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We consider in detail the Euclidean propagator in quantum-mechanical models which include
the existence of non-equivalent instantons. For such a purpose we resort to the semiclassical
approximation in order to take into account the fluctuations over the instantons themselves.
The physical effects of the multi-instanton configurations appear in terms of the alternate
dilute-gas approximation.

1 Introduction

The tunnelling phenomenon represents one of the most outstanding effects in quantum theory.
Starting from the pioneering work of Polyakov on the subject [1], the semiclassical treatment
of the tunnelling is presented in terms of the Euclidean version of the path-integral formalism.
The basis of this approach relies on the so-called instanton calculus. As usual the instantons
themselves correspond to localised finite-action solutions of the Euclidean equation of motion
where the time variable is essentially imaginary. In short, one finds the appropiate classical
configuration to evaluate the term associated with the quadratic fluctuations. On the other
hand the functional integration is solved by means of the gaussian scheme except for the zero-
modes which appear in connection with the translational invariances of the system. As expected
one introduces collective coordinates so that ultimately the gaussian integration is performed
along the directions orthogonal to the zero-modes. A functional determinant includes an infinite
product of eigenvalues so that a highly divergent result appears in this context. However one
can regularize the fluctuation factors by means of the conventional ratio of determinants.

Next let us describe in brief the instanton calculus for the one-dimensional particle as can
be found in [2]. Our particle moves under the action of a confining potential V (x) which yields
a pure discrete spectrum of energy eigenvalues. If the particle is located at the initial time
ti = −T/2 at the point xi while one finds it when tf = T/2 at the point xf , the well-known
functional version of the non-relativistic quantum mechanics allows us to write the transition
amplitude in terms of a sum over all paths joining the world points with coordinates (−T/2, xi)
and (T/2, xf ). If we incorporate the change t → −iτ , known in the literature as the Wick
rotation, the Euclidean formulation of the path-integral reads

〈xf | exp(−HT )|xi〉 = N(T )
∫

[dx] exp {−Se[x(τ)]} ,

where H represents as usual the Hamiltonian, the factor N(T ) serves to normalize the amplitude
while [dx] indicates the integration over all functions which fulfil the corresponding boundary
conditions. In addition the Euclidean action Se corresponds to

Se =
∫ T/2

−T/2

[
1
2

(
dx

dτ

)2

+ V (x)

]
dτ (2)
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whenever the mass of the particle is set equal to unity. Now we take care of the octic poten-
tial V (x) given by

V (x) =
ω2

2
(
x2 − 1

)2 (
x2 − 4

)2
.

When considering that ω2 � 1 the energy barriers are high enough to split the physical
system into a sum of harmonic oscillators. The particle executes small oscillations around each
minima of the potential located at x = ±1 and x̃ = ±2. The second derivative of the potential
at these points, i.e. V ′′(x = ±1) = 36ω2 and V ′′(x̃ = ±2) = 144ω2, gives the frequencies of the
harmonic oscillators at issue.

As regards the discrete symmetry x → −x which the potential V (x) enjoys, we observe
how the four minima are non-equivalent since no connection is possible between the two sets
represented by x = ±1 and x̃ = ±2. We would like to make the description of the tunnelling
phenomenon to describe how the symmetry cannot appear spontaneously broken at quantum
level. The expectation value of the coordinate x evaluated for the ground-state is zero as cor-
responds to the even character of the potential V (x).

2 The one-instanton amplitude

In this section we would like to discuss the transition amplitude between the points xi = 1 and
xf = 2. For such a purpose we need the explicit form of the topological configuration with xi = 1
at ti = −T/2 while xf = 2 when tf = T/2. To get the instanton xc1(τ) which connects the points
xi = 1 and xf = 2 with infinite euclidean time, we can resort to the well-grounded Bogomol’nyi
bound [3]. The situation is solved by integration of a first-order differential equation which
derives from the zero-energy condition for the motion of a particle under the action of −V (x).
In short

xc1(τ) = 2 cos

[
π

3
− 1

3
arccos

(
e−12ω(τ−τc) − 1
e−12ω(τ−τc) + 1

)]
, (4)

where τc indicates the point at which the instanton makes the jump. Equivalent solutions are
obtained by means of the transformations τ → −τ and xc1(τ) → −xc1(τ). The instanton
calculus allows the connection between adjoint minima of the potential. We notice therefore
the existence of a second instanton interpolating between xi = −1 and xf = 1. The classical
Euclidean action S1 associated with the topological configuration at issue is computed according
to (2) so that S1 = 22ω/15. Next the standard description of the one-instanton amplitude
between xi = 1 and xf = 2 takes over

〈xf = 2| exp(−HT )|xi = 1〉

= N(T )
{

Det
[
− d2

dτ2
+ ν2

]}−1/2
{

Det
[− (

d2/dτ2
)

+ V ′′[xc1(τ)]
]

Det [− (d2/dτ2) + ν2]

}−1/2

exp(−S1),

where as usual we have multiplied and divided by the determinant of a generic harmonic oscillator
of frequency ν. The so-called regularization term is interpreted as a new amplitude given by

〈xf = 0| exp(−HhoT )|xi = 0〉 = N(T )
{

Det
[
− d2

dτ2
+ ν2

]}−1/2

. (5)

Now the explicit evaluation of (5) is made according to the method explained in [4]. To sum
up

〈xf = 0| exp(−HhoT )|xi = 0〉 =
(ν

π

)1/2
(2 sinh νT )−1/2 .
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The existence of a zero-mode x0(τ) in the spectrum of the stability equation requires the
introduction of a collective coordinate. The zero eigenvalue reflects the translational invariance
of the system so that there is one direction in the functional space of the second variations which
results incapable of changing the action. The explicit form of the zero-mode x0(τ) corresponds
to the derivative of the topological configuration itself, i.e.

x0(τ) =
1√
S1

dxc1

dτ
.

The integral over the zero-mode becomes equivalent to the integration over the center of the
instanton τc. If the change of variables is incorporated our ratio of determinants corresponds
to [2] {

Det
[− (

d2/dτ2
)

+ V ′′[xc1(τ)]
]

Det [− (d2/dτ2) + ν2]

}−1/2

=

{
Det′

[− (
d2/dτ2

)
+ V ′′[xc1(τ)]

]
Det [− (d2/dτ2) + ν2]

}−1/2√
S1

2π
dτc,

where as usual Det′ stands for the so-called reduced determinant once the zero-mode has been
removed. Next we take advantage of the Gelfand–Yaglom method of computing ratios of de-
terminants where only the knowledge of the large-τ behaviour of the classical solution xc1(τ)
is necessary [2]. If Ô and P̂ represent a couple of second order differential operators whose
eigenfunctions vanish at the boundary, the quotient of determinants is given in terms of the
zero-energy solutions f0(τ) and g0(τ) so that

Det Ô

Det P̂
=

f0(T/2)
g0(T/2)

whenever the eigenfunctions fulfil the initial conditions

f0(−T/2) = g0(−T/2) = 0,
df0

dτ
(−T/2) =

dg0

dτ
(−T/2) = 1.

As the zero-mode g0(τ) of the harmonic oscillator of frequency ν is given by

g0(τ) =
1
ν

sinh[ν(τ + T/2)]

we need the form of the solution f0(τ) associated with the topological configuration written
in (4). Starting from x0(τ) we can write a second solution y0(τ) according to

y0(τ) = x0(τ)
∫ τ

0

ds

x2
0(s)

.

As regards the asymptotic behaviour of x0(τ) and y0(τ) we have that

x0(τ) ∼ C exp(−12ωτ) if τ → ∞,

x0(τ) ∼ D exp(6ωτ) if τ → −∞
together with

y0(τ) ∼ exp(12ωτ)/24ωC if τ → ∞,

y0(τ) ∼ − exp(−6ωτ)/12ωD if τ → −∞,

where the constants C and D can be obtained from the derivative of (4). Taking the linear
combination of x0(τ) and y0(τ) given by

f0(τ) = Ax0(τ) + By0(τ)
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the incorporation of the initial conditions allows us to write that

f0(τ) = x0(−T/2)y0(τ) − y0(−T/2)x0(τ).

Now we can extract the asymptotic behaviour of f0(τ), i.e.

f0(T/2) ∼ D

24ωC
exp(3ωT ) if T → ∞.

Next we need to consider the lowest eigenvalue of the stability equation. From a physical
point of view we can explain the situation as follows: the derivative of the topological solution
does not quite satisfy the boundary conditions for the interval (−T/2, T/2). When enforcing
such a behaviour, the eigenstate is compressed and the energy shifted slightly upwards. In doing
so the zero-mode x0(τ) is substituted for the fλ(τ), i.e.

−d2fλ(τ)
dτ2

+ V ′′[xc1(τ)]fλ(τ) = λfλ(τ)

whenever

fλ(−T/2) = fλ(T/2) = 0.

Going to the lowest order in perturbation theory we find

fλ(τ) ∼ f0(τ) + λ
dfλ

dλ

∣∣∣∣
λ=0

so that

fλ(τ) = f0(τ) + λ

∫ τ

−T/2
[x0(τ)y0(s) − y0(τ)x0(s)]f0(s)ds.

The asymptotic behaviour of the zero-modes together with the condition fλ(T/2) = 0 allow
us to write that

λ = 12ωD2 exp(−6ωT ).

The evaluation of this quotient of determinants requires a choice for the parameter ν so that
the frequency of the harmonic oscillator of reference is the average of the frequencies over the
non-equivalent minima located at x = 1 and x̃ = 2. In other words ν = 9ω. When considering
the well-grounded double-well model the two minima of the potential are equivalent so that the
aforementioned average is not necessary. However in this case the Gelfand–Yaglom method fixes
the frequency ν in order the ratio of determinants to be finite. In addition we have that (see (4))

C =
4
√

3ω√
S1

, D =
16ω

3
√

S1
.

Now we can write the one-instanton amplitude between the points xi = 1 and xf = 2, i.e.

〈xf = 2| exp(−HT )|xi = 1〉 =
(

9ω

π

)1/2

(2 sinh 9ωT )−1/2
√

S1K1 exp(−S1)ωdτc,

where K1 represents a numerical factor given by

K1 = 16

√
15
√

3
11π

.
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In doing so we get a transition amplitude just depending on the point τc at which the instanton
makes the jump. This regime seems plausible whenever√

S1K1 exp(−S1)ωT � 1

a nonsense condition when T is large enough. However in this situation we can accommo-
date configurations constructed of instantons and anti-instantons which mimic the behaviour of
a trajectory just derived from the euclidean equation of motion.

To finish this section we take care of the second instanton of the octic model. The one-
instanton amplitude between xi = −1 and xf = 1 is based on the topological configuration
xc2(τ)

xc2(τ) = 2 cos
[
π

3
+

1
3

arccos
(

e12ωτ − 1
e12ωτ + 1

)]

whose classical euclidean action corresponds to S2 = 76ω/5. This second instanton reminds the
case of the double-well potential since connects equivalent minima of the potential. The form
of the ratio of determinants at issue should be{

Det′
[− (

d2/dτ2
)

+ V ′′[xc2(τ)]
]

Det [− (d2/dτ2) + 36ω2]

}−1/2

=
√

S2K2ωdτc,

where K2 corresponds to

K2 = 12

√
15
38π

.

3 The multi-instanton amplitude

In this section we discuss the complete amplitude which incorporates the physical effect of
a string of instantons and anti-instantons along the τ axis. The octic potential represents a more
complicated case since we need to include the whole scheme of non-equivalent instantons. We
wish to evaluate the functional integral by summing over all such configurations with n instantons
and anti-instantons centered at points τ1, . . . , τn whenever

−T

2
< τ1 < · · · < τn <

T

2
.

We can carry things further and assume as usual that the action of the string of instantons
and anti-instantons is given by the sum of the n individual actions. This method is well-known in
the literature where it appears with the name of dilute-gas approximation [5]. The translational
degrees of freedom yield an integral like

∫ T/2

−T/2
ωdτn

∫ τn

−T/2
ωdτn−1 · · ·

∫ τ2

−T/2
ωdτ1 =

(ωT )n

n!
.

When considering the transition amplitude between xi = 1 and xf = 2 the total number n
of topological configurations must be odd. We can split n (odd) into the sum of two contri-
butions n1 (odd) and n2 (even) which represent the different possibilities associated with the
existence of non-equivalent instantons. Then we have n1 topological configurations just interpo-
lating between x = 1 and x̃ = 2 or x = −1 and x̃ = −2. Identical situation appears in connection
with n2 where now the initial and final points of the trip are x = ±1. Now we need to include
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a combinatorial factor F to count the different possibilities that we have of distributing the n in-
stantons. Except for the last step which corresponds to the instanton analyzed in the previous
section, we deal with a closed path of topological configurations starting and coming back to the
point x = 1. As regards the instantons (anti-instantons) belonging to the first type we observe
the formation of pairs due to the location of the four minima of the potential along the real
axis. Therefore we have (n1 − 1)/2 + n2 holes to fill bearing in mind that once the (n1 − 1)/2
pairs of instantons and anti-instantons are distributed no freedom at all remains to locate the
topological configurations associated with n2. In short

F =
(

(n1 − 1)/2 + n2

(n1 − 1)/2

)
.

At this point we can discuss the complete transition amplitude we are looking for in terms
of the so-called instanton density, i.e.

di =
√

SiKi exp(−Si), i = 1, 2.

To be precise

〈xf = 2| exp(−HT )|xi = 1〉

=
(

9ω

π

)1/2

(2 sinh 9ωT )−1/2
∑
n1,n2

[d1ωT ]n1 [d2ωT ]n2
F

n!
. (32)

The best way of dealing with the double sum of (32) should be the following

S =
∞∑

r=0

[d1ωT ]2r+1

(2r + 1)!

r∑
q=0

(
r + q
r − q

)
(d2/d1)2q,

where we can handle the sum S̃ concerning the variable q taking advantage of [6]

r∑
q=0

(−1)q

(
r + q
2q

)
= sec[arcsin(x/2)] cos[(2r + 1) arcsin(x/2)]

including the transformation x → ix to obtain that

S̃ =
cosh[(2r + 1) arg sinh(s/2)]

cosh[arg sinh(s/2)]
,

where s stands for the relative instanton density given by s = d2/d1. In terms of a new variable z
defined as

z = arg sinh(s/2)

it is the case that a typical value of r provides us with the final expression for S̃, i.e.

S̃ =
exp[(2r + 1)z]√

4 + s2
.

In other words

S =
sinh[d1ωT exp(z)]√

4 + s2
.
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In doing so the complete amplitude between the points xi = 1 and xf = 2 reads

〈xf = 2| exp(−HT )|xi = 1〉 =
(

9ω

π

)1/2

(2 sinh 9ωT )−1/2 sinh[d1ωT exp(z)]√
4 + s2

.

To sum up, we have explained the method of dealing with quantum-mechanical models which
exhibit a more complicated structure of non-equivalent classical vacua in comparison with the
well-grounded cases of the double-well or periodic sine-Gordon potentials where the equivalence
of all the minima of V (x) is taken for granted [5]. As regards the octic potential the topological
solutions of the system inherit the property of non-equivalence. The global effect of the multi-
instanton configurations is discussed in terms of the alternate dilute-gas approximation.
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