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We survey some algebraic geometric aspects of mirror symmetry and duality in string theory.

1 Introduction

Symmetry principles always played an important role in mathematics and physics. Development
of these sciences in direction of string theory enlarged the context of symmetry considerations and
included in it the notion of duality. String theory has following ingredients: (i) base space (open
or closed string) Σ; (ii) target space M ; (iii) fields: X → Σ → M ; (iv) action S =

∫ L(X, ϕ).
where L is a Lagrangian [1]. Let G be a group such that G ⊃ SU(3)×SU(2)×U(1). Recall that
if L(GΦ) = L(Φ) then L is G-invariant, or G-symmetry. In string theory [1] one of the beautiful
symmetries is the radius symmetry R → 1/R of circle, known as T -duality [2, 3] and [4] and
references there in. Authors of papers [5, 6] conjectured that a similar duality might exist in
the context of string propagation on Calabi–Yau (CY) manifolds, where the role of the complex
deformation on one manifold gets exchanged with the Kähler deformation on the dual manifold.
A pair of manifolds satisfying this symmetry is called mirror pair, and this duality is called
mirror symmetry.

From the point of view of physicists which did the remarkable discovery, mirror symmetry is
a type of duality that means that we may take two types of string theory and compactify them in
two different ways and achieve “isomorphic” physics [7]. Or in the case of a pair of Calabi–Yau
threefolds (X, Y ) P. Aspinwall are said [8] that X and Y to be a mirror pair if and only if the
type IIA string compactified on X is “isomorphic” to the E8 ×E8 heterotic string compactified
on Y. In the case that X is Calabi–Yau threefold Y will be the product of a K3 surface and
elliptic curve. C. Vafa defines the notion of mirror of a Calabi–Yau manifold with a stable bun-
dle. Lagrangian and special Lagrangian submanifolds appear in this situation. Mathematicians
also work hard upon the problems of mirror symmetry, although it is difficult in some cases
to attribute to a researcher the identifier “mathematician” or “physicist”. V. Batyrev gives
construction of mirror pairs using Gorenstein toric Fano varieties and Calabi–Yau hypersurfaces
in these varieties [9]. M. Kontsevich in his talk at the ICM’94 gave a conjecturel interprata-
tion of mirror symmetry as a “shadow” of an equivalence between two triangulated categories
associated with A∞-categories [10]. His conjecture was proved in the case of elliptic curves by
A. Polishchuk and E. Zaslow [11]. The aim of the paper is to provide a short and gentle survey
of some algebraic aspects of mirror symmetry, duality and special lagrangian fibrations with
examples – without proofs, but with (a very restricted) guides to the literature.

2 Preliminaries

We shall use in contrast to [1] some another definition of Calabi–Yau (CY) manifold. The
definition based on the theorem of Yau who proved Calabi’s conjecture that a complex Kähler
manifold of vanishing first Chern class admits a Ricci-flat metric.
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Definition 1. A complex Kähler manifold is called Calabi–Yau (CY) manifold if it has vanishing
first Chern class.

Examples of the CY-manifolds include, in particular, elliptic curves E, K3-surfaces and their
products E × K3.

2.1 Vector bundles

Local chart or a system of coordinates on a topological space M is a pair (U, ϕ) where U is an
open set in M and ϕ : U → R

m is a homeomorphism from U to an open set ϕ(U) in R
m. An

atlas Φ of dimension m is a collection of local charts whose domains cover M and such that if
(U, ϕ), (U1, ϕ1) ∈ Φ and U ∩ U1 �= 0 then the map

ϕ1 ◦ ϕ−1 : ϕ(U ∩ U1) → ϕ1(U ∩ U1)

is a Cr-diffeomorphism between open sets in R
m.

Fibre space is the object (E, p, B), where p is the continuous surjective (= on) mapping of
a topological space E onto a space B and p−1(b) is called the fibre above b ∈ B. Both the
notation p : E → B and (E, p, B) are used to denote a fibration, a fibre space, a fibre bundle or
a bundle.

Vector bundle is fibre space each fibre p−1(b) of which is endowed with the structure of a (finite
dimension) vector space V over skew-field K such that the following local triviality condition is
satisfied: each point b ∈ B has an open neighborhood U and a V -isomorphism of fibre bundles
φ : p−1(U) → U × V such that φ |p−1(b): p−1(b) → b × V is an isomorphism of vector spaces for
each b ∈ B. dimV is said to be the dimension of the vector bundle.

An Hermitian bundle over algebraic variety X consists of a vector bundle over X and a choice
of C∞ Hermitian metric on the vector bundle over complex manifold X(C), which is invariant
under antiholomorphic involution of X(C).

The tangent space to a differentiable manifold M at point a ∈ M can be defined as the set of
tangency classes of smooth paths in M based at a. It will be denoted by TaM. Elements of TaM
are called tangent vectors to M at a.

The tangent bundle of M , denoted by TM , is the union of the tangent spaces at all the points
of M. By well known way TM can be made into a smooth manifold. Recall well known facts
about TM :

(i) if M is Cr then TM is Cr−1;
(ii) if M is C∞ or Cω then the same holds for TM ;
(iii) if M has dimension n then TM has dimension 2n;
(iv) there is a natural map p : TM → M called the projection map, taking TaM to a for

each a in M , i.e. p takes all tangent vectors at a to the point a itself. Thus p−1(a) = TaM (fibre
of the bundle over a). The projection p is a smooth map Cr−1 if M is Cr.

A vector field on a smooth manifold M is a map F : M → TM which satisfies p ◦ F = idM ,
where p is the natural projection TM → M. By its definition a vector field is a section of the
bundle TM.

2.2 Blow-ups

Blowing up is a well known method of constructing complex manifolds M. There are points on
the manifolds that are not divisors on M. Blow up is the construction that transforms points of
complex manifolds to divisors. For instance in the case of two dimensional complex manifolds
(complex surface) N it consists of replacing a point p ∈ N by a projective line CP(1) considered
as the set of limit directions at p.
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Example 1. Let π : M2 → C
2 be the blow-up of C

2 at the point 0 ∈ C
2. Then M2 is a two dimen-

sional complex manifold that defined by two local charts. In coordinates C
2 = (z1, z2), CP(1) =

[l0, l1) manifold M2 is defined in CP(1)×C
2 by quadratic equations zilj = zjli. Thus M2 is a line

bundle over Riemann sphere CP(1). π−1(0) = CP(1) is called the divisor of the blow up (the
exceptional divisor).

Recently a large class of CY orbifolds in weighted projective spaces was suggested. C. Vafa
have predicted and S. Roan [14] have computed the Euler number of all the resolved CY hyper-
surfaces in a weighted projective space WCP(4).

2.3 Vector bundles over projective algebraic curves

Let X be a projective algebraic curve over algebraically closed field k and g the genus of X.
Let VB(X) be the category of vector bundles over X. Grothendieck showed that for a rational
curve every vector bundle is a direct sum of line bundles. Atiyah classified vector bundles over
elliptic curves. The main result is

Theorem 1. Let X be an elliptic curve, A a fixed base point on X. We may regard X as an
abelian variety with A as the zero element. Let E(r, d) denote the the set of equivalence classes
of indecomposable vector bundles over X of dimension r and degree d. Then each E(r, d) may
be identified with X in such a way that det : E(r, d) → E(1, d) corresponds to H : X → X, where
H(x) = hx = x + x + · · ·+ x (h times), and h = (r, d) is the highest common factor of r and d.

Curve X is called a configuration if its normalization is a union of projective lines and all
singular points of X are simple nodes [16]. For each configuration X can assign a non-oriented
graph ∆(X), whose vertices are irreducible components of X, edges are its singular and an edge
is incident to a vertex if the corresponding component contains the singular point. Drozd and
Greuel have proved:

Theorem 2. 1. VB(X) contains finitely many indecomposable objects up to shift and isomor-
phism if and only if X is a configuration and the graph ∆(X) is a simple chain (possibly one
point if X = P

1).
2. VB(X) is tame, i.e. there exist at most one-parameter families of indecomposable vector

bundles over X, if and only if either X is a smooth elliptic curve or it is a configuration and the
graph ∆(X) is a simple cycle (possibly, one loop if X is a rational curve with only one simple
node).

3. Otherwise VB(X) is wild, i.e. for each finitely generated k-algebra Λ there exists a full
embedding of the category of finite dimensional Λ-modules into VB(X).

Let X be an algebraic curve. How to normalize it? There are several methods, algorithms
and implementations for this purpose. A new algorithm and implementation is presented in [17].

2.4 Connection

Consider the connection in the context of algebraic geometry. Let S/k be the smooth scheme
over field k, U an element of open covering of S, OS the structure sheaf on S, Γ(U,OS) the
sections of OS on U . Let Ω1

S/k be the sheaf of germs of 1-dimension differentials, F be a coherent
sheaf. The connection on the sheaf F is the sheaf homomorphism

∇ : F → Ω1
S/k ⊗F ,

such that, if f ∈ Γ(U,OS), g ∈ Γ(U,F) then

∇(fg) = f∇(g) + df ⊗ g.
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There is the dual definition. Let F be the locally free sheaf, Θ1
S/k the dual to sheaf Ω1

S/k,

∂ ∈ Γ
(
U, Θ1

S/k

)
. The connection is the homomorphism

ρ : Θ1
S/k → EndOS

(F ,F), ρ(∂)(fg) = ∂(f)g + fρ(∂).

3 Moduli spaces in string theory

Mirror symmetry connects with geometrical deformations of complex and Kähler structures
on CY-manifolds. So we have to know moduli spaces of complex and Kähler structures on
CY-manifolds.

3.1 Moduli spaces

The theory of moduli spaces [12, 13] has, in recent years, become the meeting ground of se-
veral different branches of mathematics and physics-algebraic geometry, instantons, differential
geometry, string theory and arithmetics. Here we recall some underlieing algebraic structures
of the relation. In previous section we have reminded the situation with vector bundles on
projective algebraic curves X. On X any first Chern class c1 ∈ H2(X, Z) can be realized
as c1 of vector bundle of prescribed rank (dimension) r. How to classify vector bundles over
algebraic varieties of dimension more than 1? This is one of important problems of algebraic
geometry and the problem has closed connections with gauge theory in physics and differential
geometry. Mamford [12] and others have formulated the problem about the determination of
which cohomology classes on a projective variety can be realized as Chern classes of vector
bundles? Moduli spaces are appeared in the problem. What is moduli? Classically Riemann
claimed that 3g− 3 (complex) parameters could be for Riemann surface of genus g which would
determine its conformal structure (for elliptic curves, when g = 1, it is needs one parameter).
From algebraic point of view we have the following problem: given some kind of variety, classify
the set of all varieties having something in common with the given one (same numerical invariants
of some kind, belonging to a common algebraic family). For instance, for an elliptic curve the
invariant is the modular invariant of the elliptic curve.

Let B be a class of objects. Let S be a scheme. A family of objects parametrized by the S is
the set of objects

Xs : s ∈ S, Xs ∈ B

equipped with an additional structure compatible with the structure of the base S. Parameter
varieties is a class of moduli spaces. These varieties is a very convenient tool for computer
algebra investigation of objects that parametrized by the parameter varieties. We have used the
approach for investigation of rational points of hyperelliptic curves over prime finite fields [21].

Example 2. Let ω1, ω2 ∈ C, Im (ω1/ω2) > 0, Λ = nω1 + mω2, n, m ∈ Z be a lattice. Let H be
the upper half plane. Then H/Λ = E be the elliptic curve. Let

y2 = x3 + ax + b = (x − e1)(x − e2)(x − e3), 4a3 + 27b2 �= 0,

be the equation of E. Then the differential of first kind on E is defined by formula

ω = dx/y = dx/
(
x3 + ax + b

)1/2
.

Periods of E:

π1 = 2
∫ e2

e1

ω, π2 = 2
∫ e3

e2

ω.

The space of moduli of elliptic curves over C is A
1(C). Its completion is CP(1).
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For K3-surfaces the situation is more complicated but in some case is analogous [18].

Theorem 3. The moduli space of complex structure on market K3-surface (including orbifold
points) is given by the space of possible periods.

Some computational aspects of periods and moduli spaces are considered in author’s notes [22,
23].

4 Some categorical constructions

Let (X, ω, Ω) be a complex manifold (real dimension =2n) with

ωn/n! = (−1)n(n−1)/2(i/2)n · Ω ∧ Ω.

It is said that a n-dimensional submanifold L ⊂ X is special Lagrangian (s-lag) ⇔

Re (Ω|L) = Vol|L ⇔ ω|L = 0, Im (Ω|L) = 0.

Example 3. Let X be an elliptic curve E. Then ω = c(i/2)dz ∧ dz, Ω = cdz. S-lag L ⊂ E are
straight lines with slope determined by arg c.

Every compact symplectic manifold Y , ω with vanishing first Chern class, one can associate
a A∞-category whose objects are essentially the Lagrangian submanifolds of Y , and whose
morphisms are determined by the intersections of pairs of submanifolds. This category is called
Fukaya’s category and is denoted by F(Y ) [10]. Let (X, Y ) be a mirror pair. Let M be any
element of the mirror pair. The bounded derived category Db(M) of coherent sheaves on M is
obtained from the category of bounded complexes of coherent sheaves on M [19]. In the case of
elliptic curves A. Poleshchuk and E. Zaslov have proved [11]:

Theorem 4. The categories Db(Eq) and F0(Eq) are equivalent.

Recently A. Kapustin and D. Orlov have suggested that Kontsevich’s conjecture must be
modified: coherent sheaves must be replaced with modules over Azumaya algebras, and the
Fukaya category must be “twisted” by closed 2-form [20].
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