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In this paper a new integrable nonlinear Hamiltonian system in (1 + 1)-dimension is intro-
duced. Nontrivial connection with well-known multicomponent nonlinear Schrödinger model
is found.

Let us consider a non-linear Hamiltonian system

ψt = {ψ, H} (1)

in the Schwarz space of smooth fast decreasing on the ±∞ complex value l-component vector-
functions ψ = (ψ1, . . . , ψl) (x), l ∈ N of the variable x ∈ R with the Hamiltonian

H =
∫ +∞

−∞
|ψx|2dx, (2)

and local brackets of Poisson for dynamic variables ψm, ψn, m, n = 1, l:{
ψn(x), ψ̄m(y)

}
:= iδm

n

(
c + |ψ|2(x)

)2
δ(x − y), (3)

where δm
n is the Kronecker symbol, δ(z) is the Dirac function, c ∈ R.

System (1)is non-linear evolutionary system of differential equations with variable separant
(coefficient at higher derivative) and has the next form:

iψt = − (
c + |ψ|2)2 δH

δψ∗ =
(
c + |ψ|2)2

ψxx, (4)

where δ
δψ∗ is the Euler operator of variative derivative over the vector-function ψ∗ := ψ̄�.

Proposition 1. Hamiltonian system (1)–(4) is formally integrable (by Lax) and assumes in-
finitive hierarchy non-trivial local laws of motion.

Proof. For simplicity we restrict ourselves with Lax commutative representation discovered by
us [L, M ] := LM −ML = 0 in algebra of integro-differential operators [1, 2] which is equivalent
to system (4), where

L =
(
c + |ψ|2)D + ψxψ∗ − ψxD−1ψ∗

x, (5)

M = i∂t −
(
c + |ψ|2)2 D2 − 2

(
c + |ψ|2) |ψ|2xD = i∂t −

(
L2

)
>0

, (6)

and, as consequence of operators commutativity in (5)–(6), known [1] procedure for finding
density ρk of first integrals Hk :=

∫ +∞
−∞ ρkdx:

ρk = Res
(
Lk

)
, k ∈ Z. (7)

�
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Remark 1. Obviously, k = 1 corresponds to Hamiltonian H(2), and one of the simplest first
integrals (k = −1) in the formula (7) has the form:

H−1 =
∫ +∞

−∞
|ψ|2

c + |ψ|2 dx, c ∈ R \ {0}.

Remark 2. In the formula (5) integral item ψxD−1ψ∗
x is a symbol of skew-Hermitian operator

of Volterra V̂ with the degenerated kernel V (x, s) := ∂ψ(x)
∂x

∂ψ∗(s)
∂s(

V̂ f
)

(x) =
1
2

{∫ x

−∞

l∑
i=1

∂ψi(x)
∂x

∂ψ̄i(s)
∂s

f(s)ds −
∫ +∞

x

l∑
i=1

∂ψi(x)
∂x

∂ψ̄i(s)
∂s

f(s)ds

}
.

The symbol
(
Lk

)
>0

strands for the differential part without free term (multiplier operator
by function) of an integro-differential operator Lk.

Proposition 2. The followng non-local replacement of variables (t, x, ψ) → (τ, y, ϕ) :

τ = t, y′x =
1

c + |ψ|2 , ϕ(τ, y) =
ψy

c + |ψ|2 exp
∫ y

−∞

ψyψ
∗

c + |ψ|2 dy (8)

transforms non-linear system (4) into the multicomponent non-linear equation of Schrödinger [3]

iϕτ = ϕxx + 2|ϕ|2ϕ. (9)

Proof. The proof is conducted by direct calculation. We restrict ourselves by the Lax opera-
tor (5). Making replacement (8) we get

L =
(
c + |ψ|2)Dx + ψxψ∗ − ψxD−1

x ψ∗ → L̃ = Dy +
ψyψ

∗

c + |ψ|2 − ψy

c + |ψ|2D
−1
y ψ∗

y ,

and after gauge trasformation L̃ → ΦL̃Φ−1 with the function Φ = exp
∫ y
−∞

ψyψ∗
c+|ψ|2 dy the opera-

tor L to pass into the Lax operator LNS [2, 4, 5] for the model (9):

LNS = ΦL̃Φ−1 = Dy − ϕD−1ϕ∗,

where the dynamic variable ϕ = ϕ(τ, y) is defined by substitution (8). �
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