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The nonlinear diffusion equation arises in many important areas of science and technology
such as modelling of dopant diffusion in semiconductors. We give analytical solution to
N -dimensional radially symmetric nonlinear diffusion equation. The transformation group
theoretic approach is applied to analysis of this equation. The one-parameter group trans-
formation reduces the number of independent variables by one, and the governing partial
differential equation with the boundary conditions reduce to an ordinary differential equa-
tion with the appropriate boundary conditions. Effect of the time t on the concentration
diffusion function C(r, t) has been studied and the results are plotted.

1 Introduction

The problem of m-dimensional radially symmetric nonlinear diffusion equation, was treated
by King [9] in 1988. He introduced an approximate similarity solution to the porous-medium
equation in one and two dimensions. He studied the case (m = 1) and assumed D(C) = D0C

n.
The problems considered arise in the modelling of dopant diffusion in semiconductors. He studied
the cases n = 1 for arsenic and boron in silicon; n = 2 for phosphorus in silicon; n = 2 or 3 for
zinc in gallium arsenide.

Also, Hill [10] in 1989 studied the case (m = 1) and assumed D(C) = Cn but he introduced a
new exact solution for the power law diffusivity of index n = −4/3 using one-parameter continu-
ous group of transformations. D. Hill and J. Hill [11] in 1990 extended the results given in [10] for
particular power law diffusivities Cn (such as n = −1/2,−1,−3/2 and −2) using one-parameter
continuous group of transformations. King [12] in 1990 gave a new closed-form similarity solu-
tions to N -dimensional radially symmetric nonlinear diffusion equation. He studied two cases.
First D(C) = Cn (power-law diffusivities) for both n > 0 (slow diffusion), and n < 0 (fast dif-
fusion), second D(C) = eC (exponential diffusivities). The mathematical technique used in the
present analysis is the one-parameter group transformation. The group methods, as a class of
methods, which lead to reduction of the number of independent variables, were first introduced
by Birkhoff [13] in 1948, where he made use of one-parameter transformation groups. In 1952,
Morgan [7] presented a theory, which has led to improvements over earlier similarity methods.
The method has been applied intensively by Abd-el-Malek et al. [1, 2], Ames [3, 4, 5], Moran
and Gaggioli [6] and A.J.A. Morgan [7]. In this work, we present a general procedure for apply-
ing a one-parameter group transformation to the multi-dimensional diffusion equation. Under
the transformation, the partial differential equation with boundary conditions, is reduced to
an ordinary differential equation with the appropriate corresponding conditions. The equation
is then solved numerically using non-linear finite difference method applied to the non-linear
second order boundary value problem [14], see appendix.
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2 Formulation of the problem and the governing equation

Consider a multi-dimensional diffusion equation of the form:

∂
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[
D(C)

∂C

∂r

]
+

m − 1
r

D(C)
∂C

∂r
=

∂C

∂t
, (1)

with the boundary conditions

(i) C(0, t) = F (t),
(ii) C(∞, t) = 0,

and initial condition

C(r, 0) = 0,

where C(r, t) is the concentration and D(C) is diffusion coefficient.
The functions D(C) and F (t) are unknown functions and their proper forms will be deter-

mined later on; and m is an arbitrary constant.
Assume

C(r, t) = F (t)q(r, t), (2)

and

D(C) = Z(r, t), (3)

where q(r, t) is unknown function and its proper form will be determined later on.
Substitution from (2) and (3) into (1) yields
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Equation (4) can be rewritten in the form:
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with the boundary conditions

(i) q(0, t) = 1, (6)
(ii) q(∞, t) = 0, (7)

and initial condition

q(r, 0) = 0. (8)

3 Solution of the problem

Our method of solution depends on the application of a one-parameter group transformation to
the partial differential equation (5). Under this transformation the two independent variables
will be reduced by one and the differential equation (5) transforms into an ordinary differential
equation.
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3.1 The group systematic formulation

The procedure is initiated with the group G, a class of transformation of one-parameter a of the
form:

r̄ = hr(a)r + kr, t̄ = ht(a)t + kt, F̄ = hF (a)F + kF ,

q̄ = hq(a)q + kq, Z̄ = hZ(a)Z + kZ , (9)

where h’s and k’s are real-valued and at least differentiable in the real argument “a”.

3.2 The invariance analysis

To transform the differential equation, transformations of the derivatives of F , q and Z are
obtained from G via chain-rule operations:

Si =
[
hS

hi

]
Si, Sij =

[
hS

hihj

]
Sij , i, j = r, t, (10)

where S stands for F , q and Z.
Equation (5) is said to be invariantly transformed, for some function A(a) whenever:
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]
+ F̄ Z̄

m − 1
r̄

q̄r − F̄ q̄t − q̄F̄t

= A(a)
(

F [Zrqr + Zqrr] + FZ
m − 1

r
qr − Fqt − qFt

)
. (11)

Substitution from (9) and (10) into (11) yields
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The invariance of (12) implies

kF = kZ = kq = kr = 0, and
hF hZhq

(hr)2
=

hF hq

ht
= A(a).

which yields

ht =
(hr)2

hZ
.

The invariance of the auxiliary conditions (6)–(8) implies that hq = 1, kt = 0.
Finally, we get the one-parameter group G, which transforms invariantly the differential

equation (5) and the auxiliary conditions (6)–(8).
The group G is of the form:

r̄ = hrr, t̄ =
(hr)2

hZ
t, F̄ = hF F, q̄ = q, Z̄ = hZZ. (13)
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3.3 The complete set of absolute invariants

Our aim is to make use of group methods to represent the problem in the form of an ordinary
differential equation. Then we have to proceed in our analysis to obtain a complete set of
absolute invariants.

If η ≡ η(r, t) is the absolute invariant of the independent variables, then

gj(r, t; F, q, Z) = Ψj [η(r, t)] , j = 1, 2, 3

are the three absolute invariants corresponding to F , q and Z represented by gj . The appli-
cation of a basic theorem in group theory, see Moran and Gaggioli [6], states that: a function
g(r, t; F, q, Z) is an absolute invariant of a one-parameter group if it satisfies the following first-
order linear differential equation:

5∑
i=1

(αiSi + βi)
∂g

∂Si
= 0, Si ≡ r, t, F, q, Z, (14)

where

αi =
∂hSi

∂a

(
a0

)
and βi =

∂kSi

∂a

(
a0

)
, i = 1, 2, 3, 4, 5 (15)

and a0 denotes the value of a which yields the identity element of the group G.
The group method applied to the given partial differential equation with the specific boundary

conditions yields a unique solution as the condition (14) is used.
At first, we seek the absolute invariant of the independent variables. Owing to equation (14),

η(r, t) is an absolute invariant if it satisfies the following first-order linear differential equation,

(α1r + β1)
∂η

∂r
+ (α2t + β2)

∂η

∂t
= 0. (16)

Since kr = kt = 0, and according to the definition of the β’s then β1 = β2 = 0.
Now, equation (16) may be rewritten in the form,

α1r
∂η

∂r
+ α2t

∂η

∂t
= 0.

Applying separation of variables method, one can obtain a solution in the form,

η = rt−B, where B =
α1

α2
. (17)

The second step is to obtain the absolute invariants of the dependent variables F , q and Z.
By a similar analysis, using equations (13), (14) and (15), we get

F (t) = R(t)φ(η), (18)

Since F (t) and R(t) are independent of r, while η is a function of r and t, then φ(η) must be
constant, say φ(η) = 1, and from which

F (t) = R(t), (19)

and the second absolute invariant is

q(r, t) = θ(η). (20)

Also, the last absolute invariant is

Z(r, t) = Γ(t)W (η). (21)
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4 The reduction to an ordinary differential equation

By means of substitution from (17)–(21) into equation (5), we get

RΓt−2BW ′θ′ + RΓt−2BWθ
′′

+ R(m − 1)ΓWθ′
t−B

r
+

RBθ′

t
η − θR′ = 0.

Dividing by RΓt−2B

W ′θ′ + Wθ
′′

+
m − 1

η
Wθ′ +

ηt2B−1

Γ
θ′ − R′t2B

RΓ
θ = 0. (22)

For (22) to be reduced to an ordinary differential equation in one variable η, it is necessary
that the coefficients should be constants or functions of η only. Thus

C1 =
Bt2B−1

Γ
, C2 =

R′t2B

RΓ
. (23)

Using (23) we get,

Γ(t) =
Bt2B−1

C1
, R(t) = t

BC2
C1 .

Hence, equation (22) will be,

Wθ
′′

+ W ′θ′ +
m − 1

η
Wθ′ + C1ηθ′ − C2θ = 0. (24)

Under the similarity variable η, the boundary conditions are

θ(0) = 1, θ(∞) = 0.

5 Numerical solution

Consider W = η.
Case 1. C1=1 and C2 = 1. Equation (24) will be

ηθ
′′

+ mθ′ + ηθ′ − θ = 0.

To know the final value of η, using order of Magnitude Analysis [8]

dθ

dη
∼= ∆θ

ηmax

∼= 1
ηmax

,
d2θ

dη2
=

d

dη

[
dθ

dη

]
∼= 1

η2
max

.

Subcase 1a. Take B = 1
2 , then

η =
r√
t
, Γ(t) =

1
2
, D(C) =

r

2
√

t
=

η

2
, F (t) =

√
t, C(r, t) =

√
tθ(η).

The result for different values of time t is plotted in Fig. 1.
Subcase 1b. Take B = 1, then

η =
r

t
, Γ(t) = t, D(C) = r, F (t) = t, C(r, t) = tθ(η).

The result for different values of time t is plotted in Fig. 2.
Case 2. C1 = 1 and C2 = 2. Equation (24) will be

ηθ
′′

+ mθ′ + ηθ′ − 2θ = 0.
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Figure 1. Effect of time t on the concentration
function C(r, t) for C1 = 1, C2 = 1 and B = 1/2
at m = 1.

Figure 2. Effect of time t on the concentration
function C(r, t) for C1 = 1, C2 = 1 and B = 1
at m = 1.

Figure 3. Effect of time t on the concentration
function C(r, t) for C1 = 1, C2 = 2 and B = 1/2
at m = 1.

Figure 4. Effect of time t on the concentration
function C(r, t) for C1 = 1, C2 = 2 and B = 1
at m = 1.

Subcase 2a. Take B = 1
2 , then

η =
r√
t
, Γ(t) =

1
2
, D(C) =

r

2
√

t
=

η

2
, F (t) = t, C(r, t) = tθ(η).

The result for different values of time t is plotted in Fig. 3.
Subcase 2b. Take B = 1, then

η =
r

t
, Γ(t) = t, D(C) = r, F (t) = t2, C(r, t) = t2θ(η).

The result for different values of time t is plotted in Fig. 4.
Case 3. C1 = 3 and C2 = 2. Equation (24) will be

ηθ
′′

+ mθ′ + 3ηθ′ − 2θ = 0.

Subcase 3a. Take B = 1
2 , then

η =
r√
t
, Γ(t) =

1
6
, D(C) =

r

6
√

t
=

η

6
, F (t) = t

1
3 , C(r, t) = t

1
3 θ(η).
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Figure 5. Effect of time t on the concentration
function C(r, t) for C1 = 3, C2 = 2 and B = 1/2
at m = 1.

Figure 6. Effect of time t on the concentration
function C(r, t) for C1 = 3, C2 = 2 and B = 1
at m = 1.

The result for different values of time t is plotted in Fig. 5.
Subcase 3b. Take B = 1, then

η =
r

t
, Γ(t) =

t

3
, D(C) =

r

3
, F (t) = t

2
3 , C(r, t) = t

2
3 θ(η).

The result for different values of time t is plotted in Fig. 6.

6 Results and discussion

The methods for obtaining similarity transformation were classified into (a) direct methods and
(b) group-theoretic methods. The direct methods such as separation of variables do not invoke
group invariance. It is fairy straightforward and simple to apply. Group-theoretic methods
on the other hand are mathematically more elegant and the important concept of invariance
under a group of transformations is always invoked. In some group-theoretic procedures such
as the Birkhoff–Morgan method and the Hellums–Churchill, method the specific form of the
group is assumed a priori. On the other hand, procedure such as the finite group method of
Moran–Gaggioli is deductive. In this procedure, a general group of transformations is defined
and similarity solutions are systematically deduced.

The N -dimensional radially symmetric nonlinear diffusion equation, which is given by equa-
tion (1) is solved without made any assumption for the function D(C) and the constant m. It is
found that no numerical results could be obtained for equation (24) if we take W = η2, W = eη,
W = e−η, W = 1

η and W = 1
η2+1

. The only value of W , to obtain results that W = η. Studying
different cases for values of C1 and C2 show that, for constant value of m (m = 1), C(r, t) is
exponential increasing as t increases.

7 Appendix

Assume θ
′′

= f(η, θ, θ′), θ(0) = α and θ(∞) = β. Let Wi be the numerical solution for θ(ηi).
Substituting for the derivatives θ′, θ

′′
with their approximations in finite difference; we get

Wi−1 − 2Wi + Wi+1

h2
= f

(
ηi, Wi,

Wi+1 − Wi−1

2h

)
, (25)

where h is the step size in η.
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Equation (25) can be written in the form

Wi−1 − 2Wi + Wi+1 = h2f

(
ηi, Wi,

Wi+1 − Wi−1

2h

)
,

which can be rewritten as,

F (Wi−1, Wi, Wi+1) = 0. (26)

Writing this equation for i = 1, 2, 3, . . . , n. Taking into consideration that the space domain
η ∈ [0,∞) is subdivided into the computational mesh η0 < η1 < η2 < · · · < ηn < ηn+1, where
ηn+1 will be at a far away distance from the initial point η0 to represent our artificial boundary
at ∞. The result is a system of nonlinear equation in the unknowns W1, W2, . . . , Wn. The
system is solved iteratively using the Newton method for such problem, which leads to,

J (K)
[
W

(K+1) − W
(K)

]
= −F

(K)
.

where J (K) denotes the Jacobian of the system evaluate at the iterative step K. W
(K) and

W
(K+1) represent the unknown vector at step K and K + 1, respectively. F

(K) is the vector
representing the expression in (26) above evaluated at the iterative step K. The Jacobian
matrix J is obtained which is three-diagonal matrix. The resulting system is solved using the
Lower-Upper decomposition.
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