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In this paper the smoothness properties of Green’s operator-function an exponentially di-
chotomous bilinear matrix system and the smoothness properties the invariant torus of
nonhomogeneus matrix system of equations have been considered. It hHave been proved
that if some conditions, concerning the properties of coefficient of the system hold this
operator-function has smoothness index which depends on both the smoothness of matrix
coefficients of the system and their spectral properties.

We consider the system of equations

dφ

dt
= a (φ) ,

dX

dt
= A (φ) X − XB (φ) + F (φ) , (1)

where aT (φ) = (a1(φ), a2(φ), . . . , am(φ)), φT = (φ1, φ2, . . . , φm), φi ∈ [0, 2π), i = 1, m, are vec-
tors, A(φ) = An1×n1 , B(φ) = Bn2×n2 , F (φ) = Fn1×n2 , X = Xn1×n2 are matrix functions defined
and continuous with respect to φ ∈ Tm, where Tm = T1 × T1 × · · · × T1 is m-dimensional torus,
φi ∈ T1 = [0, 2π), i = 0, m. We shall call the system (1) a matrix bilinear non-homogeneous
system of equations defined on a direct product of m-dimensional torus Tm and the space of
matrices Mn1×n2 , under assumption that spectral sets of matrices A(φ) and B(φ) satisfy the
condition σ(A(φ))

⋂
σ(B(φ)) = ∅, and the system (1) is exponentially dichotomous. We define

the norm of matrix in the space Mn1×n2 as Frobenius or trace-norm ‖X‖2 = tr(X∗X). The
Green’s operator-function for the system of equations (1) defined by relation

[Gt(τ, φ)]F (φτ (φ)) =

{
[Ωt

0(φ)][P1(φ)][Ω0
τ (φ)]F (φτ (φ)), t ≥ τ,

−[Ωt
0(φ)][P2(φ)][Ω0

τ (φ)]F (φτ (φ)), t < τ.
(2)

where [Ω t
τ (φ)]Z = Ω

A

t
τ (φ)Z Ω

B

τ
t (φ), [Pk(φ)]Z =

∑
Pik(φ)ZQjk

(φ), (k=1,2), Ω
A

t
τ (φ), Ω

B

t
τ (φ) are

matricents of matrix differential equation associated with matrix A and B accordingly. Pi(φ),
Qj(φ) are projection operators to proper subspace in Euclidean space En1 and En2 . [P1], [P2] are
projection operators in the space of matrices Mn1×n2 , [P1(φ)] + [P2(φ)] = [I], [I] is the identity
operator in the space Mn1×n2 , [I]Z = In1ZIn2 = Z, ηik,jk

(A(φ), B(φ)) = λik(A(φ)) − µjk
(B(φ))

is an eigenvalue of operator Φ(φ)X = A(φ)X − XB(φ), k = 1 when ηik,jk
(A(φ), B(φ)) < 0 and

k = 2 when ηik,jk
(A(φ), B(φ)) > 0, λik(A(φ)) and µjk

(B(φ)) are eigenvalues of matrices A(φ)
and B(φ) accordingly. The solution of the second homogeneous matrix equation (1) has the
form [1] Xt(φ, X) = Ω

A

t
τ (φ)X Ω

B

τ
t (φ) = [Ω t

τ (φ)]X. The operator [Ω t
τ (φ)] in the space Mn1×n2

has the group property [Ω t
τ (φθ(φ))] = [Ω t+θ

τ+θ(φ)] that follows from the properties of matricents
Ω
A

t
τ (φ), Ω

B

t
τ (φ) [2].
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We call [Gt(τ, φ)] a Green’s operator-function for system of equations (1) in the case when
integral∫ ∞

−∞
‖[G0(τ, φ)]‖ dτ ≤ K < ∞

is uniformly bounded with respect to φ. We give the simplest properties of the Green’s operator-
function. It follows from its definition that [G0(τ, φ)] ∈ C(Tm) for ∀ τ and [G0(−0, φ)] −
[G0(+0, φ)] = [P1(φ)]+ [P2(φ)] = [I]. Suppose that matricents Ω

A

t
τ (φ), Ω

B

t
τ (φ) satisfy inequalities

‖Ω
A

t
τ (φ)‖ ≤ K1 exp(−γ1(t − τ)), ‖Ω

B

t
τ (φ)‖ ≤ K2 exp(−γ2(τ − t)), t > τ, (3)

for all φ ∈ Tm, and some positive Ki, γi, (i = 1, 2) independent of φ. From (3) the estimate
follows (t > τ)

|[Gt(τ, φ)]F (φτ )‖ ≤ ‖Ω
A

t
τ (φ)‖ ‖F (φτ )‖ ‖Ω

B

τ
t (φ)‖ ≤ Ke−(γ1−γ2)(t−τ) ‖F (φτ (φ)‖ . (4)

We suppose that homogeneuous system of equations (1) is exponentially dichotomous, then
a Green’s operator-function satisfies the estimate [3, 4]

‖[Gt(τ, φ)]‖ ≤ Ke−(γ1−γ2)|t−τ |, t, τ ∈ R, φ ∈ Tm, (5)

where K > 0, γ = γ1 − γ2 > 0 are positiv constants independent of φ.
From estimate (5) the existence of invariant matrix torus of the system (1) follows, which is

given by the relation

U(φ) =
∫ 0

−∞
[Ω t

τ (φ)][P1(φτ (φ))]Fτ (φ)dτ −
∫ ∞

0
[Ω t

τ (φ)][P2(φτ (φ))]Fτ (φ)dτ . (6)

The smoothness of invariant torus (6) of the system (1) depends essentially on the properties of
the Green’s function [G0(τ, φ)] and the solution φt(φ) of the first equation of the system, which
defines a trajectory flow for system (1) on the torus U(φ) [2]. We need to have the estimate of
derivative ∂φt(φ)/∂φj which is equal j-th column Jacobi matrix for vector-function φt(φ), which
is satisfying the system of equations dθ/dt = a′(φ)θ, where a′(φ) = Dφt(φ)/Dφ is the matrix of
partial derivative of the function φt(φ) or Jacobi matrix. We denote Ω

a

t
0(φ) matricient of this

system, it is characterized the stability of solutions of a nonperturbed system on a torus [2]. For
obtaining of estimate of derivatives of operator-function [Gt(τ, φ)] in φi we use the estimate of
derivatives ∂sφt(φ)/∂sφi = Ds

φi
φt(φ) which was obtained in [2].

‖Ds
φi

φt(φ)‖ ≤ Ke(sα+ε)|t|, t ∈ R, φ ∈ Tm, (7)

Taking s = 1 we obtain the estimate ‖Ω
a

t
0(φ)‖ ≤ Ke(α+ε)|t|. The estimate of derivatives of

operator-function [Gt(τ, φ)] is essentially defined by smoothness properties of invariant torus
of the nonhomogeneuous system of equations and depends on smoothness of coefficients of the
system (1) a(φ), A(φ), B(φ) and spectral properties of matrices A(φ), B(φ).

Theorem 1. Assume that for some integer positive number l ≥ 0 the following conditions holds:
A(φ) ∈ C l

Lip(Tm), B(φ) ∈ C l
Lip(Tm), a(φ) ∈ C l

Lip(Tm) and γ̃ = γ1 − γ2 − ε ≥ lα, where α > 0,
ε > 0 is an arbitrary small positive number. Then

‖Ds
φ[G0(τ, φ)]‖ ≤ Ke−(γ1−γ2−ε−sα)|τ |, (8)

where 0 ≤ s ≤ l, K = K(ε) is a positive constant independent of φ ∈ Tm.
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Proof. Because eε|τ | > 1 for τ �= 0, then e−γ|τ | < e−γ|τ |+ε|τ | = e−γ̃|τ |, |τ | < (1/ε)eε|τ |. If
l = 0 the estimate (8) followed from (5) and the operator [G0(τ, φ)] belongs to the space C(Tm),
we therefore suppose that l > 0. Consider the difference [Zt(τ, φ̄, φ)] = [Gt(τ, φ̄)] − [Gt(τ, φ)],
where φ̄ = φ + ∆φiei, eT

i = (0, . . . , 0, 1, 0, . . . , 0) is unit vector and ∆φi is a scalar constant.
[Zt(τ, φ̄, φ)]F satisfies the matrix equation (t �= τ)

d([Zt(τ, φ̄, φ)]F )/dt = ΦA,B

{
[Zt(τ, φ̄, φ)]F

}
+ ΨA,B(t, τ, φ, φ̄), (9)

where

ΦA,B {Xt} = At(φ̄)Xt − XtBt(φ̄),
ΨA,B(t, τ, φ, φ̄) = Φ∆A,∆B {[Gt(τ, φ)]F} = ∆A(φt) ([Gt(τ, φ)]F ) − ([Gt(τ, φ)]F ) ∆B(φt),
∆A(φt) = A(φt(φ̄)) − A(φt(φ)), ∆B(φt) = B(φt(φ̄)) − B(φt(φ)).

It has a unique bounded solution on R given by the expression

[Zt(τ, φ̄, φ)]Ft(φ) =
∫ ∞

−∞
[Gt(s, φ̄)]ΨA,B(s, τ, φ, φ̄)ds. (10)

Inequality (5) ensures that the operator-function [Zt(τ, φ̄, φ)] is bounded on (−∞,∞). If we de-
vide the expression (10) on ∆φi and equal it to zero, we obtain lim

∆φi→0
(∆A(φt))/∆φi = DφiA(φt),

lim
∆φi=→0

(∆Bφt)/∆φi = DφiB(φt), lim
∆φi→0

([Zt(τ, φ̄, φ)]F )/∆φi = Dφi([Gt(τ, φ)]F ). We will be use

notations A(φt(φ)) = A1,t(φ), B(φt(φ)) = A2,t(φ), ∂/∂φi = Dφi . Since lim
∆φ→0

ΨA,B(s, τ, φ, φ̄)

uniformly with respect to φ ∈ Tm and τ, s ∈ D2, it follows that

lim
∆φi→0

[Zt(τ, φ̄, φ)]F/∆φi = Dφi [Gt(τ, φ)]F =
∫ ∞

−∞
Jt(s, τ, φ, F )ds, (11)

where

Jt(s, τ, φ, F ) = [Gt(s, φ)]ΦDφA,DφB {[Gs(τ, φ)]F} ,

ΦDφi
A,Dφi

B {[Gs(τ, φ)]F} = DφiA(φs)([Gs(τ, φ)]F ) − ([Gs(τ, φ)]F )DφiB(φs),

DφiAk(φs) =
m∑

ν=1

(∂Ak(φs(φ))/∂(φs)ν)(∂(φs)ν/∂φi), (k = 1, 2).

Here D2 is any bounded domain of the τ, s plane. The value lim
∆φi→0

[Zt(τ, φ̄, φ)] equal derivative

of operator-function, when integral is uniformly convergent.
For the following estimates we will be use the formulas of Faa de Bruno [5]

Dr
φf(φt(φ)) =

r∑
q=1

Dq
φt

f(φt(φ))
∑

p

cqp(Dφφt(φ))p1
(
D2

φφt(φ)
)p2 · · · (Dr

φφt(φ)
)pr , (12)

where p1 + p2 + · · · + pr = q, p1 + 2p2 + · · · + rpr = r. For obtaining the estimate of function
Jt(s, τ, φ, F ) we need to have the estimate of only the first summand, because the estimate for
the second one is different from the first summand by a constant multiplier

‖[Gt(s, φ)]DφiA(φs)[Gs(τ, φ)]F‖ ≤ K exp(−γ|s − t| − γ|s − τ | + α̃|s|)‖F‖. (13)

Therefore summarizing the estimates (13) from both summands, we obtain

‖Jt(s, τ, φ, F )‖ ≤ K exp(−γ|t − s| + α̃|s| − γ|s − τ |)‖F‖,
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where ε > 0, α̃ = α + ε, K = K(ε) and independent of φ. Taking t = 0, we obtain

‖J0(s, τ, φ, F )‖ ≤ K exp(−(γ − α̃)|s| − γ|s − τ |)‖F‖. (14)

For obtaining the estimate of derivative ‖Dφi [G0(τ, φ)]‖ it is necessary to have the estimate of
the integral of function J0(s, τ, φ, F ), we consider the case τ > 0. We represent the integral
as sum of three integrals (−∞,∞) = (−∞, 0)

⋃
(0, τ)

⋃
(τ,∞), after simple transformation we

obtain the estimate∫ ∞

−∞
‖J0(s, τ, φ, F )‖ds ≤ K(ε)e−(γ−α̃)τ+ετ‖F‖,

where K(ε) = (2/(2γ − α̃) + τ), from which follow estimate

||Dφi [G0(τ, φ)]|| ≤ K(ε1)e−(γ̃−α)|τ |

for ∀τ ∈ R, γ̃ = γ − ε1, ε1 = 2ε, K(ε1) = K(2/(2γ − α̃) + |τ |). The estimate for the second
derivative we obtain from relation

D2
φi

[G0(τ, φ)]F =
∫ ∞

−∞
DφiJ0(s, τ, φ, F )ds. (15)

The estimate of both summands of function DφiJ0(s, τ, φ, F ) will be similar, therefore we need
only one of this estimate

Dφi ([G0(s, φ)]DφiA(φs)[Gs(τ, φ)]F ) = Dφi [G0(s, φ)]DφiA(φs)[Gs(τ, φ)]F

+ [G0(s, φ)]D2
φi

A(φs)[Gs(τ, φ)]F + [G0(s, φ)]DφiA(φs)Dφi [Gs(τ, φ)]F. (16)

For obtaining the estimate of last summand of (16) transform [Gs(τ, φ)] to the form [G0(τ −
s, φs(φ))], and use the formulas Faa de Bruno

Dk
φi

[Gs(τ, φ)] =
k∑

j=1

Dj
φi

[G0(τ − s, φs(φ))]
∑
m

cjm(Dφiφs(φ))m1 · · · (Dk
φφs(φ))mk

where m1 + m2 + · · · + mk = j, m1 + 2m2 + · · · + kmk = k. For k = 1 we obtain an estimate

‖DφiJ0(s, τ, φ, F )‖ ≤ K(ε)(e−(γ̃−2α)|s|−γ̃|s−τ | + e−(γ̃−2α)|s|−(γ̃−α)|s−τ |)‖F‖. (17)

Taking the integral from expression on right hand side, we obtain estimate

‖D2
φi

[G0(τ, φ)]F‖ ≤ K(ε)e−(γ̃−2α)|τ |‖F‖. (18)

We carry out the proof by induction. Suppose that inequality (8) holds for s = k, we will prove
that it then holds for s = k + 1. To prove this we differentiate the identity (10) k times, (t = 0)

Dk+1
φi

[G0(τ, φ)]F =
∫ ∞

−∞
Dk

φi
J0(s, τ, φ, F )ds. (19)

Consider one of summands of function Dk
φi

J0(s, τ, φ, F ), it has the form

k∑
j=0

Ck−j
k ([G0(s, φ)]DφiA(φs))(k−j)([G0(τ − s, φs)])(j)F .

For the first multiplier, under sign of the sum, an estimate has the form

‖Dk−j
φi

([G0(s, φ)DφiA(φs))‖ ≤ K̃e−(γ̃−(k−j+1)α−ε)|s|, (20)
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where K̃ = K(ε)
k−j∑
p=1

Ck−j−p
k−j . The Faa de Bruno formulas allow one to obtain an estimate for

[G0(τ − s, φs(φ))](j) of the form

‖Dj
φi

[G0(τ − s, φs(φ))]‖ ≤ jK(ε)e−(γ̃−jα)|s−τ |+(jα+ε)|s|. (21)

Using estimate (20), (21) one can obtain estimate

‖Dk
φi

([G0(s, φ)]DφiAq(φs)[Gs(τ, φ)])F‖ ≤ K̄qe
−(γ̃−(k+1)α)|s|−(γ̃−kα)|s−τ |‖F‖,

where K̄q = Kq(ε)
k∑

j=1
jCk−j

k , (q = 1, 2) independent of φ. Summarizing all estimates we have

the inequality

‖Dk+1
φi

[G0(τ, φ)]F‖ ≤ K(ε)e−(γ̃−(k+1)α)|τ |‖F‖

and the proof of the Theorem 1 is complete. �

Theorem 1 allows one to prove the theorem about smoothness of invariant torus of the dichoto-
mous matrix bilinear equation.

Theorem 2. Let the following conditions be satisfied: A(φ) ∈ C l
Lip(Tm), B(φ) ∈ C l

Lip(Tm),
a(φ) ∈ C l(Tm) and F (φ) ∈ C l(Tm), then the invariant matrix torus (6) of system (1) belongs to
the space C l(Tm) and admits the estimate

|U(φ)|l ≤ K|F (φ)|l.
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