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Systems of Linear Differential Equations of Rational

Rank with Multiple Root of Characteristic Equation

Svetlana KONDAKOVA

National Aviation University, Kyiv, Ukraine
E-mail: dc analit@ukr.net

A method of the reduction of linear differential equations with multiple root of the cha-
racteristic equation to which some multiple elementary divisors correspond to the system,
the perturbed characteristic equation of which has the simple roots as well as asymptotic
estimation of solutions obtained are presented.

Consider the system of linear differential equations of the following type

εp/q dx

dt
= A(t, ε)x, (1)

where x is an n-dimensional vector, A(t, ε) =
∞∑

s=0
εsAs(t) is real square (n×n) dimension matrix,

whose elements are infinitely differentiable by t on the segment [0; L], ε > 0 is a small parameter,
p and q are natural relatively prime numbers. Besides let the inequality p < n ≤ q take place.

Let us denote ε1/q = µ. Then the system (1) reduces to the form

µp dx

dt
=

(
A0(t) + µqA1(t) + µ2qA2(t) + · · · ) x, (2)

where ε = µq, ε
p
q = µp.

The systems for which small parameter has a fractional power were studied by V.K. Gri-
gorenko in [1]. The case of the simple roots of the characteristic equations and the case of
the equation having only one multiple n root were studied separately. Let us construct the
asymptotic solution of the system (1) by the method of perturbed characteristic equation [2] for
the case when the matrix A0(t) is such that the characteristic equation has one multiple root λ0,
to which m � 1 multiple elementary divisors correspond.

It means that there is non-degenerate matrix T (t) which leads matrix A0(t) to the matrix
with the simplest structure of quasi-diagonal type

W (t) = {H1(λ0(t)), H2(λ0(t)), . . . , Hm(λ0(t))},
where Hi(λ0(t)) is Jordan cells, and the length of a cell is equal a multiplicity of elementary
divisor, i = 1, 2, . . . , m, m is the number of elementary divisors. Let us put that the elementary
divisors with every value of t ∈ [0; L] have the same multiplicity. Let a set of elementary divisors
be k1, k2, . . . , km and k1 ≥ k2 ≥ · · · ≥ km. The substitution x = T (t)y reduces the system (2)
to system

µp dy

dt
= D(t, µ)y, (3)

where

D(t, µ) = D0(t, µ) +
∞∑

s=1

µqsDs(t),

D0(t, µ) = W (t) − µpT−1(t)T ′(t), Ds(t) = T−1(t)As(t)T (t),

T ′(t) is a derivative of matrix T (t).
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Let us consider perturbed equation

det ‖D0(t, µ) − λE‖ = 0. (4)

Or opening the determinant (4),

(λ0 − λ)n + (λ0 − λ)n−1cn−1(t, µ) + · · · + c1(t, µ)(λ0 − λ) + c0(t, µ) = 0. (5)

It is known that coefficients ci(t, µ) in expansion (5) will be equal to the sum of all principal
minors n − i order of the matrix

D0(t, µ) − λ0(t)E = W (t) − µpT−1(t)T ′(t) − λ0(t)E

=




µpt11 1 + µpt12 . . . µpt1k1 µpt1k1+1 µpt1k1+2 . . . µpt1n

µpt21 µpt22 . . . µpt2k1 µpt2k1+1 µpt2k1+2 . . . µpt2n

. . . . . . . . . . . . . . . . . . . . . . . .
µptk1,1 µptk1,2 . . . µptk1,k1 µptk1,k1+1 µptk1,k1+2 . . . µptk1,n

µptk1+1,1 µptk1+1,2 . . . µptk1+1,k1 µptk1+1,k1+1 1 + µptk1+1,k1+2 . . . µptk1+1,n

. . . . . . . . . . . . . . . . . . . . . . . .
µptn1 µptn2 . . . µptn,k1 µptn,k1+1 µptn,k1+2 . . . µptnn




,

where tij is a matrix element −T−1(t)T ′(t), i, j = 1, n.
If m multiple elementary divisors correspond to multiple root, it means that all elements

of the given matrix will be of O(µp) order, but it n − m of the first over-diagonal elements
will be 1 + µptij . Proceeding from this, for estimation λ − λ0 let us draw the first diagram of
equation (5).

As ρn−1 corresponds to polynomial power cn−1(t, µ) = spD(t, µ), and ρn−1 = p. It’s easy
to see that all main minors, the order of which will be less or equal to k1 will be of O(µp)
order. So, ρn−k1 = ρn−k1+1 = · · · = ρn−1 = p. The order of the next k2 polynomials
ρn−k1−1, ρn−k1−2, . . . , ρn−k1−k2 will be O(µ2p), because 1 more line of O(µp) order is added,
and further k2 − 1 the lines of O(µ0) will be added. Estimating further the main minors of
matrix we will come to conclusion that the main minors of n, n− 1, . . . , n− km + 1 order will be
of O(µmp) order. Thus, minimal power by µ of polynomials ci(t, µ) may have the next values:

ρn = 0, ρn−1 = p, p ≤ ρn−2 ≤ 2p, p ≤ ρn−3 ≤ 3p, . . . ,

p ≤ ρn−k1 ≤ k1p, 2p ≤ ρn−k1−1 ≤ (k1 + 1)p, . . . ,

2p ≤ ρn−k1−k2 = ρkm+km−1+···+k3 ≤ (k1 + k2)p, . . . ,

(m − 2)p ≤ ρkm+km−1 = ρn−k1−···−km−2 ≤ (k1 + · · · + km−2)p = (n − km − km−1)p,

(m − 1)p ≤ ρkm+km−1−1 ≤ (n − km − km−1 + 1)p, . . . ,

l(m − 1)p ≤ ρkm = ρn−k1−k2−···−km−1 ≤ (n − km)p,

mp ≤ ρkm−1 ≤ (n − km + 1)p, . . . ,

mp ≤ ρ1 ≤ (n − 1)p, mp ≤ ρ0 ≤ np.

Let us draw the obtained results (see Fig. 1).
Here ∗ denotes values meanings of ρi if coefficients with the smaller theoretically possible

powers µ are equal zero. Figure shows that ki of solving the equation (5) will be O
(
µp/ki

)
order, i = 1, 2, . . . , m, moreover, they all will be different. So, for the case of several multiple
elementary divisors the following theorem takes place.

Theorem 1. If matrices As(t) (s = 0, 1, . . .) on the segment [0; L] are infinitely differentiable
and proper meanings of matrix D0(t, µ) on the given segment are simple when 0 < µ ≤ µ0:

λi(t, µ) �= λj(t, µ), i, j = 1, . . . , n, i �= j, ∀ t ∈ [0; L],
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Figure 1.

then the system of differential equations (3) has a formal matrix-solution

Y (t, µ) = U(t, µ, µ) exp
(

1
µp

∫ t

0
Λ(τ, µ, µ) dτ

)
,

where U(t, µ, µ) is a square matrix of n order, Λ(t, µ, µ) is a diagonal matrix of n order, they
are represented by formal series

U(t, µ, µ) =
∞∑

s=0

µsUs(t, µ), Λ(t, µ, µ) =
∞∑

s=0

µsΛs(t, µ), (6)

where µ = q
√

ε.

This theorem is proved by the method from [3], as a result we have

U0(t, µ) = B(t, µ), Λ0(t, µ) = W ∗(t, µ),

where B(t, µ) is the transforming matrix, which leads the matrix D0(t, µ) to the diagonal matrix
W ∗(t, µ) = {λ1(t, µ), λ2(t, µ), . . . , λn(t, µ)},

Λs(t, µ) = G1s(t, µ), s = 1, 2, . . . , (7)

G1s(t, µ) is obtained from the diagonal elements of matrix

Gs(t, µ) = B−1(t, µ)Hs(t, µ), (8)

Hs(t, µ) =

[
s
q

]
∑
j=1

Dj(t)Us−jq(t, µ) −
s−1∑
i=1

Ui(t, µ)Λs−i(t, µ) − U ′
s−p(t, µ), (9)

Us(t, µ) = B(t, µ)Qs(t, µ), (10)

where Qs(t, µ) is the matrix the elements of which are found from the formulas

qsij(t, µ) =
gsij(t, µ)

λj(t, µ) − λi(t, µ)
, i �= j, i, j = 1, n. (11)

The diagonal elements of the matrix Qs(t, µ) vanish.
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Consider the matrix (9). It is easily seen that for s < p Hs(t, µ) ≡ 0, and from (7)–(11)
Us(t, µ) ≡ Λs(t, µ) ≡ 0, s = 1, 2, . . . , p − 1 is produced. As in expansion (6) these elements will
follow U0(t, µ), Λ0(t, µ), then we will write down the series (6) in the following way

U(t, µ, µ) = B(t, µ) +
∞∑

s=p

µsUs(t, µ) = B(t, ε) +
∞∑

s=p

ε
s
q Us(t, ε),

Λ(t, µ, µ) = W ∗(t, µ) +
∞∑

s=p

µsΛs(t, µ) = W ∗(t, ε) +
∞∑

s=p

ε
s
q Λs(t, µ). (12)

The following theorem is true.

Lemma 1. Let the conditions of Theorem 1 be satisfied be tk1,1(t) �= 0. Then the coefficients of
the formal series (12) are given by

Us(t, µ) = B(t, ε) + ε
− p

qk1
(s−p+1)

Ua
s (t, ε),

Λs(t, µ) = W ∗(t, ε) + ε
− p

qk1
(s−p)Λa

s(t, ε), s = p, p + 1, . . . , (13)

where Ua
s (t, µ), Λa

s(t, µ) are matrices which do not have asingularity in point µ = 0.

This Lemma is proved by immediate analysis of the matrixes elements (7)–(11).
Let us substitute (13) for (12). We will have

U(t, µ, µ) = U0(t, ε) +
∞∑

s=p

ε
s
q ε

− p
qk1

(s−p+1)
Ua

s (t, ε),

Λ(t, µ, µ) = Λ0(t, ε) +
∞∑

s=p

ε
s
q ε

− p(s−p)
qk1 Λa

s(t, ε).

Lemma 2. Let the condition of Theorem 1, Lemma 1,

Re (λi(t, µ)) ≤ 0

be satisfied on the set {K : t ∈ [0; L], 0 < µ ≤ µ0}, then on the segment [0; L] m-th approximation

satisfies the differential system (1) up to the order of magnitude O

(
ε

1
q

(
(m+1−p)

(
1− p

k1

)
+p

))
.

Theorem 2. Let the condition of Theorem 1, Lemma 2 be satisfied and for t = 0

y(t, µ) = ym(t, µ),

where y(t, µ) is the exact solution of the system (3), then for any L > 0 there is c > 0, which
does not depend upon µ and is such that for all t ∈ [0; L], µ ∈ (0; µ0] the inequality is satisfied

‖y(t, µ) − ym(t, µ)‖ ≤ µ
(m+1−p)

(
1− p

k1

)
−p+1

c.

Lemma 2 and Theorem 2 are proved by the methods from [3].
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