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Exact solutions of a matrix generalization of nonlinear Yajima—QOikawa model are built in
an explicit form. The Melnikov-like system was also integrated.

1 Introduction

The hierarchy of Kadomtsev—Petviashvili equations can be given as an infinite sequence of the
Sato-Wilson operator equations [1, 2]

Wy, = — (WD"W™)_W, neN, oa,ecC, (1)

where W = 1 +w D! +wyD ™24 - - - is a microdifferential operator (MDO) with coefficients wj,
i € N, depending on the variables t = (¢1,t2,...), t; :== x and D := %, DD~! = 1. Differential

and integral parts of the microdifferential operator WD"W ! are denoted by (WD”W_l) N and
(WD”Wfl)_ respectively. In the algebra MDO (:

n(L)
(= Z a;D":a; = a;(t) € A;i,n(L) €7y,

1=—00
the operation of multiplication is induced by the generalized Leibnitz rule

:8 f :f(m)7 m€Z+’
ox™

o
Dfi=) (ﬁ) 9D, ez, DM(f):
=0 N
where D"D™ := D"MD" := D"t™ n m € Z, and f is the operator of multiplication by a func-
tion f(t), which belongs to the same functional space A that the coefficients of microdifferential
operators L € (.
With the aid of the MDO L is defined by formula L := WDW ! =D4+UD ' +UyD 2+ .-
system (1) can be rewritten in the form of the Lax representation

anLy, =By, L] := B,L — LBy, (2)

where B, = (L") = (WD"W~1),, neN.
Nonlocal reduced hierarchy of Kadomtsev—Petviashvili is the system of operator equations (2)
with the additional restriction so-called k-constraint of the form [3, 4, 5, 6, 7] (see also [8])

l
LF = (L")* = By + . ;D' , where “T” denotes transposition which is in accordance with

70
i=1
dynamics of system (2), if field-variables g;, r; satisfy the system of the following equations:

angit, = Bn(qi), anrit, = =B} (r3),

the symbol “7” denotes the transposition of differential operator.
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Equations from k-reduced hierarchy of Kadomtsev—Petviashvili allow the Lax representation

Bi+qD'r", .8, — Bn| =0, n € N. (3)

2 Exact solutions of a matrix generalization
of Yajima—Oikawa model

In the present paper we consider the matrix case of (3): k=2, n =2 and Uy :=U,U,,Us,... €
Matnxn(C), g, € Maty«n/(C) and obtain the system:

@2qy, = 4., +2Uq, aoUs, = (qu)m Qory, = —Typ — 2rU. (4)

Introduce the additional reductions of complex conjugation o = i, to =t, U = U* := U,
r =igM ", where M € Maty:yn(C), M = M*. System (4) can be represented as:

System (5) is a matrix generalization of Yajima—Oikawa model [9]. Operators of this system
in the Lax representation ([L, A] = 0) have the form:

L =D?+2U +igMD ™ ¢*, A=id, — D*—2U.
Proposition 1 ([2, 10]). Let B = B, be a differential operator; fD™'g, fD g € ¢. Then
the following relations hold:

BfD g = (BfD'g") + BP9,

-
o7l B = (§D7g"B) + D7 (B7g)
+
g i g =1 ([aTg)pa o ([a7F)a" (6)

In formulas (6) the symbol [ gT} stands for an arbitrary fixed primitive of (gT}'> (z,t9) as
a function of .

Let ¢, 1 be smooth complex matrix (N x K) functions of real variables z,to € R, C' =
(Cn) = const € Mat g« x(C), and also:

1) the improper integral [* 1 ods == [* 7 (s,t2)¢(s,t2) ds converges absolutely V (z,t2)
€ R x R} and admits differentiation by the parameter to € Ry ;

2) the matrix-function Q(z,t2) := C + [*__ 4T pds is nondegenerate in (z,1) € 0 C Rx Ry.

Define the functions ® = ®(z,t9), ¥ = ¥(x,t2) and MDO W by the following way:

P =01, ol = 1yT, W=1-oD 'y". (7)

Lemma 1. The components ®;;, V;;, i =1,N, j =1, K, of matriz functions ®, ¥ (7) can be
given as:

)
By = (p07) = (~)F g, (8)
Q)
vy = (v ) = (CpReLel ©

Here €2y is obtained from € by deletion of j-line; p;, i are i-lines of matrizes ¢, 1.
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Proof. In order to prove (8), (9) we use a well-known algebraic equality for framed determinant:

T
det (Q ¢j ) =
pYi «

where QC is the matrix of cofactors.

Q@Z}]T
Y o

= qadet ) — gpiQijT,

Q)
Pi
€]

-1,T K+j
ij cplQ €; = (_1) +

Oy = (pQ7)

Here e; = (€4, ... ¢€iy), €;; =1, ¢;; =0 fori,j =1, K, 1 # j.
By the similar reasoning, formula (9) can be proved. [ |

Theorem 1 ([10]). MDO W has an inverse operator W1 and:
W l=1+¢D 0.
Proposition 2. For MDO W (7) the equalities are true:
WD ! = (1 . @D_le> D? (I n ¢D—1qu> — D249 (mﬂﬂ)ﬁ
— D! (w; - / ylpds qu) + (gom — 0 / e ds> DT,
W (id, — D)W = ig, - D? — 2 (m-%f)x
+ oD ! {(wI +0) / ) (30 +wi.) pds \Iﬁ}
+ {(m — ) — @/x YT (ipe = Pss) ds} Dw.

The proof of the Proposition 2 is based on the using of formulas (6) and the generalized
Leibnitz rule.
Consider operators Lo = D?, Ag =10, — D?, L =W LW ™!, A=WA,W~L

Theorem 2. Let:
a) ¢ be a solution of the equation iy, = Yyy;
b) Quz = @A, where A = diag ()\2, A2, ..., )\%() = const € Matg x x(C);

C) 1/] =@,
d) C =C*.
Then

1)U =2;

2) L=D*+2(pQ ") +®JD'®T, where J = CA — A*C;
8) A=id, —D?—2 (e tp*) .

xT

Proof. 1) From definitions (7) and condition d we have:

T -1 x -1 T -1
<I>=s0<0+/ so*sods> =@<C+/ ngzds) =w<CT+/ <,0de5> = .

2) From Proposition 2, condition b and properties:

c1>/ V' pds=p—®C  and / VTpdsUT =T —CwT,
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it follows that:
L=D?+2(p0 'p*) — D A"y + DA / Y odstT
+ AD M — q>/ ¢ pdsADT'U T =D? +2(pQ ") 4+ @ (CA—AC)DTIT

3) The validity of this item follows from Proposition 2 and conditions a), c). [

Proposition 3. The matriz J = (Jymn), m,n =1, K has the following properties:
1) J=-J%
3) if the matriz C is diagonal, then: J = diag (21'01 Im A2, 2ico Im A2, .. ., 2ick Im A%{)

Proof. 1) J* = (CA - AN*C)" =AN*C*" —C*A=NC—-CA=—].
The proof of the 2), 3) is based on the using of formulas of operations with matrices. |

Corollary 1. Let the matriz J be defined by the following condition: ®J®* = iqMq*, then the
functions q = (qi;) and U = (uy), i,k,l =1,N, j =1,K, where

'Qu)
|9|—1)

i Q ¢

- ) Uk = (‘ 7

12 or 0
The proof of corollary is based on the using of formula (8), equality for framed determinant
and Theorem 2.

gij = (1)K

are solutions of system (5).

Consider the simplest case of matrix equation (5): N = 2, K = 1. Then ¢ = ée)‘z*i)‘zt,
g = ée"\x_i)‘zt, M = p € R and under conditions Re A > 0, 4t = 4Re AIm A - C solutions have
the form:

B 46Re AIm \ M —iN*t
"~ 4+ 4[¢2Tm X sinh (2Re X - z) edReAlmAt?
_ 46Re AIm A e re—ir%
~ p+4[¢2Im X sinh(2Re A - z)edReATmAL?
4‘é|2 Re A\ Im )\ e2ReAz+4ReAIm At

q1 ‘= q11

q2 ‘= q21

T 4[éP Tm A sinh(2Re \ - a) et ReATmA’
~ 4‘6’2Re)\lm)\e4Re>\Im)\t+2iRe>\m
U2 = U21 = ~ . 3
p+ 4/¢)2Im A sinh(2Re A - z)etReAImAt
4|é|2 Re)\Im)\e—2Re)\x+4Re)\Im)\t
U22 =

-+ 4]¢2Tm ) sinh(2Re \ - z)et ReAlmAt”

3 Exact solutions of higher equation
from matrix hierarchy of Yajima—Oikawa

Let us consider the following operators:

3 3
L =D?+2U +igMD 'q*, A=0,—D*—-3UD — Uz = Qiqu*.
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The result of equation [L, A] = 0 will be the system:

3 3,
Gt = Qowz +3Ude + 5Usq + 5i04q"q, (10)
U = ZUJ:a:x +3UU,; + ZZ,UJ(Q;m:q - Qsz)- (11)

This system is a matrix generalization of Melnikov model [7, 11].

Proposition 4. For MDO W the equality is true:
W (0 -D) W =9, - D' ~3(p07yT) D

3 _ _ _ - -
= > (e — ML + 007 — 07T 00T

+ 3D { (o =vla) = [ (w7 = i) was \PT}
+ {(th - mex:r) - (I)/ ¢T(th - ‘;Dsss) ds} D_l\I’T'
—00
The proof of the proposition is based on the formulas (6).
Consider operators Lo = D?, Ag =0, — D3, L =WLW™!, A=WAW™!

Theorem 3. Let:
a) ¢ be a solution of the equation ¢y = QPrry;
b) ©rz = A, where A = diag ()\%, A3 A%() = const € Matg xx(C);

c) Y =p;
d) C=C*.
Then

1) L=D2?+2 (@Q_lgo*)x +®JD'®T, where J = CA — A*C;
2) A= 0, —D*=3(pQ71p"), D=3 (pua 19" — pQ 0%, + 00710 — Q1% 0, 0 pY).

Proof. 2) The validity of this item follows from Proposition 4 and conditions a), c). [
Remark 1. For system (10) the corollary of the previous part is true (see above).

Consider the case N = 2, K = 1. Then ¢ = ée)‘x“‘gt, Yy = ce ANt N = @ € R and
under conditions Re A > 0, y =4 Re Alm A - C solutions will be of the form:

4¢Re ATm )\ e +A%

= AP T A - sinh (2Re A - 2+ 2 (RePA — 3Re Am2\) 1)
o 4¢Re ATm A e~ Ae=A%
B AP T A - sinh (2Re A - + 2 (RePA — 3Re AIm?\) 1)
. 4’é|gRe)\lm)\eQ(ReA.x+(Re3,\—3Re,\Im2A)t)
11 =

~ p+4[¢2Im X - sinh (2ReA -2+ 2 (Re*X -z — 3Re AIm?\) t)’
4]¢[2Re A Tm )\ e2i(ImA-z+(3Re*ATm A-Tm?X)t)
" p+4]¢PTm A sinh (2Re A -z + 2 (RePA - & — 3Re ATm2A) ¢)
4)¢/% Re ATm )\ e 2(Rexa+(Re*A—3Re AIm*A)t)
U22 = N . 3 2 ’
t+4¢2Im X - sinh (2Re A - 2 4+ 2 (Re®X -  — 3Re AIm*\) t)

U2 = U21
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