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Let {Xk}n
k=1 be a set of linear operators in separable complex Hilbert space H with

scalar sum
∑n

k=1 Xk = λIH and a restriction that spectrum of each Xk belongs to a certain
finite set Mk ⊂ C. Such sets of operators play an important role in analysis, algebraic
geometry, operator theory and mathematical physics ([1]–[4] and bibliography there). We
try an algebraic approach to this situation considering a class of algebras established by
generators and relations as

Pp1,p2,...,pn = C〈x1, x2, . . . , xn|x1 + x2 + · · · + xn = 0, pi(xi) = 0〉,

where pi are certain polynomials with leading coefficient one. With every such algebra we
associate a graph G = G(Pp1,p2,...,pn) which consists of one root vertex and n branches,
i-th branch is a sequence of degpi − 1 connected vertices. Then:

1. Algebras Pp1,p2,...,pn are finite dimensional iff graph G is a Dynkin diagram (An, Dn,
E6, E7 or E8).

2. The growth of the algebra is polynomial iff corresponding graph G is extended
Dynkin diagram (D̃4, Ẽ6, Ẽ7 or Ẽ8).

3. Under some conditions on polynomials p1, p2, . . . , pn for extended Dynkin diagrams
corresponding algebras are PI-algebras (i.e. having polynomial identities).

4. If graph G is neither Dynkin diagram nor extended Dynkin diagram then corre-
sponding algebra contains a free subalgebra.

For algebras generated by projections sums of which is a multiply of the identity this
results see [5].

We also consider representations of our algebras and discuss if there exist more deep
relation of these subject with famous H. Weyl problem, Coxeter groups and theory of
singularities, physical applications.
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