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Point Form Relativistic Quantum Mechanics
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Electron scattering off hadronic systems is used to motivate an algebraic approach to had-
ronic physics. Point form relativistic quantum mechanics, in which all interactions are in
the four-momentum operator, along with current operators, is shown to form an infinite
dimensional algebra, the representations of which would then generate the observables in
electron scattering, namely form factors and structure functions. Several examples of such
algebras are given.

1 Electron scattering and point form
relativistic quantum mechanics

Electron scattering provides an important tool for investigating the structure of hadrons, both
at the nuclear and quark levels. The cross sections measured by experimentalists, for example in
inclusive scattering, are exhibited in such a way that they indicate the degree to which an object
being probed is not a point particle. The measure of an object not being pointlike is given by
sums of squares of form factors. It is well known that the number of independent form factors
in elastic scattering is equal to 2s + 1, where s is the spin of the object. Associated with each of
the 2s+1 form factors is a static property of the object, such as its charge or magnetic moment,
obtained by evaluating the appropriate form factor at zero momentum transfer, Q2 = 0. If every
form factor for a spin s object were a constant as a function of Q2, the object would be a genuine
point particle. If form factors are not constant as functions of Q2, the object has an internal
structure, which is revealed in electron scattering experiments as deviations from pointlike cross
sections.

Form factors are matrix elements of electromagnetic current operators and provide the link
to electron scattering experiments. In order to compute such form factors it is necessary to know
both how the objects are described in terms of their constituents, and the nature of the currents
of the constituents. Two examples of form factor calculations will be given in the following two
sections, one the elastic deuteron form factor in terms of proton and neutron constituents, the
other nucleon form factors with three quark constituents.

The goal of this paper is to present an algebraic formulation of electron scattering, algebraic
in the sense that the operators describing hadronic dynamics and currents close under commu-
tation. The context for such a formulation is point form relativistic quantum mechanics [1], in
which all of the hadronic dynamics is put into the four-momentum operator and the Lorentz
generators are all kinematic.

It is then convenient to write the Poincaré commutation relations, necessary for the theory
to be properly relativistic, not in terms of the ten generators, but rather in terms of the four-
momentum operators that contain the interactions, and global Lorentz transformations:

[Pµ, Pν ] = 0, (1)

UΛPµU−1
Λ =

(
Λ−1

)ν

µ
Pν , (2)
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where UΛ is a unitary operator representing the Lorentz transformation Λ. These rewritten
Poincaré relations will be called the point form equations, and are the fundamental equations
that have to be satisfied for the system of interest. The mass operator is given by M =

√
P · P

and must have a spectrum that is bounded from below.
The simplest example of the point form equations is given by the irreducible representations

of the Poincaré group for a single particle of mass m and spin j. If |p, σ〉 is an eigenstate of
four-momentum p (with p · p = m2) and spin projection σ, then

Pµ|p, σ〉 = pµ|p, σ〉, (3)

UΛ|p, σ〉 =
∑

|Λp, σ′〉Dj
σ′,σ(RW ), (4)

with RW a Wigner rotation defined by RW = B−1(Λv)ΛB(v), and B(v) a canonical spin (ro-
tationless) boost (see reference [2]) with argument v = p/m. Many-particle operators with the
same transformation properties as the single particle ones are conveniently obtained by introdu-
cing creation and annihilation operators. Let a†(p, σ) be the operator that creates the state |p, σ〉
from the vacuum. If a(p, σ) is its adjoint, these operators must satisfy the following relations:

[a(p, σ), a†(p′, σ′)]± = Eδ3(p − p′)δσ,σ′ , (5)

Uaa
†(p, σ)U−1

a = eip·aa†(p, σ), (6)

Pµ(fr) =
∑ ∫

d3p

E
pµa†(p, σ)a(p, σ), (7)

UΛa†(p, σ)U−1
Λ =

∑
a†(Λp, σ′)Dj

σ′,σ(RW ). (8)

Here Pµ(fr) is the free four-momentum operator and plays a role analogous to the free Hamilto-
nian in nonrelativistic quantum mechanics. Again it is straightforward to show that Pµ satisfies
the point form equations. Ua in equation (6) is the unitary operator representing the four-
translation a.

To prepare for the construction of interacting four-momentum operators, out of which the
interacting mass operators will be built, it is convenient to introduce velocity states, states with
simple Lorentz transformation properties. If a Lorentz transformation is applied to a many-
particle state, |p1, σ1, . . . , pn, σn〉 = a†(p1, σ1) · · · a†(pn, σn)|0〉, then it is not possible to couple
all the momenta and spins together to form spin or orbital angular momentum states, because
the Wigner rotations associated with each momentum are different. However, velocity states,
defined as n-particle states in their overall rest frame boosted to a four-velocity v will have the
desired Lorentz transformation properties:

|v, �ki, µi〉 := UB(v)|k1, µ1, . . . , kn, µn〉 (9)

=
∑

|p1, σ1, . . . , pn, σn〉
∏

Dji
σi,µi

(RWi), (10)

UΛ|v, �ki, µi〉 = UΛUB(v)|k1, µ1, . . . , kn, µn〉 = UB(Λv)URW
|k1, µ1, . . . , kn, µn〉

=
∑

|Λv, RW
�ki, µ

′
i〉

∏
Dji

µ′
i,µi

(RW ). (11)

Unlike the Lorentz transformation of an n-particle state, where all the Wigner rotations of
the D functions are different, in equation (11) it is seen that the Wigner rotations in the D
functions are all the same and given by equation (4). Moreover the same Wigner rotation
also multiplies the internal momentum vectors, which means that for velocity states, spin and
orbital angular momentum can be coupled together exactly as is done nonrelativistically (for
more details see reference [2]). The relationship between single particle and internal momenta
is given by pi = B(v)ki,

∑ �ki = 0 and RWi in equation (10) by replacing p by ki and Λ by B(v)
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in equation (4). From the definition of velocity states it then follows that

Vµ|v, �ki, µi〉 = vµ|v, �ki, µi〉, (12)

Mfr|v, �ki, µi〉 = mn|v, �ki, µi〉, (13)

Pµ(fr)|v, �ki, µi〉 = mnvµ|v, �ki, µi〉, (14)

with mn =
∑ √

m2
i + �ki

2
the mass of the n-particle velocity state and Pµ(fr) = MfrVµ. On velo-

city states the free four-momentum operator has been written as the product of the four-velocity
operator times the free mass operator, which is the so-called Bakamjian–Thomas construction [3]
in the point form.

To introduce interactions, write Pµ = MVµ, M = Mfree + MI . Such a four-momentum ope-
rator will satisfy the point form equations if the velocity state kernel, 〈v′, �ki

′
, µ′

i|MI |v, �ki, µi〉 is
independent of v and rotationally invariant (which is the same as the nonrelativistic condition
on potentials). With such a four-momentum operator, the point form equations become a mass
eigenvalue equation:

MΨ = mΨ, (15)

which gives the bound and scattering wavefunctions.
Besides the mass operator, the other quantity needed to compute form factors is a current

operator. Current operators must satisfy general properties such as Poincaré covariance and
current conservation. In the point form the current operator at the space-time point 0 plays
a special role in that it determines the Poincaré covariance and conservation properties at an
arbitrary space-time point x. In fact it is easy to see that if Jµ(0) satisfies

UΛJµ(0)U−1
Λ = (Λν

µ)−1Jν(0),

[Pµ, Jµ(0)] = 0,

then Jµ(x) := eiP ·xJµ(0)e−iP ·x is Poincaré covariant and is conserved.
Form factors are current operator matrix elements. If the states are chosen to be eigen-

states of the four-momentum operator, then the covariance properties of the states and current
operators make it possible to greatly simplify the structure of the form factors. As shown in
reference [4] current operators are irreducible tensor operators of the Poincaré group, so that
a generalized Wigner–Eckart theorem can be used to decompose current matrix elements into
Clebsch–Gordan coefficients times reduced matrix elements, which are the invariant form fac-
tors. There is a natural frame in which the Clebsch–Gordan coefficients are one, namely the
Breit frame, indicated by p(st) (st=standard=Breit) below:

〈p′j′σ′I ′|Jµ(0)|pjσI〉 =
∑

Λµ
ν (p′, p)Dj′

σ′r′(R
′
W )F ν

r′r
(
Q2

)
Dj

rσ(R−1
W ), (16)

〈p′(st)j′r′I ′|Jµ(0)|p(st)jrI〉 = Fµ
r′r(Q

2), (17)
p′(st) = m′(cosh ∆, 0, 0, sinh ∆), p(st) = m(cosh ∆, 0, 0,− sinh ∆),

Q2 = (p′(st) − p(st))2 = (m′ − m)2 − 4m′m sinh ∆2,

p′ = Λ(p′, p)p′(st), p = Λ(p′, p)p(st).

Λ(p′, p) is a Lorentz transformation that carries the two standard four-momenta to arbitrary
four-momenta, while the Wigner rotations in equation (16) are formed from these four-momenta
with Λ(p′, p).

It can then be shown that the invariant form factors in equation (17), indexed by the spin
projection labels r′ and r, always give the correct number of independent form factors [4]. In fact
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Fµ=0
r′r (Q2) is a diagonal matrix giving the electric form factors, Fµ=1,2

r′r
(
Q2

)
is an off-diagonal

matrix giving the magnetic form factors, and Fµ=3
r′r

(
Q2

)
= 0 is an expression of current con-

servation in the Breit frame. To actually compute an invariant form factor using equation (17)
a choice for the current operator must be made; usually one begins with a one-body current
operator, resulting in what is called the point form spectator approximation (PFSA) [5]. This
means that the four-momenta of the unstruck constituents do not change, which has the con-
sequence that the momentum transfer to the struck constituent is greater than the momentum
transfer to the object as a whole. As will be seen in the next sections, this has important
consequences for the behavior of the form factors as a function of the momentum transfer Q2.

With the assumption of a one-body current operator, equation (17) can be written more
explicitly as

Fµ
r′r

(
Q2

)
=

∑ ∫
J d3�kiJ ′d3�k′

iΨ
∗
m′j′r′(�k′

i, µ
′
i)u(p′1σ

′
1)γ

µu(p1σ1)F
(
(p′1 − p1)2

)
× Ei�=1δ

3(p′i − pi)δσ′σΨmjr(�kiµi), (18)

where Ψ is an eigenfunction of the mass operator, J and J ′ are Jacobian factors, and the delta
functions express the fact that the momenta of the unstruck constituents do not change. The
one-body current matrix element in equation (18) has been chosen for a spin 1/2 particle with
form factor F .

2 Elastic deuteron form factors

To compute elastic deuteron form factors using the point form it is necessary to have a mass
operator that will generate the deuteron wave functions. To make use of the many nonrelativis-
tic potentials that are able to give good deuteron wave functions, the mass operator, a sum of
relativistic kinetic energy and interaction, is squared and then rewritten in the form of a non-
relativistic Schrödinger equation [6]:

M = 2
√

m2
N + �k2 + Mint, M2 = 4

(
m2

N + �k2
)

+ 4mNVN−N , (19)

M2Ψ =
(
4m2

N + 4�k2 + 4mNVN−N

)
Ψ = m2

DΨ,(
�k2

mN
+ VN−N

)
Ψ =

(
m2

D

4mn
− mN

)
Ψ; (20)

in this work the Argonne v18 and Reid’93 potentials were used to obtain the deuteron wave
functions.

Since the nucleons that make up the deuteron themselves have internal structure, it is nec-
essary to choose form factors for them. In this calculation the one-body current operators
were determined by form factors given by Gari, Krümpelmann [7] and Mergell, Meissner, and
Drechsel [8].

The results of these calculations have been published in reference [5]. Collaborators are
T. Allen and W. Polyzou, with much help from F. Coester and G. Payne. A comparison of our
results with those of other calculations is given by F. Gross [9], where it is seen that the structure
function falls off too fast in comparison with experimental data, while the results for the tensor
polarization agree reasonably well with data. These results show the need for including two-body
currents in the form factor calculations, a subject which is discussed elsewhere [10].
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3 Nucleon form factors

To compute nucleon form factors the mass operator is obtained in a rather different way as
compared with the deuteron mass operator. In this case the three quark mass operator comes
from a “semi-relativistic” Hamiltonian, the sum of relativistic kinetic energy, linear confinement
potential and hyperfine interaction (Goldstone Boson Exchange model [11]):

H −→ M =
∑ √

m2 + �k2
i +

∑
V (conf) +

∑
V (HF ).

That is, the “semi-relativistic” Hamiltonian can be reinterpreted as a point form mass operator
and the eigenfunctions previously calculated can be used to compute form factors. Thus, the
bound state problem for three quarks, MΨ = mΨ, gives the wave functions and a good spectro-
scopic fit (Glozman, et al [12]). Finally the current operator is a point-like Dirac current with
no anomalous magnetic moment.

When these eigenfunctions and current operators are put into equation (18), excellent agree-
ment with data is obtained. The form factor graphs and static properties can be found in
reference [13]. Collaborators in this project include S. Boffi, L. Glozman, W. Plessas, M. Radici,
and R. Wagenbrunn. It should be noted that form factors for the weak interactions have also
been calculated and give excellent agreement with experiment [14].

4 Algebraic formulation of electron scattering

As shown in previous sections the two quantities needed to calculate electron scattering observ-
ables in the point form are the hadronic four-momentum operator Pµ, satisfying P †

µ = Pµ and
the electromagnetic current operator Jµ(0). To rewrite these quantities in an algebraic form it
is more convenient to work with the Fourier transform of the current operator

Jµ(Q) =
∫

d4xeiQ·xJµ(x), (21)

with J†
µ(Q) = Jµ(−Q), for then two of the fundamental commutation relations are

[Pµ, Pν ] = 0, (22)
[Pµ, Jν(Q)] = QµJν(Q). (23)

These operators must also satisfy Lorentz transformation properties, with the four-momentum
operator transforming as a four-vector (equation (2)) and the current operator as a four-vector
density. To get an algebraic structure, [Jµ(Q), Jν(Q′)] should close. Since equation (22) is
a point form equation required by Poincaré covariance, and equation (23) is a consequence of
the translational covariance of current operators it is clear that the crucial commutator relation is
the one involving the two currents. While the commutator of two currents closing is reminiscent
of the current algebra of the 1960’s (see for example [15]), the crucial difference is that the
currents are not regarded as the fundamental degrees of freedom, to be used in a Hamiltonian;
rather in combination with equations (22), (23), the four-momentum operator and the current
operator form a closed algebraic system, the representations of which should give the observables
of electron scattering.

These observables include the structure tensor for inclusive scattering,

Wµν(p, Q) =
∑ ∫

d4Q′〈pjσ|[Jµ(Q), Jν(Q′)]|pjσ〉, (24)
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and form factors for exclusive scattering,

Fµ(Q2) = 〈p′j′σ′|Jµ(Q)|pjσ〉. (25)

Further, it follows from equation (23) that Jµ(Q) acts as a raising (lowering) operator on
eigenstates of Pµ, and for certain values of the momentum transfer Q, acts as an annihilation
operator on the ground state:

Jµ(Q)|pgndjσ〉 = 0 (26)

for (pgnd + Q)2 < m2
gnd.

Such an algebraic structure of {Pµ, Jµ(Q)} is reminiscent of a Cartan algebra, with the diag-
onal operators and the raising and lowering operators (see for example [16, 17]). Such algebras
also have automorphism groups; in the case of the present algebra, the Lorentz transformations
are a subgroup of the automorphism group. Finally the annihilation property, equation (26) is
analogous to positive energy, or discrete series representations of finite dimensional Lie algebras.

A well known example from two dimensional field theory is the Virasoro algebra [17]:

[Lm, Ln] = (m − n)Lm+n +
c

12
m

(
m2 − 1

)
δm+n,0, (27)

where L0 ≈ Pµ is interpreted as a mass or energy and Lm�=0 ≈ Jµ(Q) the space component
of a current in discrete variables. There is no analogue of equation (22) unless the product of
two Virasoro algebras is used, in which case the interpretation of L0 becomes the light front
operators P± = P0±P1. But equation (23) is already contained in equation (27) when the index
m is set equal to zero. When both m and n are nonzero in equation (27), the commutator gives
the closure of two current operators.

As a second example consider a “U(N)” model for spinless particles of mass m, with creation
and annihilation operators satisfying [a(p), a†(p′)] = Eδ3(p− p′), and out of which the following
operators can be built:

Pµ =
∫

d3p

E
pµa†(p)a(p), (28)

Jµ(x) =
∫

d3p1

E1

d3p2

E2
F

(
(p1 − p2)2

)
(p1 + p2)µei(p1−p2)·xa†(p1)a(p2), (29)

Jµ(Q) = F
(
Q2

) ∫
d3p1

E1

d3p2

E2
δ4(p1 − p2 − Q)(p1 + p2)µa†(p1)a(p2); (30)

both the free four-momentum operator (28) and the Fourier transform of the current opera-
tor (30) are formed from operators of the form a†iaj , which forms the Lie algebra of the unitary
group, hence the name “U(N)” model. From the definition given of these operators, it can now
be shown by direct calculation that equations (22), (23) hold, for an arbitrary form factor F

(
Q2

)
.

The key equation is the commutator of the two currents. Using equation (30) suggests the
following possibility:

[J†
µ(Q), Jν(Q)] = 4F

(
Q2

)2 (PµQν + PνQµ), (31)

[Jµ(Q), Jν(Q′)] = 2
F

(
Q2

)
F

(
Q

′2
)

F ((Q + Q′)2)
(
Q′

µJν

(
Q + Q′) − QνJµ

(
Q + Q′)) , (32)

for Q + Q′ �= 0. Equation (31) is the analogue of the Cartan algebra commutator, where the
commutator of a raising operator with its adjoint gives a diagonal operator, while equation (32)
is similar to the Virasoro algebra (27), when m + n �= 0. Note also that equation (31) has no
central extension, as is the case with the Virasoro algebra.
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5 Conclusion

Motivated by the analysis of electron scattering experiments, an algebraic formulation of had-
ronic systems has been given in the context of point form relativistic quantum mechanics. The
point form is one of the forms of relativistic quantum mechanics proposed by Dirac, in which
all of the interactions are in the four-momentum operator, and the Lorentz generators are all
kinematic (free of interactions). As shown in the introduction the other operator besides the four-
momentum operator needed to compute form factors and structure functions that provide the
link to experimental data is the electromagnetic current operator. While it suffices to know the
current operator at the space-time point zero for computing form factors, to uncover an algebraic
structure, it is more useful to consider the Fourier transform of the current operator Jµ(Q),
where the independent variable Q is the four-momentum transfer. From the definition of Jµ(Q)
it follows that it acts as a raising or lowering operator on eigenstates of the four-momentum
operator.

The key commutator is between two current operators, and here there is no direct guide from
hadronic physics. Two examples of algebraic structures were given in the previous section, but
there is much work to be done to find physically interesting examples. One possibility is to work
with free hadronic systems and then deform the current commutators to produce interactions.

Both Pµ and Jµ(Q) have definite transformation properties under Lorentz transformations,
which suggests that the Lorentz transformations belong to an automorphism group, just as the
symmetric group is the automorphism group for the U(N) algebras.

A final important issue concerns the representations of such algebraic structures, for it is
the representations that provide the actual form factors and structure functions. Since for
certain values of Q, Jµ(Q) acts as an annihilation operator on the ground state (see equa-
tion (26)), the representations of interest should be “discrete series” types of representations
(see for example [16, 17]) and it should be possible to generalize the techniques for generating
such representations to those needed here.
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