ a4 + 32a3U + 24a2U

2 + 35U4

− 70UU ′2 − 8a2U
′′ − 70U2U ′′ + 21U ′′2 + 28U ′U (3) + 14UU (4) − U (6)

)
.

Inserting into the latter system the expression U = 2
∑
i,j

αiαj℘i,j − a1, i, j = 1, 2 (in accord

with (25)) we can obtain unknown parameters for 2-gap Schrödinger potentials.
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