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In this paper we consider C∗-algebras connected with a simple unimodal non-bijective dy-
namical system (f, I) with zero Schwarzian. We associate with f a C∗-algebra C∗(Af ). In
the first part we describe the dynamics of (f, I). In the second part we describe the set of
irreducible representation of C∗(Af ) for a special subclass of mappings (Theorem 3) and
give realization (Theorem 4) of this algebra as C∗-algebra generated by continuous fields of
C∗-algebras on the spectrum of C∗(Af ). As a result we find out when two such C∗-algebras
are isomorphic.

1 Zero Schwarzian unimodal mappings

Many important examples of C∗-algebras arising in physical models are connected with dynam-
ical systems. In particular, the two-parameter unit quantum disk algebra [1] is generated by the
relation

qzz∗ − z∗z = q − 1 + µ(1 − zz∗)(1 − z∗z),
0 ≤ µ ≤ 1, 0 ≤ q ≤ 1, (µ, q) �= (0, 1),

which can be rewritten [2] in the form XX∗ = F (X∗X), where

F (λ) =
(q + µ)λ + 1 − q − µ

µλ + 1 − µ
.

In present paper we investigate unimodal deformation of the above relation. Consider a conti-
nuous unimodal map f : [0, 1] → [0, 1] with zero Schwarzian that consists of two hyperbolae:

f(x) =




f1(x) =
α1x + β1

γ1x + δ1
, x ∈ [0, ρ],

f2(x) =
α2x + β2

γ2x + δ2
, x ∈ (ρ, 1].

Let Orb+(f) be a set of all non-cyclic positive orbits [7]. Considering mappings up to topological
conjugacy [3] we can assume that γ2 = 0, δ2 = 1. In the present paper we restrict ourselves with
the following types of f (see Fig. 1):

Type 1: f2(1) = 1, f1(ρ) = f2(ρ) = 0, Type 2: f2(1) = 0, f1(ρ) = f2(ρ) = 1,

f(x) =




f1(x) =
αx − αρ

γx + δ
, x ∈ [0, ρ],

f2(x) =
x − ρ

1 − ρ
, x ∈ (ρ, 1];

f(x) =




f1(x) =
α(x − ρ) + δ + γρ

γx + δ
, x ∈ [0, ρ],

f2(x) =
x − 1
ρ − 1

, x ∈ (ρ, 1].
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Lemma 1. Let (f, I) be F2n dynamical system. Then n � 3 and for each i ∈ {0, 1, 2} only two
following cases are possible.

1. There exists only one attractive cycle of the period 2i, smaller cycles are repellent and no
cycles of larger periods.

2. There exists an interval of periodic points such that the middle point of the interval has
period 2i, other points of the interval have period 2i+1, smaller cycles are repellent and no cycles
of larger periods.

Cases for i = 0 correspond only to type 1. Cases for i = 1 correspond either to type 1 or to
type 2. Cases for i = 2 correspond only to type 2.

Proof. First consider type 1 mappings. Define ρ and ρ1 as f1(0) = ρ1 and f1(ρ) = 0. Let x0 be a
stable point of f1(x) that lies between 0 and ρ. It can be easily checked that: Sign (1−|f ′(x0)|) =
Sign (ρ − ρ1).

When f has an attracting stable point, |f ′
1(x0)| is less than 1. Hence ρ > ρ1. Therefore

∀ x ∈ [0, x0) f (2)(x) > x, ∀ x ∈ (x0, 1) f (2)(x) < x and mapping f has no cycles of the period
two. We will observe the same situation until |f ′

1(x0)| equals 1. When |f ′
1(x0)| = 1 the left

hyperbola is symmetric with respect to diagonal. Therefore each point of the interval [0, ρ]
except x0 has period two. As follows from a simple geometrical considerations in this case
mapping f has no cycles of period four. If |f ′

1(x0)| is more than 1 or equivalently the stable
point becomes repellent, then two following cases are possible: 1) any cycle of period 2n exists,
2) there exists either attracting cycle of period two or an interval of periodic points such that
the middle point of the interval has period two and other points have period four. Therefore in
the first case the dynamical system is not F2n . In the second case the dynamical system has
obviously no cycles of larger periods.

Let us prove the latter statement.
1. The proof is by induction on n. The base of induction is existence of repellent cycles of

periods one and two. Let γ �= 0. Hence we can put γ = 1. When γ = 0, the proof is trivial
because if cycle of period 2n exists, then one is obviously repellent. Let xn be first from the
left stable point of f (2n). It is really uninteresting work to show that if a cycle of period two
is repellent, then for all x ∈ [0, x2] |f (4)

′
(x)| > 1. Hence we can add this fact to the base of

induction. Let x′ be a point such that f1(x′) = ρ. It is also very boring to show that for any f1

such that x0 is repellent point the derivative (f1(f1(x)))
′
, x ∈ [x′, x0] is more than one.

Now we prove that if the cycles of periods 2n−1 and 2n are repellent for some n � 1 and
∀ x ∈ [0, xn] |f (2n)

′
(x)| > 1, then there exists a cycle of period 2n+1 which is repellent and

∀ x ∈ [0, xn+1] |f (2n+1)
′
(x)| > 1.
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1) First we prove that if a stable point x0 is repellent, then there exists a cycle of period
two. If point x0 is repellent, then ρ < ρ1. Therefore f (2)(0) > 0 and exists x1 ∈ [0, x0] such that
f(x1) = ρ and f (2)(x1) = 0. Hence there exists x2 ∈ [0, x1] such that f (2)(x2) = x2.

Now consider f (2n). It is evident that (f (2n), J), where J = [0, xn−1] and xn−1 is the first
from the left stable point of f (2n−1), is equivalent to type 1 mapping. Therefore f (2n) has cycle
of period two or equivalently f has cycle of period 2n+1.

2) Now let repellent cycles of the periods 2n−1 and 2n exist. Consider a dynamical system
(f (2n), J), where J = [0, xn−1]. It is clearly type one system for some ρ̃, f̃1 and f̃2. By induction

hypothesis ∀ x ∈ [0, xn] |f̃1

′
(x)| > 1. Also ∀ x ∈ [ρ̃, xn−1] f̃2

′
(x) > 1. Therefore, for all

x ∈ [0, xn+1] |f (2(n+1))
′
(x)| = |(f̃2(f̃1(x)))

′ | > 1.
Now consider type 2 mapping. Let g(x) = f(f(x)) (see Fig. 2). We will consider g(x) in

[0, s]× [0, s], where s is a stable point of f , bearing in mind parallel considerations for the right
corner. Like in case one we define ρ and ρ1 as g(0) = ρ1 and g(ρ) = 0. Let x0 be a stable point
of g(x) that lies between 0 and ρ. Thus we obtain a situation of the type 1. Therefore if (f, I)
is F2n , then for each i = 1, 2 mapping f has either an attracting cycle of period 2i or an interval
of periodic points such that the middle point of the interval has period 2i and other points have
period 2i+1. �
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Theorem 1. Let (f, I) be type 1 or type 2 dynamical system. Let s be its stable repellent point
and βj its repellent cycle of period 2j (if it exists). For type one mapping j = 0 and β0 �= s.
For type two mapping j = 1. Define Ps = {δ|δ ∈ Orb+(f), α(δ) = s} and Pβj = {δ|δ ∈
Orb+(f), α(δ) = βj}. Let i be defined as in Lemma 1. Then

I. For dynamical system of type 1 and i = 0 or for dynamical system of type 2 and i = 1:
1) Orb+(f) = Ps;
2) there exists Is = [t1, t2) and one-to-one mapping φ : Is → Ps such that t ∈ φ(t) for

every t ∈ Is;
3) Is can be chosen to lie in arbitrary neighborhood of s.

II. For dynamical system of type 1 and i = 1 or for dynamical system of type 2 and i = 2:
1) Orb+(f) = Ps∪̇Pβj ;
2) there exists Iβj = [t1, t2) and one-to-one mapping φ : Iβj → Pβj such that t ∈ φ(t)

for every t ∈ Iβj . There exists Is = [t1, t2) and one-to-one mapping φ : Is → Ps such
that t ∈ φ(t) for every t ∈ Is;

3) Is ∩ Iβj = ∅. Moreover Iβj can be chosen to lie in arbitrary neighborhood of βj.
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Proof. Let us first consider type 1 mapping. Define ρ and ρ1 as in lemma: f1(0) = ρ1 and
f1(ρ) = 0. By the lemma ρ � ρ1. Define intervals In = f

(−n)
2 ([0, ρ)), n � 1. Note that

Ii ∩ Ij = ∅ i �= j, ∀ n In ∩ [0, ρ) = ∅ and ∪n�1In ∪ [0, ρ) = [0, 1). It is easy to see that for
x ∈ δ ∈ Orb+(f), x ∈ In, f−1(x) = f−1

2 (x) ∈ In+1 and α(x) = s. Now prove that any of the
intervals In can be chosen as Is. Since ∀x ∈ In f (−n)(x) �∈ In we obtain that different points
of In correspond to different trajectories. It is clear to see that if x ∈ δ ∈ Orb+(f) and x ∈ Ii,
then for any j there exists point y ∈ δ such that y ∈ Ij . Now let ∃ x ∈ δ ∈ Orb+(f), x ∈ [0, ρ)
and x �∈ Per(f). The stable point x0 ∈ [0, ρ) is repellent for f−1

1 and therefore there exists
a natural number m such that f

(−m)
1 (x) ∈ [ρ1, ρ) and f (−1)(f (−m)

1 )(x) = f−1
2 f

(−m)
1 (x) ∈ I1. By

f−1(x) we mean either f−1
1 (x) or f−1

2 (x) and by f−1(x) = f−1
2 (x) we mean that there is only

one possibility. If x ∈ δ ∈ Orb+(f), x ∈ [0, ρ) and x ∈ Per(f), then for f−1(x) ∈ δ we obtain
f−1(x) = f−1

2 (x) ∈ I1.
Now consider type 2 mapping. Let g(x) = f(f(x)). Dynamical system (g, [0, s]) satisfies all

conditions for the case 1. Let δ ∈ Orb+(f), δ = {xk}, k ∈ Z and x0 ∈ [0, s). It is clear to see that
such point x0 always exists. By the case two subsequences {x2n}, n ∈ Z can be parametrized
by Is. Since f−1 is one to one on [0, s), then Is parametrizes all δ ∈ Orb+(f). Consider type 1
mapping. It has a cycle of period two which is attracting by Lemma 1. In this case s = 1 and β0

are stable repellent points. Consider mapping g(x) = f(f(x)) (see Fig. 3). Define d = f1(0). It
is clear that (g(x), [0, d]) is equivalent to type 2 mapping for i = 1. Therefore exists interval Iβ0

that parameterizes orbits δ ∈ Orb+(f) δ = {xk} such that xk < d for all k (δ ∈ Pβ0). Define
I1 = [d, f−1

2 (d)] and Ij+1 = f−1
2 (Ij), j � 1. Let’s prove that any of the intervals Ij can be

chosen as Is. Indeed if t1, t2 ∈ Ij and t1 �= t2, then f
(−n)
2 (t1) �= f

(−n)
2 (t2) for all n � 1. Therefore

different points of the interval correspond to different orbits. If xk ∈ δ ∈ Orb+(f), xk > d, then
xk ∈ Il for some l and for all j � 1 there exists n ∈ Z such that xk+n ∈ Ij . Hence Ps∪̇Pβ0

parameterizes all orbits in Orb+(f).
The proof for type 2 and i = 2 is absolutely analogous to the proof for type 2 and i = 1. �

Proposition 1. Let (f, I) be either type 1 dynamical system and i = 0 or type 2 dynamical
system and i = 1; then it has only one anti-Fock orbit δ, |α(δ)| = 1.

Proof. For type 1 mapping we can simply write it:
{

0, ρ1, f−1
2 (ρ1), f

(−2)
2 (ρ1), . . .

}
. It is clear

that lim
n→∞ f

(−n)
2 (ρ1) = 1 exists. Hence |α(δ)| = 1.

For type 2 mapping we consider a sequence
{
0, ρ1, g−1(ρ1), g(−2)(ρ1), . . .

}
, where g(x) =

f(f(x)). Like for type 1 this sequence is a unique anti-Fock orbit for g. Since f−1 is one to one
on [0, s] we obtain that a unique anti-Fock orbit for g corresponds to a unique anti-Fock orbit
for f . �

2 Enveloping C∗-algebra

By C∗(Af ) we mean a C∗-algebra obtained from free ∗-algebra F(X, X∗) generated by X with
sub-norm ‖b‖ = sup

π
‖π(b)‖ where supremum is taken over all π ∈ Rep(F(X, X∗)) such that

π(XX∗) = f(π(X∗X)) by standard factorization and completion procedure. The following
theorem (see [2]) connects representations of C∗-algebra C∗(Af ) with certain orbits of dynamical
system (f, R+).

Theorem 2. Let f be partially monotone continuous map and (f, R) be F2m dynamical system.
Let A = C

∗(Af ) be corresponding C∗-algebra.
1. To every positive non-cyclic orbit ω(xk)k∈Z there corresponds an irreducible representa-

tion πω in Hilbert space l2(Z) given by the formulae: Uek = ek−1, Cek =
√

xkek for k ∈ Z and
X = UC is a polar decomposition.
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2. To positive non-cyclic Fock-orbit ω = (xk)k∈N there corresponds an irreducible represen-
tation πω in Hilbert space l2(N) given by the formulae: Ue0 = 0, Uek = ek−1, Cek =

√
xkek for

k > 1 and X = UC.
3. To positive non-cyclic anti-Fock-orbit ω = (x−k)k∈N there corresponds an irreducible

representation πω in Hilbert space l2(N) given by the formulae: Uek = ek−1, Cek =
√

xkek for
k > 1 and X = UC.

4. To cyclic positive orbit ω = (xk)k∈N of length m there corresponds a family of m-dimen-
sional irreducible representation πω,φ in Hilbert space l2({1, . . . , m}) given by the formulae:
Ue0 = eiφem−1, Uek = ek−1, Cek =

√
xkek for k = 1, . . . , m; 0 ≤ φ ≤ 2π and X = UC.

This is a complete list of unequivalent irreducible representation of a given ∗-algebra.

As follows from [6] C∗-algebras generated by operators of irreducible representations are
either Z×δ C(δ), where δ = δ∪ω(δ)∪α(δ) for non-cyclic bilateral orbit or Mm(T (C(T))), where
T (C(T)) is algebra of the Toeplitz operators for Fock and anti-Fock orbits.

Consider T as a topological space with topology induced from R. Let H be a Hilbert space
with orthonormal basis (ek)k∈Z. Let U be unitary shift operator Uek = ek+1 for all k ∈ Z. We
know that for any t ∈ T φ(t) = (xk)k∈Z � t futher on we will assume, without loss of generality,
that x0 = t. Denote by Cφ(t) diagonal operator Cφ(t)ek = xkek for all k ∈ Z. Algebra C∗(πφ(t))
is generated by operator Xφ(t) = U(Cφ(t))1/2. Denote by Ψ : C∗(πφ(t)) → B(H)T the ∗-ho-
momorphism defined on the generator as Ψ(X)(t) = Xφ(t). Further on we will denote by πφ(t)

the (irreducible for φ(t) ∈ Orb+(f) and reducible when t ∈ T \ T ) representation associated
with non-cyclic orbit φ(t) by formulas of the Theorem 2 and by πβ,ψ the finite dimensional
representation associated with cycle β and parameter ψ ∈ [0, 2π]. In the following theorem we
give the description of all irreducible representations of C∗(Af ) in cases 1 and 3 of Lemma 1 as
well as fix some notations.

Theorem 3. Let (f, I) be either type 1 mapping and cycle of period one is attracting or type
two mapping and cycle of period two is attracting then

1. In the first case C∗(Af ) has only one-dimensional irreducible finite dimensional representa-
tions parameterized by φ, ψ ∈ [0, 2π). They are given by the following formulas: π0(X) =

√
x0e

iφ,
π1(X) = eiψ. In the second case C∗(Af ) has only one-dimensional and two-dimensional irre-
ducible finite dimensional representations parameterized by φ ∈ [0, 2π) they are of the form πs,φ

and πβ1,φ.
2. C∗(Af ) has irreducible Fock representation πf and one irreducible anti-Fock representa-

tion πaf . Both of them in case 1 and πaf in case 2 generate algebras of Toeplitz operators. In
case 2 πf generate algebra M2(T (C(T))), where T (C(T)) is the algebra of Toeplitz operators.

3. In the first case for each t ∈ T = I1 there is irreducible infinite-dimensional representa-
tions πφ(t) of C∗(Af ). For all t ∈ T operators of πt generate isomorphic C∗-algebras. Denote
this algebra by A. Algebra A is a cross-product algebra C(X) × Z where X is a closure of
any orbit φ(t). Algebra A has only one infinite-dimensional representation and two circles of
one dimensional representations denote γs, γ1 two arbitrary such representations from different
circles. In the second case for each t ∈ T = Is there is irreducible infinite-dimensional repre-
sentations πφ(t) of C∗(Af ). For all t ∈ Is operators of πφ(t) generate isomorphic C∗-algebras.
Denote this algebra by B. Algebra B has only one infinite-dimensional representation one circle
of one dimensional representations (denote ηs any of them) and one circle of two-dimensional
representations (denote ηβ1 any of them).

4. ∗-algebra C∗(Af ) has no other irreducible representations.
5. For any a ∈ C∗(Af ) the mapping Ψ(a) is continuous map from T to B(H) where the

latter is endowed with norm topology. Moreover, for all a ∈ C∗(Af ) the following equality holds
Ψ(a)(t2) = U∗Ψ(a)(t1)U , where T = [t1, t2].
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6. C∗-algebras C∗(πφ(t1)) and C∗(πφ(t2)) coincide for any t1, t2 ∈ T as a subalgebras of B(H).
We have denoted this algebra by A for dynamical systems of type 1 and by B for type 2. Since
U ∈ A and U ∈ B we denote by adU the inner automorphism a → U∗aU, a ∈ A or a ∈ B as
appropriate.

Proof. First two statements of the theorem are direct consequences of Theorems 2, 1. Let
us show that for any t1, t2 ∈ T algebras C∗(πφ(t1)) and C∗(πφ(t2)) coincide as a subalgebras of
B(H). C∗(πφ(t)) is generated by operators U and Cφ(t). Since φ(t) is not periodic there is point
x ∈ φ(t) which occurs only finite number of times in the sequence φ(t), it is easy to see that x is
isolated point in φ(t). Hence if we put g to be equal to 1 at x and zero otherwise then g will be
continuous function on spec (Cφ(t)) and g(Cφ(t)) will be a compact non-zero operator in C∗(πφ(t)).
And since this algebra is prime it contains all compact operators. Hence by compact perturbation
Cφ(t) + K, where K is compact we can obtain any diagonal operator C = diag(ck)k∈Z such that
ω({ck}) = ω(φ(t)) and α({ck}) = α(φ(t)). Obvious equality C∗(U, Cφ(t)) = C∗(U, Cφ(t) + K)
completes the proof of our claim. It is easy to see that, up to isomorphism, C∗(πφ(t)) depends
only on two integers |ω(φ(t))| and |α(φ(t))|.

We proceed now to show that for every a ∈ C∗(Af ) the map Ψ(a) is continuous. Since X is
a generator of C∗(Af ) we need only to prove that Ψ(X)(t) = U(Cφ(t))1/2 is continuous in t

||Ψ(X)(t) − Ψ(X)(t′)|| =
∥∥∥C

1/2
φ(t) − C

1/2
φ(t)

∥∥∥ = sup
k∈Z

∣∣∣x1/2
k − (x′

k)
1/2

∣∣∣ .

Hence continuity at t′ is equivalent to uniform convergence of φ(t) to φ(t′) when t → t′. Fix
arbitrary ε > 0. It can be inferred from the proof of Theorem 1 that if φ(t) = (ys(t))s∈Z

then ys(t) = gs(t) for s < 0 where gs is a composition of f−1
1 and f−1

2 and this composition
is independent of t ∈ T . Let c1 be α(φ(t)) and c2 be ω(φ(t)) which are independent of t ∈ T .
For ε > 0 there is integer S such that ys(t) ∈ Bε(c1) ∪ Bε(c2) for all |s| > S and t in some
neighborhood of t′. Thus we can find η > 0 such that sup

s:|s|>S
|ys(t′) − ys(t)| < ε for all t′ :

|t − t′| < η. Since functions gs and f (j) are continuous we can choose η small enough for
|gs(t′) − gs(t)| < ε and |f (s)(t′) − f (s)(t)| < ε to be true for all s: |s| ≤ S and |t − t′| < η, i.e.
sup

s:|s|≤S
|ys(t′) − ys(t)| < ε. Hence, φ(t′) uniformly converges to φ(t). Other statements of the

theorem are straightforward. �

Remark 1. For any a ∈ C∗(Af ) the map Ψ(f) is a continuous map from T to A for type 1
dynamical systems (or B for type 2 dynamical systems) such that ad U(Ψ(a)(t2)) = Ψ(a)(t1).

Now we are ready to describe enveloping C∗-algebras. Define operators U1 and U2 on the
basis as follows U1ek = ek+1 for k < 0 and U1ek = 0 for k ≥ 0 and U2ek = ek+1 for k > 0 and
U1ek = 0 for k ≤ 0. Consider two C∗-subalgebras G1 and G2 in B(H) generated by operators U1

and U2 correspondingly. Then operator U1 + U2 generates C∗-subalgebra G1 ⊕ G2 in B(H)
isomorphic to T (C(T)) ⊕ T (C(T)). Further on we will use notations of theorem 3 and will
regard T (C(T)) ⊕ T (C(T)) as a concrete algebra in B(H), namely G1 ⊕ G2. Let (f, I) be of
type 1 with attractive stable point. Let C denote C∗-algebra of all continuous maps ξ from
T = [t1, t2] to A such that adU(ξ(t2)) = ξ(t1).

Theorem 4. Let (f, I) be of type 1 with attractive stable point. Then T (C(T)) ⊕ T (C(T)) is
a C∗-subalgebra in A. Let us denote by M1 the C∗-subalgebra in C comprised of those ele-
ments f such that f(t1) ∈ T (C(T)) ⊕ T (C(T)) and π(f(t)) = π(f(t′)) for any one dimensional
representation π of A from the first circle and ρ(f(t)) = ρ(f(t′)) for any one dimensional rep-
resentation ρ of A from the second circle (see theorem 3) and for all t, t′ ∈ T . Then C∗(Af ) is
isomorphic to M1.



C∗-Algebras Associated with F2n Zero Schwarzian Unimodal Mappings 431

Proof. It is easy to verify that πφ(t1) is equivalent to the direct sum of Fock and anti-Fock
representations. Hence representations πφ(t) where t ∈ T comprise a residual family for C∗(Af ).
By Theorem 3 and the remark C∗(Af ) is isomorphic under Gelfand transformation (Γ(a)(π) =
π(a), where π ∈ Rep(C∗(Af ))) to a C∗-subalgebra in C. Conditions π(f(t)) = π(f(t′)) and
ρ(f(t)) = ρ(f(t′)) for all t, t′ ∈ T are easily verified on generator X. Since π and ρ are
∗-homomorphisms these conditions hold for every a ∈ C∗(Af ). Hence C∗(Af ) is a C∗-subalgebra
in M1. Since it is a massive subalgebra in GCR C∗-algebra M1 we have C∗(Af ) = M1 by theo-
rem 11.1.6 [5]. �

Let G3 denote the C∗-subalgebra in B(H) generated by operator Xf defined by Xfek = xkek+1

for k > 0 and Xfek = 0 for k ≤ 0 (i.e. Xf is πf (X) if l2(N) is identified with subspace in l2(Z)).
Then operator U1 + Xf generates G1 ⊕ G3 which is isomorphic to T (C(T)) ⊕ M2(T (C(T))).
Further on we will identify the latter with the concrete C∗-algebra G1 ⊕ G3. Let D denote
C∗-algebra of all continuous maps ξ from T = [t1, t2] to B such that adU(ξ(t1)) = ξ(t2).

Theorem 5. Let (f, I) be type two mapping and cycle of period two is attracting. Then G1 ⊕G3

is a subalgebra in B. Let us denote by M2 the C∗-subalgebra of D comprised of those elements
f such that f(t1) ∈ T (C(T)) ⊕ M2(T (C(T))) and η(f(t)) = η(f(t′)) for any one dimensional
representation η of B and ζ(f(t)) = ζ(f(t′)) for any two dimensional representation ζ of B and
for all t, t′ ∈ T . Then C∗(Af ) is isomorphic to M2.

The proof is analogous to that of the previous theorem.

Corollary 1. For F2n unimodal dynamical systems with zero Schwarzian and attractive cycle
of length one or two isomorphism class of associated C∗-algebra depends only on the type of the
system (whether it 1 or 2).
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