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Abstract
After recalling what is the Markoff theory, the article summarizes

some links which exist with the group GL(2, Z) of 2 × 2 matrices
with integer coefficients and determinant ±1 and with its subgroups
SL(2, Z) and the triangle group T3. Then we visit rapidly the links
with conformal punctured toruses. The main part of the article is
about the monodromy representation of the Poincaré group of such a
torus. We gives the corresponding solution of the associated Riemann-
Hilbert problem and the corresponding differential operator whose
spectral analysis remains to be done. We conclude quoting the 22th

Hilbert’s problem and some information about the accessory parame-
ter problem.

1 Introduction

For a real quadratic form f(x, y) = ax2 + bxy + cy2 ∈ R[x, y], the problem
to know the minimal value of | f(x, y) | when x and y are non zero integers
is classical. When f(x, y) is a definite form i.e. ∆(f) = b2 − 4ac < 0, the
problem was solved by J. L. Lagrange and then C. Hermite [25] :

C(f) =
inf(x,y)∈Z2−{(0,0)} | f(x, y) |√

| ∆(f) |
≤ 1√

3
= C(x2 + xy + y2).

It has been shown ([5] p.33) that for any ρ ∈]0, (1/
√

3)], we can find a
quadratic form f(x, y) ∈ R[x, y] verifying

ρ = C(f).
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When f(x, y) is a indefinite form i.e. ∆(f) = b2 − 4ac > 0, A. Korkine and
G. Zolotareff [30] demonstrated :

C(f) ≤ 1√
5

= C(x2 − xy − y2) = C(f0),

an isolated value giving also for any other form f not GL(2, Z)−equivalent
to f0 :

C(f) ≤ 1√
8

= C(x2 − 2y2) = C(f1).

Trying to understand this phenomenon A. A. Markoff built its own theory
[34]. He described an infinity of values C(fi)i∈N situated between (1/

√
5) and

(1/3) and having the same properties as C(f0). These values are isolated and
convergent towards (1/3). They can be built thanks to the tree of solutions
of the diophantine equation, so called Markoff equation [13] :

m2 + m2
1 + m2

2 = 3mm1m2.

For values C(f) less than (1/3) the author has shown than more general
diophantine equations give an insight, sometimes with theories similar the
the Markoff one [40] but with some complication. Moreover a geometrical
interpretation of such results has been found, similar to what was done by
H. Cohn [10] for the classical Markoff theory. The general situation can be
understood by the Teichmüller theory on the topological punctured torus T •

(see for example [27] [50]). This topological object is a quite a frequent one
in physical problems, for example linked to the KAM theorem [2], and some
work has been made after the observation that the Markoff theory could be
useful to understand the behavior of some oscillators [41]. It was possible
to realize that two types of geometric punctured toruses exist, we called
them the hyperbolic and parabolic. The Markoff theory is then linked to
the parabolic case, and geometrically to special fuchsian groups, the Fricke
groups Γ as defined in [46] [48] :

(1): Γ is isomorphic to a free group with two generators F2 = Z ∗ Z.
(2): The Riemann surface H/Γ (where H is the Poincaré half-plane) is

homeomorphic to a punctured torus.
The closed geodesics on such a Riemann surfaces are linked to indefinite

quadratic forms f and to the associated Markoff constant C(f) which can
be seen as shorter length of such geodesics [54]. The Markoff theory gives
an explanation [49] to the quantification which appears when changing from
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such a geodesics to another : no continuous deformation is possible on the
torus because of the puncture. Such remarks are the basis for the interest
of physicians to this subject [24]. In another direction it is known that the
Markoff theory has links with the study of exceptional bundles and helices
of the projective plane P2(C) (see [47], [37], [38], [20], [21], [16]), and also
with the spectrum of hermitian operators [29] and this is also important for
physics [51]. A project that we made a long time ago was to build a common
interpretation of such remarks in order to get the set of all Markoff constants
of indefinite quadratic forms, the Markoff spectrum, as the spectrum of some
operator on a Hilbert space. The reason for it is that the Markoff spectrum
seems like the spectrum of some operators. It has a discrete part from (1/

√
5)

to (1/3), then a cantorian part from (1./3) to the Freiman number ß which
is :

ß−1 = 4 +
253589820 + 283748

√
462

491993569
.

From ß to 0 the spectrum is continuous, any real number is a Markoff constant
[13]. The present article gives hints towards the possibility to implement such
a project, building a possible operator to consider.

Looking at the link with fuchsian groups that we mentioned, the Markoff
theory can be described [39] thanks to the two following matrices generating
in SL(2, Z) a free group isomorphic to F2 which is [SL(2, Z), SL(2, Z)] :

A0 =

[
1 1
1 2

]
, B0 =

[
1 −1
−1 2

]
.

These matrices give birth to a representation ρ : Aut(F2) −→ GL(2, Z)
and we have described in [39] the algebraic importance of this situation. In
the present article, the main goal is to give a differential equation whose
former representation ρ is the monodromy representation. We hope by such
a construction to understand the Lamé equations appearing for the accessory
parameters of punctured toruses [28]. Such equations have similarities with
hypergeometric equations and also with some Schrödinger equations whose
monodromy group has recently been studied [57]. Also we could build soon
an hamiltonian interpretation in the spirit of L. D. Fadeev [17] and others
giving the way to realize our quoted project.
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2 Considering the triangle group :

The Markoff equation gives a complete tree of integer solutions thanks to the
solution (1, 1, 1) and the three transformations

X : (m,m1,m2) �−→ ((3m1m2 − m,m1,m2),

Y : (m,m1,m2) �−→ (m, 3mm2 − m1,m2),

Z : (m,m1,m2) �−→ (m,m1, 3mm1 − m2),

X2 = Y 2 = Z2 = Id.

The involutions X, Y et Z, give birth to the triangle group T3 which is the
free product of three cyclic groups C2 with two elements :

T3 = C2 ∗ C2 ∗ C2.

In [39] we showed how this group T3 is linked to the group of 2× 2 matrices
GL(2, Z). We used for this an abelianisation morphism π′ from the automor-
phism group Aut(F2) to GL(2, Z), and two matrices generating the dihedral
group D6 with 12 elements inside GL(2, Z) :

π′(t) =

[
1 1
−1 0

]
, π′(o) =

[
0 −1
−1 0

]
.

We defined also :

π′(X) =

[
1 0
−2 −1

]
, π′(Y ) =

[
−1 −2
0 1

]
, π′(Z) =

[
1 0
0 −1

]
.

The group T3 acts in GL(2, Z) defining with ch = ch(X,Y, Z) ∈ T3 :

ch(π′(X), π′(Y ), π′(Z)) = π′(ch(X,Y, Z)) ∈ π′(T3).

It gives a ternary decomposition in GL(2, Z) using the triangle group :

Proposition 2.1. Every element V ∈ GL(2, Z) has a unique decomposition

π′(o)hπ′(t)kch(π′(X), π′(Y ), π′(Z)),

where h = 0, 1; k = 0, 1, ..., 5; ch ∈ T3.

The elements of π′(T3) are characterized by the conditions h = 0 et k = 0.
The group π′(T3) is not normal inside GL(2, Z). It is isomorphic by π′ to the
group T3. The elements of the group D6 which is not normal in GL(2, Z)
are characterized by the condition

ch(π′(X), π′(Y ), π′(Z)) = 12.
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The group D6 introduces two equivalence relations in GL(2, Z)

V1 �D6 V2 ⇔ V1V
−1
2 ∈ D6 ⇔ V2 ∈ D6V1,

V1 D6� V2 ⇔ V −1
1 V2 ∈ D6 ⇔ V2 ∈ V1D6.

The quotients GL(2, Z)/�D6 and GL(2, Z)/D6� are equipotent, but different
because D6 is not a normal subgroup of GL(2, Z). Each V ∈ GL(2, Z) defines
a unique ch(π′(X), π′(Y ), π′(Z)) ∈ π′(T3) such that

V �D6 ch(π′(X), π′(Y ), π′(Z)).

Hence we get a description of the complete tree of the Markoff theory :

Proposition 2.2. The group T3 is equipotent to the quotient (right or left)
of the group GL(2, Z) by its non-normal subgroup D6. It is an homogeneous
GL(2, Z)-space. But also it can be considered as a subgroup of GL(2, Z)
thanks to the former proposition.

An easy consequence for the K-theory ([45] (p. 218 and p. 75), [55] (p.
261)) is :

Proposition 2.3. We have :

H1(GL(2, Z), Z) = GL(2, Z)/[GL(2, Z), GL(2, Z)] 	 D6/[D6,D6] 	 C2×C2,

H2(GL(2, Z), Z) 	 C2.

We find a decomposition using the free group F2 	 [SL(2, Z), SL(2, Z)] :

Proposition 2.4. Any element V ∈ GL(2, Z) has a unique decomposition

±W (A0, B0)O
hWk(S, T ),

W (A0, B0) ∈ F2 	 [SL(2, Z), SL(2, Z)],

h ∈ {0, 1},
Wk(S, T ) ∈ {12, S, ST, STS, STST, STSTS} with k = 0, 1, ..., 5.

The elements of the normal subgroup SL(2, Z) in GL(2, Z) are characterized
by the condition h = 0.
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For the last proposition we defined in GL(2, Z) :

S =

[
0 −1
1 0

]
, T =

[
1 1
0 1

]
, O =

[
−1 0
0 1

]
,

and all the words W (A0, B0) are written in a multiplicative way with the two
generators of F2 thanks to [33] (p. 97-98) :

A0 = [(TS)−1, S−1] =

[
1 1
1 2

]
, B0 = [S−1, (TS)−2] =

[
1 −1
−1 2

]
.

In fact we have a presentation with two generators T and I = OS (see [3]) :

GL(2, Z) =< I, T−1 | I2 = ([T−1, I]T−1)4 = ([T−1, I]T−1I)2 = 12 > .

The subgroup π′(T3) is generated by :

π′(X0) = T−1IOT−1IOIT−1B−1
0 , π′(Y0) = IOIOA−1

0 TS, π′(Z0) = IS.

Moreover [3] the triangle group T3 	 π′(T3) is isomorphic to the projective

PGL(2, Z) =< I, T
−1 | I

2
= ([T

−1
, I]T

−1
)2 = ([T

−1
, I]T

−1
I)2 = 1 > .

We can verify that F2 	 [PSL(2, Z), PSL(2, Z)] has an index 2 in this last
group where we have, with C3 the cyclic group containing three elements,

and V1 = [I, T
−1

] and V2 = [I, T ] :

[PGL(2, Z), PGL(2, Z)] =< V1, V2 | V1
3

= V2
3

= 1 >	 C3 ∗ C3.

3 Conformal punctured toruses

The conformal punctured toruses are easily built with the Poincaré H half-
plane. We use four geodesics of H designated by αs, sβ, βp, pα, not crossing
each other and with α, s, β, p, on the border of H. Any torus is given by
transformations

tA : αp → sβ, tB : αs → pβ.

These transformations being given by matrices A and B of SL(2, R) acting
on H as conformal transformations we can compute :

A =

[
cβ −cαβ
c (1/cβ) − cα

]
where c 
= 0,
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B =

[
c′α −c′αβ
c′ (1/c′α) − c′β

]
where c′ 
= 0,

A(α) = s, A(p) = β, B(β) = s, B(p) = α.

α < 0, β > 0, c 
= 0, c′ 
= 0.

In SL(2, R) the two matrices A and B generate G = gp(A,B) and define a
fuchsian group acting on H where P is the canonical projection from SL(2, R)
to PSL(2, R) = SL(2, R)/{±12} :

Γ = PG = G/G ∩ {±12} = gp(P (A), P (B)).

The Markoff theory with A = A0, B = B0 is given by

c = β = −c′ = −α = 1,

For the more general cases we consider the commutator :

L = [A,B] = ABA−1B−1.

It contents all the necessary information concerning the associated punctured
torus because

L(s) = ABA−1B−1(s) = ABA−1(β) = AB(p) = A(α) = s.

Also :
tr(L) = tr([A,B]) ≤ −2.

tr(L) + 2 = tr(A)2 + tr(B)2 + tr(AB)2 − tr(A)tr(B)tr(AB) ≤ 0.

This last condition is due to Fricke. The parabolic case defined by the con-
dition tr(L) = −2 gives back the Markoff equation thanks to a factor 3 in
the traces which are related by :

tr(A)2 + tr(B)2 + tr(AB)2 = tr(A)tr(B)tr(AB).

We have now a parametric representation with (λ, µ) ∈ R
2\{(0, 0)} due to

Fricke [19] :

tr(A) =
1 + λ2 + µ2

µ
, tr(B) =

1 + λ2 + µ2

λ
, tr(AB) =

1 + λ2 + µ2

λµ
,

All the parabolic punctured toruses are obtained by this way. The Markoff
theory is obtained with λ = µ = 1. Easily :
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Proposition 3.1. Let (A,B) and (A′, B′) generating the two Fricke groups
Γ = Pgp(A,B) and Γ′ = Pgp(A′, B′) associated to two conformal punctured
toruses, we have equivalence of :

1/ The couples (A,B) et (A′, B′) are equivalent thanks to an interior
automorphism of GL(2, R) :

A = DA′D−1, B = DB′D−1, where D ∈ GL(2, R).

2/ The following two triples are equal :

Π(A,B) = (tr(B−1), tr(A), tr(B−1A−1)),

Π(A′, B′) = (tr(B′−1), tr(A′), tr(B′−1A′−1)).

3/ The couples (A,B) and (A′, B′) give the same parameters λ, µ ∈ R
+

λ = (tr(A)/tr(AB)) = (tr(A′)/tr(A′B′)),

µ = (tr(B)/tr(AB)) = (tr(B′)/tr(A′B′)).

Also :

Proposition 3.2. Any conformal equivalence from a parabolic punctured
torus T •

Γ to itself given by an interior automorphism of GL(2, R) is equal
to identity.

It is easy to develop a theory of reduction for parabolic toruses and to find
a link with quaternions. But the study of the laplacian on such surfaces is not
so easy [56], though important for physics [36]. These parabolic punctured
toruses are of the form

H/ < A,B, L | [A,B]L−1 = 1 > .

Now if T • is the associated topological punctured torus the conformal struc-
ture built on it thanks to the choice of A and B is only given [52] by a rep-
resentation ρ : π1(T •, ∗) → SL(2, R), where π1(T •, ∗) 	 F2 is the Poincaré
group of the punctured torus. Introducing the space of deformations

R = R(π1(T •, ∗), PSL(2, R)),

and the morphism ρ = P ◦ ρ, we find by this construction all the possible
parabolic conformal punctured toruses

H/ρ(π1(T •, ∗)).
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This approach corresponds to the Teichmüller theory, here specialized to
punctured toruses. Replacing PSL(2, R) by PSL(2, C), we have also by the
former proposition 3.1. a link with the variety of representations [32] [4] of
the group of Poincaré π1(T •, ∗) :

ρ ∈ R(π1(T •, ∗), PSL(2, C)) → (trρ(g1), trρ(g2), trρ(g3)) ∈ C
3.

4 Monodromy

A monodromy representation of the group π1(T •, ∗) is a morphism of groups

ρ : π1(T •, ∗) −→ GL(n, C).

Its image is the group of monodromy. These representations are classified
with interior automorphisms of GL(n, C). They are considered in Fuchs
differential equations ([59] p. 75, [22], [31]) :

dnf

dzn
+ a1(z)

dn−1f

dzn−1
+ ... + an(z)f = 0.

With n = 2 et π1(T •, ∗) 	 F2 generated by A et B, the monodromy repre-
sentations are completely described in [59] (p. 80). The irreducible ones are
given thanks to an interior automorphism of GL(2, C) with expressions

ρ(A) =

[
λ1 1
0 λ2

]
, ρ(B) =

[
µ1 0

(ν1 + ν2) − (λ1µ1 + λ2µ2) µ2

]
, λiµj 
= νk.

They are uniquely determined by the couples (λ1, λ2), (µ1, µ2), (ν1, ν2) of
eigenvalues of A, B and AB, with the former constraints. Diagonalizing the
matrices A0 et B0 of the Markoff theory, we can consider :

ρ(A0) =

[
3−√

5
2

1

0 3+
√

5
2

]
, ρ(B0) =

[
3−√

5
2

0

−4 3+
√

5
2

]
.

We give now a solution of the corresponding problem of Riemann-Hilbert,
which consists to find a differential equation having ρ as a monodromy rep-
resentation. For this we use [58] (theorem 4.3.2 p.85) in order to compute
the associated Riemann scheme. We find this way the following fuchsian
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equation (modified hypergeometric) given with σ3 + τ3 = 1 and σ3 +σ−1
3 = 3

under the following form :

z(1−z)
d2f

dz2
+(1−2z)

df

dz
−(σ3τ3)f =

1

4π2z(1 − z)
log(

3 +
√

5

2
) log(

3 −
√

5

2
)f.

This equation which constitutes the main innovation of the present article
can be studied with the methods of [42] [8]. Also we get a differential operator
whose spectral analysis is now to realize :

L = D2 +
(1 − 2z)

z(1 − z)
D −

(σ3τ3)4π
2z(1 − z) + log(3+

√
5

2
) log(3−√

5
2

)

4π2z2(1 − z)2
.

The comparison of the corresponding spectrum with the Markoff spectrum
is now to do and will be detailed in a next article. In fact two possibilities
exist for L owing to the chosen value of σ3 corresponding to the geometrical
phenomenon of Schröder pairs for the same punctured torus, and showing
that the two possibilities are linked by an easy transformation. An hamil-
tonian interpretation could be important in the present case. It is effective
for very important physical equation appearing in Physics (Lamé - that is
to say periodical Schrödinger in one dimension [18], Sine-Gordon, non linear
Schrödinger, Korteweg-de Vries,..., solitons) admitting an hamiltonian rep-
resentation with states in an Hilbert space. It could give a solution for the
project that we mentioned.

5 Conclusion

The comparison with the hypergeometrical approach of Harvey Cohn [9]
of the Markoff theory needs to be done. He discovered the link with the
following relation between the classical modular function J automorphic for
PSL(2, Z) and the Weierstrass function ℘ :

1 − J(τ) = ℘′2(z) = 4℘3(z) + 1.

He explained the link with triples of matrices (A,B,C) associated to the
Markoff theory and gave ([11], [12]) the opportunity to look at a formula
supposing an hexagonal symmetry

dz = const. × dJ

J2/3(J − 1)1/2
.
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It does not seem to the author of the present article that the way between
these two formulas has been detailed. The problem is known to be linked to
an accessory parameter [7] [28] verifying a Lamé differential equation ([60] p.
110). This question has also a link with the 22th Hilbert’s problem [26]. This
famous problem is not yet completely solved [53], even if the Lamé equa-
tions are much more studied today [1] [57]. We suggest to get insight in this
question for punctured toruses through the former developments. Consider-
ing the first of the two last equations and differentiating we get the former
differential relations :

−J ′(τ)dτ = 12℘2(z)℘
′
(z)dz, ℘

′
(z) = (1 − J(τ))1/2, ℘2(z) = (J(τ)/4)2/3.

The difficulties for integration of the differential relation between dz and dJ
are known [58] (p. 85 - 90), altogether with the links with the hypergeometric
function F (a, b, c, z) solution of the differential equation with two singularities
z = 0 and z = 1, where z ∈ C :

E(a, b, c) : z(1 − z)
d2F

dx2
+ (c − (a + b + 1)z)

dF

dx
− abF = 0.

When the parameters a, b, c, are real and c, c − a − b, a − b, non integers,
we find on D = C\{] −∞, 0] ∪ [1,∞[} the Schwarz application :

Sch : J ∈ D −→ (F (a, b, c, J) : J1−cF (a + 1− c, b + 1− c, 2− c, J)) ∈ P1(C).

The expression of H. Cohn between dz et dJ leads to consider the case
a = (1/3), b = 0, c = (5/6) giving | 1 − c |= (1/6), | c − a − b |= (1/2),
| a − b |= (1/3). These values give confirmation that we are in an euclidian
hexagonal crystal case. Also we get the known link with the work of R.
Dedekind [14] and his function η. Indeed we get dz = w(τ)2dτ defining w(τ)
with

w(τ) = const.
J ′(τ)1/2

J(τ)1/3(1 − J(τ))1/4
.

A new hypergeometric equation E((1/12), (1/12), (2/3)) appears between
w and J . The function η is a square root of w ([6] p. 135 or [35] p. 180)
known to verify precisely:

η(τ)24 =
1

(48π2)3

J ′(τ)6

J(τ)4(1 − J(τ))3
.

The function η has indeed a tight link with the Markoff equation [43] [44].
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analogue of Lamé’s equation, Math. Ann. 294, 1992, pp. 295-324
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