ON EQUIVARIANT BOUNDARY VALUE PROBLEMS

Burskii V.P., Inst.Appl.Math.Mech. NASU, Donetsk, Ukraine

Let Ω be an arbitrary bounded domain in the space \mathbb{R}^n with the boundary $\partial\Omega$ and $\mathcal{L} = \sum_{|\alpha| \le m} a_{\alpha}(x) D^{\alpha}, D^{\alpha} = (-i\partial)^{|\alpha|} / \partial x_1^{\alpha_1} ... \partial x_n^{\alpha_n}, \ \alpha \in \mathbf{Z}_+^n, |\alpha| = \sum_k \alpha_k$ be some formally self-ajoint differential operation with smooth complex matrix coefficients $a_{\alpha}(x)$, i.e. their elements belong to $C^{\infty}(\overline{\Omega})$. Let L_0 with domain $D(L_0)$ be a minimal operator and L= $(L_0)^*$ be a maximal operator of \mathcal{L} , $C(L) = D(L)/D(L_0)$ be a boundary space, $\Gamma: D(L) \to$ C(L) be a factor-mapping. An boundary value problem $Lu = f, \Gamma u \in B \subset C(L)$ is called well-posed if an expansion $L_B = L|_{D(L_B)}, D(L_B) = \Gamma^{-1}B$ has a continuous two-sided inverse operator.

Let G be some Lie group smoothly acting in the closed domain $\overline{\Omega}$, on boundary $\partial\Omega$ and the action of group remains volume of domain. Let differential operation \mathcal{L} is invariant with respect to the group action, that is $g(\mathcal{L}u) = \mathcal{L}(gu)$. Then spaces D(L), $D(L_0)$, C(L) are invariant with respect to the action of group G. Boundary value problem Lu = f, $\Gamma u \in B$, let's name G-invariant, if space B is invariant with respect to the indicated action of group G. If the group G is compact, that, as it is well known, the Hilbert space of representation is decomposed in the direct sum of finite-dimensional invariant subspaces of irreducible representations. And if the group also is commutative, such representations are one-dimensional. Let space of a representation of the group Gbe the boundary space C(L). For compact group we have decompositions $C(L) = \sum_{k=0}^{\infty} \oplus \tilde{C}^k$, $C(\ker L) = \sum_{k=0}^{\infty} \oplus C^k(\ker L)$, $B = \sum_{k=0}^{\infty} \oplus B^k$.

$$C(L) = \sum_{k=0}^{\infty} \oplus \tilde{C}^k$$
, $C(\ker L) = \sum_{k=0}^{\infty} \oplus C^k(\ker L)$, $B = \sum_{k=0}^{\infty} \oplus B^k$.

If ours G-invariant boundary value problem is well-posed, the decompositions in the direct sum $C(L) = C(\ker L) \oplus B$ attracts a decompositions in the direct sum $C^k :=$ $C^k(\ker L) \oplus B^k = \sum_l \tilde{C}^{k_l}$ with by finite-dimensional projectors $\Pi^k : C^k \to C^k(\ker L)$ along B^k and now a check of a well-posedness of G-invariant boundary boundary value problem can be shown by check of two properties:

1)
$$C^k(\ker L) \cap B^k = 0$$
; 2) $\exists \kappa > 0, \ \forall k, \ \|\Pi^k\|_{C^k} < \kappa$.

We investigate the spectrum of operator of a general well-posed SO-equivariant boundary value problem for the Poisson equation in a disk and in a ball, selecting cases of violation of well-posedness of the same problem for the Helmholz equation in violation of property 1). Thus the fulfilment of property 2) appears by the supplied property of well-posedness of the problem for the Poisson equation.

Refs: Burskii V.P. Investigation methods of boundary value problems for general differential equations. Kiev, Naukova dumka, 2002 (In Russian). e-mail:burskii@iamm.ac.donetsk.ua