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It is known that Fairlie–Odesskii algebra U ′
q(so3) appears as algebra of observables in quan-

tum gravity in (2 + 1)-dimensional de Sitter space with space being torus. In this paper,
we study the center of this algebra at q a root of 1. It turns out that Casimir elements in
this case are algebraically dependent. Using realization of the algebra U ′

q(so3) in terms of
quantized lengths of geodesics on torus with one hole, we find this dependence in an explicit
form. It is expressed in terms of Chebyshev polynomials of the first kind. The properties of
Casimir elements in the cyclic type representations are studied.

1 Introduction

It is shown by Nelson, Regge and Zertuche [1] that the algebra of observables in quantum gravity
in (2+1)-dimensional de Sitter space with space being torus is related to Fairlie–Odesskii algebra
U ′

q(so3) [2, 3], where q is related to the Plank constant and the curvature of the de Sitter space.
Thus it is important, from point of view of physics, to study the structure (in particular, the
center) of this algebra. The center of the algebra U ′

q(so3) in the case of q being not a root of 1
is generated by the element C, which is deformation of the Casimir element of Lie algebra so3.
The center of this algebra at q a root of 1 contains three more elements C1, C2, C3 [2, 4]. It
turns out that all four Casimir elements are algebraically dependent. The main goal of this
paper is to describe this dependence in an explicit form. To find it we use the realization of
algebra U ′

q(so3) in terms of quantum geodesics on torus T with one hole proposed by Chekhov
and Fock [5]. Namely, generators I1 and I2 (resp. Casimir element C) of algebra U ′

q(so3) are
related to quantized lengths of geodesics corresponding to two basis cycles (resp. cycle around
the hole) on T . They are expressed in terms of z1, z2, z3, which are “coordinates” on quantized
Teichmüller space Aq of T . In this realization, the fact that elements C, C1, C2, C3 belong to
the center of U ′

q(so3) is almost obvious. We note, that the same algebra U ′
q(so3) appeared also

in the paper [6] as Kauffman bracket skein algebra of T .
It is known that algebra U ′

q(so3), at q a root of 1, possesses cyclic type irreducible represen-
tations [7, 8]. The action formulas for Casimir operators on the spaces of these representations
are presented in explicit form. It is shown that C1, C2, C3 do not separate this type of repre-
sentations. To separate them we also need to include C.

2 Fairlie–Odesskii algebra U ′
q(so3)

The Fairlie–Odesskii algebra U ′
q(so3) [2, 3] is an associative unital algebra with generating ele-

ments I1, I2, I3 and defining relations

q1/2I1I2 − q−1/2I2I1 = I3, q1/2I2I3 − q−1/2I3I2 = I1, q1/2I3I1 − q−1/2I1I3 = I2,

where q �= 0,±1, is a complex number called deformation parameter. In the limit q → 1, the
algebra U ′

q(so3) reduces to the Lie algebra so3. Algebra U ′
q(so3) has a linear basis Ik1

1 Ik2
2 Ik3

3 ,
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k1, k2, k3 ≥ 0 (Poincaré–Birkhoff–Witt basis) [7]. At arbitrary q, the algebra U ′
q(so3) has central

element

C = −q1/2
(
q − q−1

)
I1I2I3 + qI2

1 + q−1I2
2 + qI2

3 . (1)

It generates the center of U ′
q(so3) when q is not a root of 1 (see [6]).

Let us fix q to be a primitive root of 1 of order p > 2, that is qp = 1, qp′ �= 1, 1 ≤ p′ < p.
Then elements

Ck = 2 Tp

(
Ik

(
q − q−1

)
/2

)
, k = 1, 2, 3, (2)

where Tp(x) is Chebyshev polynomial of the first kind, are also central in U ′
q(so3). The Chebyshev

polynomial Tp(x) is uniquely defined through Tp(cos θ) = cos (pθ). It explicit form is

Tp(x) =
p

2

�p/2�∑
k=0

(−1)k(p − k − 1)!
k!(p − 2k)!

(2x)p−2k, (3)

where �p/2� is integral part of p/2. Some examples of Chebyshev polynomials of the first kind:

T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1,

T3(x) = 4x3 − 3x, T4(x) = 8x4 − 8x2 + 1, T5(x) = 16x5 − 20x3 + 5x, . . . .

The central elements C1, C2 and C3 were first described in implicit form (and without proof)
in [2]. In the paper [4], these elements were given in explicit form as sum of type (3). It was
pointed out to me by V. Fock the coincidence of this sum with Chebyshev polynomial of the
first kind. The elements C, C1, C2 and C3 are algebraically dependent. Our main goal is to
describe this dependence in an explicit form.

3 Algebra U ′
q(so3) as algebra of quantum geodesics

on torus with one hole

Now we describe the algebra Aq of quantized Teichmüller space of torus with one hole [5]. It
is an associative unital algebra with generating elements z1, z−1

1 , z2, z−1
2 , z3, z−1

3 and defining
relations

zkz
−1
k = z−1

k zk = 1, z1z2 = qz2z1, z2z3 = qz3z2, z3z1 = qz1z3. (4)

It is easy to realize that zk1
1 zk2

2 zk3
3 , k1, k2, k3 ∈ Z, constitute a linear basis in Aq. Geodesic

functions G1, G2 and G3, which are related to lengths L1, L2 and L3 of geodesics (1, 0), (0, 1)
(corresponding to two basis cycles) and (1, 1) (corresponding to sum of these cycles) on torus
with one hole as Gk = 2 cosh (Lk/2), after quantization take the form [5]:

G1 = q−1/2z−1
3 z−1

1 + q1/2z−1
3 z1 + q−1/2z3z1, (5)

G2 = q−1/2z−1
2 z−1

3 + q1/2z−1
2 z3 + q−1/2z2z3, (6)

G3 = q−1/2z−1
1 z−1

2 + q1/2z−1
1 z2 + q−1/2z1z2. (7)

Proposition 1 ([5]). The map φ given by

φ : Ik �→ Gk/
(
q − q−1

)
, k = 1, 2, 3,

defines an injective homomorphism φ : U ′
q(so3) → Aq.
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Proof. It is easy to show by straightforward calculation that

q1/2G1G2 − q−1/2G2G1 =
(
q − q−1

)
G3,

q1/2G2G3 − q−1/2G3G2 =
(
q − q−1

)
G1,

q1/2G3G1 − q−1/2G1G3 =
(
q − q−1

)
G2.

It proves that φ defines a homomorphism. Let us show that ker(φ) = 0. We assume that there
exists an element a =

∑
ak1,k2,k3I

k1
1 Ik2

2 Ik3
3 , where only finite number of coefficients ak1,k2,k3

are non-zero, such that φ(a) = 0. Let al1,l2,l3 �= 0 for some l1, l2, l3 ≥ 0 and ak1,k2,k3 = 0
for all k1, k2, k3 such that k1 + k2 + k3 > l1 + l2 + l3. Then φ(I l1

1 I l2
2 I l3

3 ) contains summand
αzl1+l3

1 zl2+l3
2 zl1+l2

3 , α �= 0. It is unique summand with maximal sum of powers of z1, z2 and z3.
Only φ(Ik1

1 Ik2
2 Ik3

3 ) with k1 + k2 + k3 = l1 + l2 + l3 and ak1,k2,k3 �= 0 contain summands with
the same sum of powers of z1, z2, z3. But the very monomials in z1, z2, z3 are not coinciding,
because from zk1+k3

1 zk2+k3
2 zk1+k2

3 = zl1+l3
1 zl2+l3

2 zl1+l2
3 it follows that ki = li. Thus coefficient at

zl1+l3
1 zl2+l3

2 zl1+l2
3 in φ(a) is non-zero. It contradicts the assumption that φ(a) = 0. �

The injectivity of homomorphism φ follows from construction given in [5]. We proved the
injectivity in purely algebraic way.

Now our strategy is following. We find the images of C, C1, C2, C3 in Aq. Then, due to
Proposition 1, the relations between the obtained images will imply the relations between of C,
C1, C2 and C3. Instead of C, we will use

∂ =
(
q + q−1

)
1 −

(
q − q−1

)2
C. (8)

Straightforward calculation shows that (see (1))

φ(∂) = q−2
(
z−2
1 z−2

2 z−2
3 + z2

1z
2
2z

2
3

)
. (9)

It is easy to see that φ(∂) commutes with z1, z2, z3 and, therefore, with φ(I1), φ(I2), φ(I3).
Hence, due to Proposition 1, ∂ is central in U ′

q(so3). The images of Ck, k = 1, 2, 3, in Aq are
(see (2))

φ(Ck) = 2Tp(Gk/2), k = 1, 2, 3. (10)

Let us define an associative algebra Lq with generating elements Λ, Λ−1, Λ0 which satisfy the
relations

ΛΛ−1 = Λ−1Λ = 1, ΛΛ0 = q2Λ0Λ,

where q is a non-zero complex number. In order to formulate an important lemma, we remind
the standard notations for q-numbers:

[m] =
qm − q−m

q − q−1
, (11)

q-factorials and q-binomial coefficients:

[m]! = [m][m − 1] · · · [1],
[

n

m

]
=

[n]!
[m]![n − m]!

=
[n][n − 1] · · · [n − m + 1]

[1][2] · · · [m]
.

Lemma 1. In algebra Lq at non-zero complex number q, we have

2Tp

(
Λ + Λ0 + Λ−1

2

)
= Λp + Λ−p +

∑
Rp,k,lΛlΛk

0,

where sum runs over integral k and l such that k > 0, k ± l ≤ p, k + l ≡ p (mod 2), and

Rp,k,l = q−kl [p]
[k]

[p+k+l
2 − 1
k − 1

][p+k−l
2 − 1
k − 1

]
.
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Proof. We will prove the lemma by induction. It is easy to see that the lemma is correct at
p = 0 and p = 1. For p = 2, we have 2T2(x/2) = x2−2, and validity of lemma follows from direct
calculation. The left-hand sides of the relations given in lemma satisfy the recurrent relation
which follows from recurrent relation for Chebyshev polynomials: Tp(x) = 2xTp−1(x)−Tp−2(x).
Hence, the right-hand sides also must satisfy the same relation. In terms of Rp,k,l it looks like

Rp,k,l = Rp−1,k,l−1 + Rp−1,k,l+1 + Rp−1,k,l+1 + q−2lRp−1,k−1,l − Rp−2,k,l.

Substituting explicit expressions for Rp,k,l and cancelling common multiplier we obtain the
relation

[p]
[
p + k + l

2
− 1

] [
p + k − l

2
− 1

]
= q−k[p − 1]

[
p − k − l

2

] [
p + k + l

2
− 1

]

+ qk[p − 1]
[
p − k + l

2

] [
p + k − l

2
− 1

]
+ q−l[p − 1][k][k − 1]

− [p − 2]
[
p − k + l

2

] [
p − k − l

2

]
,

which can be verified in direct way using definition (11) of q-numbers. �

Corollary 1. In algebra Lq, when q is a primitive root of 1 of order p > 2 , we have

2Tp

(
Λ + Λ0 + Λ−1

2

)
= Λp + Λ−p + Λp

0

if p is odd, and

2Tp

(
Λ + Λ0 + Λ−1

2

)
= Λp + Λ−p + Λp

0 + 2Λp/2Λp/2
0 + 2Λ−p/2Λp/2

0

if p is even.

Proof. Let us make some remarks on the values of q-numbers at q a root of 1. If p is odd,
then [p] = 0 and [s] �= 0, if s = 1, 2, . . . , p − 1. If p is even, then [p/2] = [p] = 0 and [s] �= 0,
if s = 1, 2, . . . , p/2 − 1, p/2 + 1, . . . , p − 1. Let p be an odd number. Then numerators and
denominators in the both q-binomial coefficients included in Rp,k,l are non-zero. Thus all the
Rp,k,l = 0 (due to [p] = 0), unless k = p. In the case k = p, we have l = 0 and Rp,p,0 = 1. Now
we consider the case of even p. Simple analysis shows that if the denominator of a q-binomial
coefficient included in Rp,k,l contains [p/2] then the corresponding numerator also contains this
q-number. Cancelling it, we obtain non-zero q-binomial coefficient. All the Rp,k,l = 0 (due to
[p] = 0), unless k = p or k = p/2. If k = p, we obtain l = 0 and Rp,p,0 = 1 in full analogy
with odd p case. Analyzing numerators and denominators in q-binomial coefficients in the case
of k = p/2, we find that the q-binomial coefficients are non-zero only if l = ±p/2. Since
qp/2 = −1 (not +1 because q is a primitive root of 1), we have [p]/[p/2] ≡ qp/2 + q−p/2 = −2
and (−1)∓p2/4 = (−1)p/2. Using the relation [p − r] = −[r], we obtain Rp,p/2,±p/2 = 2. Thus we
have found all the non-zero coefficients Rp,k,l. �

Corollary 2. The map φ on C1, C2 and C3, when q is a primitive root of 1 of order p > 2, is

C1 �→ qp/2
(
z−p
3 z−p

1 + z−p
3 zp

1 + zp
3zp

1

)
,

C2 �→ qp/2
(
z−p
2 z−p

3 + z−p
2 zp

3 + zp
2zp

3

)
,

C3 �→ qp/2
(
z−p
1 z−p

2 + z−p
1 zp

2 + zp
1zp

2

)




at odd p,
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C1 �→ z−p
3 z−p

1 + z−p
3 zp

1 + zp
3zp

1 + (−1)p/22
(
zp
1 + z−p

3

)
,

C2 �→ z−p
2 z−p

3 + z−p
2 zp

3 + zp
2zp

3 + (−1)p/22
(
zp
3 + z−p

2

)
,

C3 �→ z−p
1 z−p

2 + z−p
1 zp

2 + zp
1zp

2 + (−1)p/22
(
zp
2 + z−p

1

)




at even p.

Proof. Let us find φ(C1) (see (10)). We denote three summands in G1 = q−1/2z−1
3 z−1

1 +
q1/2z−1

3 z1 +q−1/2z3z1 by Λ−1, Λ0 and Λ, respectively. It is easy to verify that these three objects
give realization of algebra Lq in Aq. Then this corollary can be obtained using Corollary 1 and
commutation relations (4) for Aq. The cases of the elements C2 and C3 can be analyzed in full
analogy with the case of element C1. �

It is obvious that images of C1, C2, C3, at q a root of 1, commute with zk, and therefore with
φ(I1), φ(I2), φ(I3). It gives one more proof of the fact that C1, C2, C3 are central in U ′

q(so3).

Proposition 2. The algebraic dependence of the central elements ∂, C1, C2, C3 of U ′
q(so3) at

q a primitive root of 1 of order p > 2 has the form

p = 2k + 1 : − qp/2C1C2C3 + C2
1 + C2

2 + C2
3 + 2Tp(∂/2) − 2 = 0,

p = 4k : − C1C2C3 + C2
1 + C2

2 + C2
3 + 2Tp(∂/2) + 16Tp/2(∂/2) + 10

+ 4(Tp/2(∂/2) + 1)(C1 + C2 + C3) = 0,

p = 4k + 2 : − C1C2C3 + C2
1 + C2

2 + C2
3 + 2Tp(∂/2) − 16Tp/2(∂/2) + 10

− 4(Tp/2(∂/2) − 1)(C1 + C2 + C3) = 0.

(12)

(The relation between C and ∂ is given by (8)).

Proof. To prove this proposition we map by φ left-hand sides of these relations to Aq. It is
easy to verify (using (9) and 2Tk((t + t−1)/2) = tk + t−k) the relations

2Tp(φ(∂)/2) = z−2p
1 z−2p

2 z−2p
3 + z2p

1 z2p
2 z2p

3 , 2Tp/2(φ(∂)/2) = z−p
1 z−p

2 z−p
3 + zp

1zp
2zp

3 ,

where second relation is given only for even p. Thus the images of left-hand sides of relations (12)
can be rewritten in terms of commuting variables xk = zp

k, k = 1, 2, 3. We obtain three relations
(with respect to cases p = 2k + 1, p = 4k and p = 4k + 2) each of them not depending on p of
commuting variables x1, x2 and x3. They can be verified directly. �

In private communication, V. Fock informed me about the form of algebraic dependence of
central elements, in the case of odd p. Independently, V. Levandovskyy found this dependence
when p = 3, 4 by using Computer Algebra System PLURAL for Non-commuting Polynomial
Computation. This information was very important for me to formulate Proposition 2. Note,
that algebraic dependence of central elements of Drinfeld–Jimbo algebra Uq(sl2) at q a root of
unity is also expressed in terms of Chebyshev polynomials [9].

Conjecture 1. The elements C (or, equivalently, ∂), C1, C2, C3 of U ′
q(so3) at q a root of 1 ge-

nerate the center of this algebra. All the algebraic relations among them follow from the relations
described in Proposition 2.

4 Cyclic type representations of U ′
q(so3) at q a root of 1

Let qp = 1. Then all the irreducible representations of U ′
q(so3) are finite-dimensional [8]. We

describe one class of such representations, namely, cyclic type representations T ≡ Tl,h,M , where
h, l and M are complex numbers, h, h + l, h − l �∈ 1

2Z. These representations are given on
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p-dimensional vector space Vl,h,M with basis |h〉, |h + 1〉, . . . , |h + p − 1〉. It useful to identify
|h + p〉 ≡ |h〉, |h − 1〉 ≡ |h + p − 1〉. The action formulas are

T (I1)|m〉 = i[m]|m〉,

T (I2)|m〉 =
[m]
[2m]

(
M [l − m]|m + 1〉 − M−1[l + m]|m − 1〉

)
,

T (I1)|m〉 = iq1/2 [m]
[2m]

(
Mqm[l − m]|m + 1〉 + M−1q−m[l + m]|m − 1〉

)
,

where m = h, h + 1, . . . , h + p − 1, and definition of q-numbers (11) is used.

Proposition 3 ([8]). Any of irreducible representations Tl′,h′,M ′ has unique equivalent repre-
sentation among Tl,h,M with |Re h| < 1/4, 0 < Re l < p/4, 0 ≤ arg M < 2π/p.

Proposition 4. The action of T (C), T (C1), T (C2) and T (C3) is given by the formulas:

T (C)|m〉 = −[l][l + 1]|m〉,

if p = 2k + 1:

T (C1)|m〉 = ip
(
qph − q−ph

)
|m〉,

T (C2)|m〉 =
(
MpA+ − M−pA−

)
|m〉,

T (C3)|m〉 = ipqp/2
(
MpqphA+ + M−pq−phA−

)
|m〉,

A± =
qp(l∓h) − q−p(l∓h)

qph + q−ph
;

if p = 4k:

T (C1)|m〉 =
(
qph + q−ph

)
|m〉,

T (C2)|m〉 =
(
MpÃ+ + Ã0 + M−pÃ−

)
|m〉,

T (C3)|m〉 =
(
MpqphÃ+ + Ã0 + M−pq−phÃ−

)
|m〉,

Ã± =

(
q

p
2
(l∓h) − q−

p
2
(l∓h)

)2

(
q

p
2
h − q−

p
2
h
)2 , Ã0 = −2

(
q

p
2
l − q−

p
2
l
)2

(
q

p
2
h − q−

p
2
h
)2 ;

if p = 4k + 2:

T (C1)|m〉 = −
(
qph + q−ph

)
|m〉,

T (C2)|m〉 =
(
MpĂ+ + Ă0 + M−pĂ−

)
|m〉,

T (C3)|m〉 =
(
−MpqphĂ+ + Ă0 − M−pq−phĂ−

)
|m〉,

Ă± =

(
q

p
2
(l∓h) − q−

p
2
(l∓h)

)2

(
q

p
2
h + q−

p
2
h
)2 , Ă0 = −2

(
q

p
2
l + q−

p
2
l
)2

(
q

p
2
h + q−

p
2
h
)2 .

Proof. From Schur lemma, it follows that T (C), T (C1), T (C2) and T (C3) are proportional to
unit matrix. That is the vectors |m〉 are eigenvectors with eigenvalues not depending on m.
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The action of T (C) and T (C1) can be found directly using the definition of q-numbers (11).
From the action formulas for T (I2) and T (I3), we can see that matrix elements of diagonal
action of T (C2) and T (C3) may include only summands which are proportional to M±p or
summands which have no dependence on M . To find the coefficients Ã±, Ă± at M±p in action
formulas for T (C2) (resp. T (C3)), we observe that only highest order summand in the expression
of C2 (resp. C3) in terms of Chebyshev polynomial of I2 (resp. I3) gives contribution to these
coefficients. It is easy to calculate them. Now we use the relations of Proposition 2 to find the
coefficients Ã0 and Ă0 in the case of even p. The coefficients at M±2p after substitution of Ã±
and Ă± are zero. The condition on the coefficients at M±p to be zero gives Ã0 and Ă0. Of
course, the found matrix elements also identically satisfy relations of Proposition 2 constructed
from terms not depending on M . �

It follows from Proposition 3 that representations Tl,h,M and Tl+1,h,M with l, h, M as in that
proposition are not equivalent. But, it is easy to see, Tl,h,M (Ck) = Tl+1,h,M (Ck), k = 1, 2, 3.
Thus central elements C1, C2 and C3 do not separate non-equivalent cyclic type representations.
In fact, they separate almost all of them, namely, there exists at least one of central elements Ck

such that Tl,h,M (Ck) �= Tl′,h′,M ′(Ck) if (l − l′) �∈ Z. To separate all of them we also need to
include C.
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