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There exist equations with generalized symmetries that do not have infinitely many genera-
lized symmetries. We explain how to prove such a fact using p-adic numbers and calculate
examples using symbolic calculus.

1 Introduction

The title of this text is the same as the title of the talk I gave at the conference “Symmetry in
Nonlinear Mathematical Physics 2001”. It is a misleading title. P-adic numbers are not used
in calculating symmetries. They are used to prove that certain (infinitely many) symmetries do
not exist. The material presented here is not new, it can be found in [8, 9], but the exposition is.

It was observed and conjectured, cf. [6, 5, 7], that the existence of one (or a few) symmetries
implies the existence of infinitely many symmetries. This turned out not to be the case. The
first equation with finitely many symmetries was found by Bakirov [1]:

ut = 5u4 + v2
0, vt = v4

has a sixth order symmetry

ut = 11u6 + 5v0v2 + 4v2
1, vt = v6,

where the ith x-derivative of v0 is denoted vi. It was shown (with extensive computer algebra
computations) that there are no other symmetries up to order 53. The authors of [2] proved
using p-adic numbers that the system of Bakirov does not possess another symmetry at any
higher order.

Have a look at the following points in the complex plane, see Fig. 1. You see 2745 points
inside the upper half unit circle. Let us associate to every such a point r a new evolution
equation

ut =
(
1 + r4

)
u4 + v2

0, vt = (1 + r)4v4. (1)

We show that all these equations have one higher order generalized symmetry.

2 The symmetry condition

Let K(v), S(v) be polynomials that are quadratic in v0 and its x-derivatives vi. The Lie-bracket,
see [10], between

ut = a1un + K(v), vt = a2vn
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Figure 1. Roots of G-functions that correspond to almost integrable fourth order Bakirov like equations.

and

ut = b1um + S(v), vt = b2vm

vanishes when

a1D
nS(v) − a2DS(v)vn = b1D

mK(v) − b2DK(v)vm, (2)

where total differentiation is done by

D = ∂x +
∞∑

i=0

vi+1∂vi

and the Fréchet derivative is given by the operator

DK(v) =
∞∑

i=0

∂viK(v)Di.

We will solve this equation (2) using the symbolic calculus, which was first developed in [4]. The
Gel’fand–Dikĭı transformation

vivj �→ ξi
1ξ

j
2 + ξj

1ξ
i
2

2
maps every quadratic polynomial P (v) to P (ξ1, ξ2). It has the properties

• DP (v) �→ (ξ1 + ξ2)P (ξ1, ξ2),
• DP (v)vn �→ (ξn

1 + ξn
2 )P (ξ1, ξ2).

Therefore equation (2) reads symbolically

Gn[a](ξ1, ξ2)S(ξ1, ξ2) = Gm[b](ξ1, ξ2)K(ξ1, ξ2),

where the so called G-functions are given by the polynomials

Gn[a](ξ1, ξ2) = a1(ξ1 + ξ2)n − a2(ξn
1 + ξn

2 )

which can easily be solved

S =
Gm[b](ξ1, ξ2)
Gn[a](ξ1, ξ2)

K

if Gn[a](ξ1, ξ2) divides Gm[b](ξ1, ξ2).
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3 Common roots

We call r a root of f(ξ1, ξ2) if (ξ1 − rξ2) divides f(ξ1, ξ2). If r is a root of Gn[a](ξ1, ξ2) then

a1

a2
=

1 + rn

(1 + r)n
=

1 + (1/r)n

(1 + 1/r)n

and hence 1/r is a root as well. A point s is another root if

Un(r, s) = Gn[1 + rn, (1 + r)n](s, 1)

vanishes, i.e.

(1 + r)n + (r + rs)n − (1 + s)n − (s + rs)n = 0. (3)

The functions Gn[1 + rn, (1 + r)n](ξ1, ξ2) and Gm[1 + rm, (1 + r)m](ξ1, ξ2) have a common set of
roots

{
r, 1

r , s, 1
s

}
if the resultant of Un(r, s) and Um(r, s) with respect to s vanishes. This gives

a very effective way to find equations with symmetries.

Example 1. We tread the Bakirov system. The resultant of U4(r, s) and U6(r, s) is

R = 2r4 + 10r3 + 15r2 + 10r + 2.

The ratio of eigenvalues of the system is

1 + r4

(1 + r)4
modulo R = 5.

The ratio of eigenvalues of the symmetry is

1 + r6

(1 + r)6
modulo R = 11.

The quadratic part of the system is chosen K(v) = v2
0 �→ 1, the quadratic part of the symmetry

is calculated

S =
G6[11, 1](ξ1, ξ2)
G4[5, 1](ξ1, ξ2)

1 = 5
ξ2
1 + ξ2

2

2
+ 4ξ1ξ2 �→ 5v2v0 + 4v2

0.

Remark that we could have chosen any function K(v).

We have calculated all resultants between U4(r, s) and Um(r, s), where 4 < m < 155. We
added their degrees and divided by four to obtain 2745, the number of fourth order equations
with a symmetry of order less than 155. All zero points are numerically calculated and plotted
in Fig. 1. The points on the curve throught −1, together with the points on the real line and
the unit circle, are mapped to real values by

r → 1 + r4

(1 + r)4
.

For the other we get complex eigenvalue ratios. The curve throught −1 is the set of zeropoints
of

x4 + 3x3 + 4x2 + 3x + 1 +
(
3x + 2x2

)
y2 + y4

which appears as a factor of U4(x + iy, x − iy). A big question here is where the other curve
comes from or at least how to describe it.
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The resultants between U4(r, s) and Um(r, s) with respect to s, where 8 < m < 12,

r4 + 8r3 + 12r2 + 8r + 1,

14r4 + 58r3 + 87r2 + 58r + 14,

3r8 + 22r7 + 69r6 + 130r5 + 159r4 + 130r3 + 69r2 + 22r + 3.

You do not want to see the rest of the list. To indicate the size of the expressions involved, the
resultant between U4(r, s) and U154(r, s) has degree 148 and coefficients that have 63 digets.

4 No more symmetry

We now ask the question whether a given equation has more than one symmetry. A p-adic
method allows us to conclude that there exist only a finite number of symmetries. It is extremely
powerful in our context. The method is based on the fact that if some equation does not have
a solution in some p-adic field then it can not have a solution in C. Moreover the method reduces
the number of orders that need to be checked to a finite number.

P-adic numbers are represented by formal power series in a prime p

a =
∑

n≥0

anpn

with an ∈ Z/p. The field of p-adic numbers is called Zp. The invertible elements are in Z
×
p , they

have a0 �= 0.
Not all (complex) numbers are in every p-adic field. The following lemma of Hensel can be

used to check whether for example
√

2i is in Z7.

Lemma 1 (Hensel). A polynomial

f(x) =
n∑

i=0

aix
i with ai ∈ Zp

has a root α in Z
×
p if ∃α1 ∈ Z/p such that

• f(α1) ≡ 0 mod p,

• f ′(α1) �≡ 0 mod p.

We now formulate the lemma of Skolem that form the basis of the method.

Lemma 2 (Skolem). If xi ∈ Z
×
p then by the Fermat little theorem

∃ yi ∈ Zp : xp−1
i = 1 + yip.

Let Um
n =

∑
i=1

ciy
m
i xn

i for m = 0, 1.

• If U0
k �≡ 0 mod p then ∀ r U0

k+r(p−1) �= 0,

• If U0
k = 0 and U1

k �≡ 0 mod p then ∀ r > 0 U0
k+r(p−1) �= 0.

Notice that equation (3) has the form U0
n = 0 with i = 4, ci = (−1)i and

x1 = 1 + s, x2 = 1 + r, x3 = s(1 + r), x4 = r(1 + s).
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Example 2. We tread the Bakirov system. With the lemma of Hensel one can show that
2r4 + 10r3 + 15r2 + 10r + 2 has two roots in Z181. Take r ≡ 66 + 13p, s ≡ 139 + 29p. Calculate
modulo p2

x1 ≡ 140 + 29p, x2 ≡ 67 + 13p, x3 ≡ 82, x4 ≡ 9 + 165p

and modulo p

y1 ≡ 40, y2 ≡ 33, y3 ≡ 46, y4 ≡ 140.

We have that m = 0, 1, 4, 6 are the only values less than p − 1 such that U0
m ≡ 0 modulo p and

that

U1
0 ≡ 78, U1

1 ≡ 173, U1
4 ≡ 169, U1

6 ≡ 162.

With the lemma of Skolem we may now conclude that if there is a symmetry it has be at order 6.

It is verified that all fourth order systems (1) with a symmetry of order less than 155 have
one symmetry. The proof is done automatically by a computer using the lemma of Skolem in
MAPLE [3]. The hard part is finding a good prime p. Once you know p, the conditions are very
easily checked. We list some modulo p solutions of the resultants between U4(r, s) and Um(r, s)
for 8 < m < 12 in the specific fields

71, 72 ∈ Z/293,
79, 175 ∈ Z/491,
26, 44 ∈ Z/53.

5 Conclusion

More results in this direction can be found in [8, 9], as well as the proofs of the relevant lemmas. It
is proven that there exist infinitely many evolution equations with finitely many symmetries. All
systems of order n with 4 < n < 11 with symmetries of order m with n < m < n+150 have been
calculated. Some improvements on the p-adic method have been made. These made it possible
to show that among all the calculated systems there are only 3 equations with 2 symmetries,
counter examples to the conjecture stated in [7, p. 255]. These systems have order 7 and their
symmetries appear at order 11 and 29.
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