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This paper contains a collection of open problems from the the workshop
“Emerging applications of measure rigidity” held at the American Institute
of Mathematics in June, 2004. During the workshop researchers in dynamical
systems, number theory, arithmetic geometry, and mathematical physics had a
unique opportunity to discuss new links between these already richly connected
subjects. We hope that this collection will give a snapshot of the active and
rapidly developing field of modern dynamics and its applications.

The presented open problems were collected from the participants of the
workshop. I also tried to include current status of the problems as well as
related references, and I am greatly in debt to the participants for providing
this information. I apologize for all omissions and inaccuracies which are solely
due to my lack of knowledge.

I would like to thank to the participants of the workshop for contributing the
problems and for numerous comments/suggestions, and the American Institute
of Mathematics and the National Science Foundation for the financial support
of the workshop. The author was partially supported by NSF DMS-0400631
and by AIM.
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1. Local rigidity

We refer to [79] for a recent comprehensive survey on local rigidity.

1.1. An action α of a finitely generated discrete group A on a manifold M
is called Ck,r,l-locally rigid if any Ck-perturbation α̃ which is sufficiently small
in Cr-topology is C l-conjugate to α, i.e., there exists a C l-close to identity
diffeomorphism H of M which conjugates α̃ to α:

H ◦ α(g) = α̃(g) ◦ H for all g ∈ A.

The C∞,1,∞-local rigidity is often referred to as C∞-local rigidity. The case
of C1,1,0 is known as C1-structural stability. In the definitions for continuous
groups such as Rk one has to allow a “time change”, i.e., an automorphism ρ
of the acting group close to id such that

H ◦ α(ρ(g)) = α̃(g) ◦ H for all g ∈ A.

It is well-known that an Anosov diffeomorphism is C1-structurally stable,
but the conjugation map is not differentiable in general. On the other hand,
Anosov1 actions by higher rank abelian groups exhibit much more rigid behav-
ior (see [123] for the first result of this type). It was shown in [128] that most
of known algebraic2 Anosov Zk- and Rk- actions, k ≥ 2, are locally C∞-rigid
provided that they do not reduce to rank one actions via some elementary
constructions. We call such actions “irreducible”. See, for example, [128] for
some natural conditions that guarantee that an action is “irreducible”.

Recently, local rigidity was proved in [44, 45] for partially hyperbolic higher
rank abelian actions by toral automorphisms using the KAM method. The
method of [44, 45] allows to construct C∞-conjugacy only for C l-perturbations
of the original action for some large l. Another interesting example of a par-
tially hyperbolic action is given in the following conjecture, which was com-
municated by R. Spatzier:

Conjecture 1. Let G be a connected semisimple Lie group, Γ an irreducible
lattice in G, and A a closed subgroup of a split Cartan subgroup of G with
dim A > 1. Then any C1-small perturbation of the action of A on G/Γ is
C∞-conjugate to the action of A defined by a continuous homomorphism from
A to the centralizer of A in G.

We also state one of important partial cases of Conjecture 1:

Conjecture 2. If in Conjecture 1 the group A is not contained in a wall of a
Weyl chamber of the split Cartan subgroup D, then any C1-small perturbation

1An action of a group G is called Anosov if there is an element g ∈ G that acts normally
hyperbolically with respect to the orbit foliation of G.

2That is, the actions on infrahomogeneous spaces of Lie groups induced by either auto-
morphisms or translations.
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of the action of A on G/Γ is C∞-conjugate to the action of A defined by a
continuous homomorphism from A to D.

Conjecture 2 was proved in [128] when A is the full split Cartan subgroup.
Recently, D. Damjanović and A. Katok [47, 48] developed a totally different
from [44, 45] approach to Conjectures 1 and 2, which is based on noncommu-
tativity of various stable/unstable foliations (see [46]). This gives a proof of
Conjectures 1 and 2 for C2-small perturbations in the case when G = SL(n,R)
and A is any subgroup which contains a lattice in a two-plane in general po-
sition in the maximal split Cartan group. Extension to other classical simple
Lie groups is in progress [49].

1.2. Local rigidity for semisimple Lie groups of higher rank and their lattices
(motivated by the program of R. Zimmer [267]) has been an active area of
research too. First results in this direction were obtained for Anosov actions
(see [111, 124, 125, 128]) and for actions with weaker hyperbolicity assump-
tions (see [174] and references therein). Recently, local rigidity results were
established without any hyperbolicity assumptions (see [81, 82, 78, 80]).

2. Global rigidity

2.1. The only known examples of Anosov diffeomorphisms are automorphisms
of infranilmanifolds. Moreover, every Anosov diffeomorphism on an infranil-
manifold is topologically conjugate to a hyperbolic automorphism (see [84,
170]). This motivates the following “¤100,000” folklore conjecture, which is
already implicit in [84] (see also [173]):

Conjecture 3. Every Anosov diffeomorphism is topologically conjugate to a
hyperbolic automorphism on an infranilmanifold.

Conjugacy with a toral automorphism has been proven for codimension-one
(i.e., the stable or unstable foliation is of codimension one) Anosov diffeomor-
phisms [84, 197] and for Anosov diffeomorphisms on infranilmanifolds [170].
See also [83, 14, 93, 118] for other partial results on Conjecture 3. In gen-
eral, it is not even known whether an Anosov diffeomorphism is topologically
transitive. We also mention that there are infinitely many moduli of smooth
conjugacy, and there are examples of Anosov diffeomorphisms on manifolds
that are homeomorphic but not diffeomorphic to a torus (see [69]).

In contrast, there exist Anosov flows that are not topologically transitive
(see [85]), and it is not clear how to state a conjecture regarding classification
of general Anosov flows. Such a conjecture is available for codimension-one
Anosov flows (see [251, 94]).
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2.2. One can also state an analog of Conjecture 3 for Anosov Zk- and Rk-
actions, k ≥ 2. In this case, it is usually possible to show that if a continuous
conjugation map exists, it is also smooth (see, for example, [111, 123, 128]).
R. Spatzier communicated the following conjecture.

Conjecture 4. Every “irreducible” Anosov Zk- and Rk- action, k ≥ 2, is
C∞-conjugate to an algebraic action.

Some partial results on Conjecture 4 were obtained in [123, 187] and, re-
cently, by F. Rodriguez-Hertz [214] and B. Kalinin, R. Spatzier [120]. One
may also hope to classify “irreducible” partially hyperbolic Zk- and Rk- ac-
tion, k ≥ 2, and higher rank actions of commuting expanding maps.

2.3. There are also analogous conjectures for actions of connected semisim-
ple Lie groups of higher rank and their lattices satisfying some hyperbolicity
assumptions (see [111, 174]).

Conjecture 5. Every action of a connected semisimple Lie group of higher
rank (i.e., all simple factors have real rank at least 2) or its lattice, which
that has an element which acts non-trivially uniformly partially hyperbolicly,
is C∞-conjugate to an algebraic action.

Partial results on Conjecture 5 were obtained in [111, 124, 125, 209, 96, 174].
Note that without partial hyperbolicity assumption, one may only hope to
classify the actions when restricted to an open dense subset. See [124, 77]
for examples of nonstandard lattice actions. In general, there are conjectures
originated from [267] on classification of actions satisfying some transitivity
assumptions or preserving a rigid geometric structure in the sense of Gromov
(see [152, 173] for up-to-date statements).

2.4. Ratner’s measure rigidity theorem has applications to the study of gen-
eral properties of continuous volume preserving actions of higher rank semisim-
ple Lie groups and their lattices on compact manifolds. In particular, Ratner’s
theorem plays a key role in the construction of arithmetic quotients of such
actions (see [164, 165] for connected groups, [74, 75] for lattices, and [76] for
a survey). This raises the following question:

Question 6 (D. Fisher). Do the new results on measure rigidity for actions
of higher rank abelian groups give rise to obstructions to smooth or continuous
irreducible actions of a higher rank abelian group on a compact manifold?

Some basic obstructions for smooth volume preserving actions of higher rank
abelian groups are already known, see particularly works of H. Hu [110] and
A. Katok, J.-P. Thouvenot [130]. Unfortunately, both of those restrictions
apply to smooth actions with respect to any Borel invariant measure. The
question is whether one can use results on measure rigidity to obtain more
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information and to restrict possible properties of smooth actions of abelian
groups.

The results on arithmetic quotients for actions of semisimple groups and
their lattices have no straightforward analogues here, since the proofs of those
results use not only Ratner’s theorem but applications of the cocycle super-
rigidity theorems to cocycles which are necessarily only measurable. Though
some cocycle superrigidity theorems are known for particular classes of actions
of higher rank abelian groups, none of these can possibly apply to measurable
cocycles because of the Dye theorem [54] and its generalizations [203, 42].

3. Measure rigidity

3.1. One of the main topics of the workshop was the measure rigidity of
higher rank abelian actions, which started with the following conjecture of H.
Furstenberg:

Conjecture 7 (H. Furstenberg [87]). Let m and n be multiplicatively indepen-
dent positive integers. Then the only probability Borel measures on R/Z which
are ergodic under the action of the semigroup generated by multiplications by
m and n are the Lebesgue measure and measures with finite support.

H. Furstenberg proved a topological analog of this result in [87]. There has
been a series of papers [169, 218, 116, 73, 109, 204] proving Conjecture 7 under
some positive entropy assumptions.

A. Katok and R. Spatizer [127, 129] were first to obtain analogous results
for more general homogeneous spaces, and this led to a generalization of Con-
jecture 7:

Conjecture 8 (A. Katok, R. Spatzier [127]). Let M be a manifold which is
a biquotient of a connected Lie group G. Given an algebraic Anosov action of
Rk or Zk, k ≥ 2, on M and an ergodic probability Borel measure µ on M , one
of the following holds:

(i) The measure µ is a finite sum of measures constructed from Haar mea-
sures supported on closed subgroups of G.

(ii) The support of µ fibers over a manifold N in an equivariant way such
that the action on N reduces to a rank one action.

We refer to a survey [160] for a more detailed discussion and to [173] where
stronger conjectures and questions are stated. Examples for case (ii) in Con-
jecture 8 were given by M. Rees (see also [58]).

Positive results on Conjecture 8 and its analogs have led to important ad-
vances in number theory — Littlewood conjecture (see [60] and Conjecture
38) and in mathematical physics — quantum unique ergodicity (see [159] and
Conjecture 50).
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The method of [127, 129] was clarified and extended in [117, 119]. Sub-
sequently two new approaches, which allow to overcome limitations of this
method, were developed: the high entropy case [58, 59], which uses noncommu-
tativity of stable/unstable foliations and the product structure of conditional
measures, and the low entropy case [159], which is based on recurrence of fo-
liations. These two approaches were combined in [61] and [60] to prove many
cases of Conjecture 8 assuming only that at least one element has positive en-
tropy. Note that all of these techniques are based on the study of conditional
measures, and they provide essentially no information without some positive
entropy assumption.

It was observed by E. Lindenstrauss that a positive entropy assumption is
not needed in the adelic setting. Let

A ⊂
∏

v-place
Qv

denote the ring of adeles and D the diagonal subgroup in SL(2). E. Linden-
strauss showed that the only probability D(A)-invariant measure on SL(2,A)/SL(2,Q)
is the Haar measure (see [161]).

Question 9 (E. Lindenstrauss). Let A′ be defined as the ring of adeles, but
the product is taken over a subset of places of Q and Γ an “irreducible” lat-
tice in SL(2,A′). What are the finite ergodic D(A′)-invariant measures on
SL(2,A′)/Γ?

3.2. Let G be a Lie group, Γ a discrete subgroup, and H a subgroup of G
generated by one-parameter unipotent subgroups. One of the prototypical
examples of measure rigidity is the classification of finite ergodic H-invariant
measures on G/Γ (see [210], and [190] for an accessible exposition).

Problem 10 (L. Silberman). Extend the results on measure rigidity of unipo-
tent flows to adelic setting.

It seems natural to expect (and is known in some cases) that the set of finite
ergodic invariant measures for other dynamical systems with parabolic behav-
ior has a manageable structure, which is possible to described in algebraic
terms.

Suppose that H is a connected semisimple Lie subgroup of a Lie group G,
and let P be a parabolic subgroup of H. One of manifestations of the measure
rigidity of unipotent flows is the fact that every finite P -invariant measure on
G/Γ is H-invariant (see [192]).

Question 11 (E. Lindenstrauss). Suppose that H acts on a space X pre-
serving some geometric structure. Under what conditions on X, every finite
P -invariant measure is H-invariant? In other words, which H-actions are stiff
(see [88])?
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For example, one may consider an SL(2,R)-action on the moduli space of
quadratic differentials over complex structures on a compact surface. There are
a lot of similarities between this action and SL(2,R)-actions on homogeneous
spaces (see [63, 255, 186]). Some partial results on topological and measure
rigidity for the latter actions were obtained in [188] and [66].

3.3. Let Γ be a discrete subgroup of SL(2,R). If Γ has infinite covolume,
then the only finite ergodic invariant measures for the horocyclic flow ut =(

1 t
0 1

)
on SL(2,R)/Γ are the the ones supported on periodic orbits (see

[212]). It turns out that there is a large family of infinite ergodic invariant
Radon measures. Such measures can be constructed from the minimal positive
Γ-invariant eigenfunction of the Laplacian (see, for example, [6]). Recently,
F. Ledrappier and O. Sarig [155, 156] proved that if Γ is a normal subgroup of
a lattice in SL(2,R), then every ut-ergodic Radon measure on SL(2,R)/Γ is of
this form up to a constant (see also [7, 219] for previous classification results).

Question 12 (F. Ledrappier, O. Sarig). Let G be a noncompact semisimple
Lie group of rank one, Γ a discrete subgroup of G, and U a horospherical sub-
group of G. What are the U-ergodic Radon measures on G/Γ? In particular,
are they either carried by closed U-orbits or given by the harmonic function
construction?

A ut-invariant measure µ is called squashable if the centralizer of ut contains
an invertible nonsingular transformation that does not preserve µ.

Question 13 (F. Ledrappier, O. Sarig). Let Γ be a normal conilpotent sub-
group of a uniform lattice in SL(2,R). Is the Haar measure nonsquashable?

For coabelian subgroups, the answer to this question is positive [154]. In
fact, it was shown that the Haar measure has a generalized law of large num-
bers. For general discrete subgroup Γ ⊂ SL(2,R), it is not known whether the
Haar measure on SL(2,R)/Γ is nonsquashable, or whether there exist other
nonsquashable ut-ergodic Radon measures.

3.4. One may also expect measure rigidity for algebraic actions of “large”
groups.

Conjecture 14 (A. Furman). Consider one of the following actions of a group
Γ:

(1) Γ is a “large” (e.g., Zariski dense) subgroup of the group of automor-
phism of a nilmanifold of finite volume.

(2) Γ is a “large” subgroup of a Lie group acting by translations on G/Λ
where Λ is a lattice in G.
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Then the only ergodic Γ-invariant probability measures are the measures sup-
ported on finite Γ-orbits and the Haar measure.

There are results on the topological analog of this conjecture (see [17, 240,
195, 196, 98]). Also there are results about measurable centralizers, quotients,
and joinings for actions on some infinite volume homogeneous spaces [86].

3.5. Let M be a compact Riemannian manifold, φt : M → M is an Anosov
flow that defines the decomposition TM = E0⊕Es⊕Eu of the tangent bundle.
We suppose that there exists a continuous invariant splitting Es = Es

+ + Es
−

such that for some C > 0 and µ+ > µ− > λ,

‖Dφtv‖ ≤ Ce−µ+t‖v‖, v ∈ Es
+, t ≥ 0;

‖Dφtv‖ ≥ C−1e−µ−t‖v‖, v ∈ Eu
−, t ≥ 0.

A basic example of such splitting is the geodesic flow of CH2. The distribution
Es

+ integrates to the fast stable foliation W s
+.

The following is a nonlinear analog of the Ragunathan’s question about
classifications of measures invariant under unipotent flows:

Question 15 (F. Ledrappier). Describe the invariant ergodic measures for the
fast stable foliation W s

+.

One may ask the same question for Anosov diffeomorphisms as well.

4. Equidistribution

4.1. Let G be a Lie group, Γ a lattice in G, and U = {u(t)} ⊂ G a one-
parameter Ad-unipotent subgroup. Suppose that for x ∈ G/Γ, Ux is dense in
G/Γ.

Question 16 (G. Margulis [173]). Prove equidistribution of the sequence {u(tn)x}
in G/Γ, where tn is one of the following:

(1) tn = [nα]3 for α > 1,
(2) tn = [P (n)], where P (x) is a polynomial,
(3) tn is the n-th prime number.

A. Venkatesh [250] gave a proof of (1) for horocyclic flow when α is close to
1.

It is known that Česaro averages along sequences as in Question 16 converge
almost everywhere for functions in Lp, p > 1 (see [24, 25, 26, 27, 258]). Note
that there is a subtle difference between sequences tn = [nα] and tn = nα for
α ∈ Q− Z. In fact, there is no general pointwise ergodic theorem possible for
the latter sequence (see [19]).

3Here [x] denotes the integer part of x.
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4.2. Let V be a connected Ad-unipotent subgroup of the Lie group G such
that V x is dense in G/Γ for some x ∈ G/Γ.

Question 17 (G. Margulis [173]). Show that for a “good” sequence of subsets
An ⊂ V and every f ∈ Cc(G/Γ),

lim
n→∞

1

Vol(An)

∫

An

f(vx) dv =

∫

G/Γ

f dµ

with effective error term, where dv is a Haar measure on V , and µ is the
probability Haar measure on G/Γ.

Such equidistribution results were proved by several authors (see [211, 175,
231]), but the methods of the proofs are not effective. In the case when V
is a horospherical subgroup of G (see Section 4.3 below), one can deduce an
equidistribution result with explicit error term from decay of matrix coefficient
on L2(G/Γ) (see [142]).

4.3. Let L be Lie group, G a closed subgroup of L, and Λ a lattice in L.
For a semisimple element a ∈ G, the expanding horospherical subgroup U of G
associated to a is defined by

U = {g ∈ G : a−ngan → e as n →∞}.
Suppose that for x0 ∈ L/Λ, the orbit Gx0 is dense in L/Λ.

Let µ be a measure on Ux0 which is the image of a probability measure on
U , absolutely continuous with respect to the Haar measure on U , under the
map u 7→ ux0, u ∈ U . Then it is known that anµ → λ as n → ∞ where λ is
the probability Haar measure on L/Λ (see [232]).

One may consider the following refinement of the above result. Take any
analytic curve γ : [0, 1] → U , and let ν be the image of the Lebesgue measure
on [0, 1] under the map t 7→ γ(t)x0.

Question 18 (N. Shah). Under what condition on γ, we have that anν → λ
as n →∞?

Recently Question 18 was solved by N. Shah for L = SO(m, 1) and G =
SO(n, 1), m > n. He showed that anν → λ as n →∞ provided γ([0, 1]) does
not lie on an proper affine subspace or an (n− 2)-dimensional sphere in U .

Conjecture 19 (N. Shah). The same result holds for all Lie groups L con-
taining G = SO(n, 1).

The above kind of questions are related to the following more general prob-
lem. Consider a representation of a semisimple Lie group G on real vector
space V equipped with a norm ‖ · ‖. Take a point p ∈ V , and consider the set

RT = {g ∈ G : ‖gp‖ < T}
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for T > 0. Suppose that the stabilizer of p is finite, so RT is compact for each
T . Let Γ be a lattice in G, and let µT denote the image of the normalized
Haar measure on RT projected to G/Γ.

Question 20 (N. Shah). What is the limiting distribution of the measure µT

as T →∞?

In some examples such results are known (see [68, 97]), but more general
answers can be very important for understanding distribution of Γ-orbits on
homogeneous spaces G/H where either Γ∩H is a lattice in H or ΓH is dense
in G.

4.4. For irrational α, the sequence {αn2 (mod 1) : n ≥ 1} is equidistributed
in [0, 1]. In fact, one expects that if α is badly approximable by rationals,
then statistical properties of this sequence are the same as the sequence of
independent uniformly distributed random variables. For [a, b] ⊂ [0, 1], we
define pair correlation:

R2([a, b], N, α) =
1

N
#

{
1 ≤ i 6= j ≤ N : αi2 − αj2 ∈ 1

N
[a, b] (mod 1)

}
.

Conjecture 21 (Z. Rudnick, P. Sarnak). If α ∈ R is badly approximable by
rationals (see [217] for exact conditions), then

(1) R2([a, b], N, α) → b− a as N →∞.

Although it was shown that (1) holds on the set of α of full measure (see
[216]) and on a residual set of α in the sense of Baire category (see [217]),
one does not know any explicit α for which it is true. It is expected that (1)
holds for algebraic integers, and it is not hard to show that there are well
approximable irrational α for which (1) fails.

It was discovered in [181] that Conjecture 21 is related to an equidistribution
problem on a hyperbolic surface X = Γ\H2, Γ a lattice. We assume that

Γ ∩ {z 7→ z + a : a ∈ R} = {z 7→ z + a : a ∈ Z}.
Then the curve {x + iy : x ∈ [0, 1]} corresponds to a closed horocycle {uy(t) :
0 ≤ t ≤ 1} of length y−1 in in the unit tangent bundle T1(X), and it is well-
known that it becomes equidistributed in T1(X) as y → 0+. Also, for irrational
α, the sequence {uy(αn) : n ≥ 1} is equidistributed in the horocycle. This
motivates the following conjecture:

Conjecture 22 (J. Marklof, A. Strömbergsson). Let f be a continuous func-
tion on T1(X) with given growth condition at the cusps (see [181]). Then for
α ∈ R which is badly approximable by rationals and 0 < c1 < c2,

1

M

M∑
m=1

f(uy(αm)) →
∫

T1
(X)

f dλ
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uniformly as M →∞ and c1M
−2 ≤ y ≤ c2M

−2, where λ denotes the Liouville
measure.

It was observed in [181] that Conjecture 22 implies Conjecture 21. Conjec-
ture 22 was proved in [181] under the condition that c1M

−ν ≤ y ≤ c2M
−ν for

some ν < 2. Furthermore, the statement of Conjecture 22 holds for almost all
α with respect to Lebesgue measure [181] for any positive ν, in particular for
ν = 2. Hence this gives a new proof of the main result in [216].

4.5. Let X be a Riemannian locally symmetric space of noncompact type
and of finite volume. A flat in X is a totally geodesic submanifold of sectional
curvature zero. Note that X = Γ\G/K, where G is a connected semisimple
real algebraic group, K is a maximal compact subgroups of G, and Γ is a
lattices in G, and flats are ΓgAK, g ∈ G, for a Cartan subgroup A of G. It
was shown (see [199]) that the number of compact flats with bounded volume
is finite. Note that this number is related to the number of totally real number
fields of fixed degree with bounded regulator (see [199]).

Question 23 (H. Oh). Determine the asymptotics of the number of compact
flats with volume less than T as T →∞.

This asymptotics and the rate of convergence has been determined for rank
one spaces (see [171, 103, 91, 92, 261, 148, 207, 146]); however, the question
about optimal rate of convergence is still open (see [114, 167, 166, 33]). When
X is compact, using techniques developed in [238], one can determine the
asymptotics of the sum

∑

F - regular, systol(F)<T

Vol(F).

Here a flat is called regular if its shortest closed geodesics goes in the regular
direction and systol(F) denotes the length of this geodesics. See also [50]
for another analog of the prime geodesic theorem for higher rank compact
symmetric spaces.

Another open question concerns the distribution of compact maximal flats
on the unit tangent bundle T1(X). Since the identity component G of the
isometry group does not act transitively on X in the higher rank case, it is
more convenient to consider the compact orbits of a Cartan subgroup A on the
homogeneous space Γ\G, which we also call flats. Denote by µF the Lebesgue
measure on a flat F ⊂ Γ\G and by µ̄F the normalized Lebesgue measure on
F . Let

νT =

∑
F : Vol(F)<T µF∑

F : Vol(F)<T Vol(F)
and ν̄T =

∑
F : Vol(F)<T µ̄F

#{F : Vol(F) < T} .
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Question 24 (H. Oh). Do the measures νT and ν̄T converge to the normalized
Haar measure on Γ\G?

Motivated by the work of Y. Linnik [162], M. Einsidler, E. Lindenstrauss,
P. Michel, and A. Venkatesh [62] recently proved an equidistribution result
related to Question 24 for some higher rank homogeneous spaces. They showed
that a positive proportion of the normalized sum of the measure supported
on compact flats (indexed by the discriminant) converges to Haar measure.
Nondivergence is deduced from subconvexity bounds for L-functions.

According to [147], the normalized Haar measure on Γ\G is the unique
ergodic measure of maximal entropy for the geodesic flow. Thus, to resolve
Question 24, it suffices to estimate the entropy of the weak∗ limit points of νT

and ν̄T and show that they do not escape to infinity.
For the rank one groups, Question 24 has been answered positively (see [28,

262, 206, 224, 138]). In higher rank case, the equidistribution of ε-separated
closed geodesics from different homotopy classes was established in [147]. As
in [147], one can also prove analog of the Conjecture 24 for compact Γ\G
and the measure νT as above with summation taken over regular flats F such
that systol(F ) < T . Another equidistribution result was obtained in a recent
work of Y. Benoist and H. Oh [15], where the averages along Hecke orbits of
maximal compact flats were considered.

5. Divergent trajectories

Let G be a semisimple real algebraic group, Γ a noncocompact arithmetic
lattice in G, and D a closed subgroup of a maximal R-split torus A. An orbit
Dx of D in G/Γ is called divergent is the map d 7→ dx, d ∈ D, is proper. One
can construct a divergent orbits using the following observation. Suppose that
D is the union of open subsemigroups D1, . . . , Dl such that for every i there
exists a representation ρi : G → GL(Vi), defined over Q, and vi ∈ Vi, such
that ρi(dx)vi → 0 as d ∈ Di goes to ∞. Then Dx is divergent. Such divergent
orbits are called obvious.

Conjecture 25 (Barak Weiss). (1) If dim D > rankQG, then there are no
divergent orbits of D.

(2) If dim D = rankQG, then the only divergent trajectories are obvious
ones.

(3) If dim D < rankQG, then there are non-obvious divergent trajectories.

Conjecture 25 was formulated in [256] where several special cases of it
were checked, and it was shown in particular that Conjecture 25 holds when
dim D = 1 (see also [43]). The case D = A was settled in [243]. Recently,
Conjecture 25(1) was proved in [35] when rankQG = 2 and in [257] in com-
plete generality. We also mention that Conjecture 25(3) was checked in [256]
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for G = SL(4,R) for all diagonal subgroups D except

D = {(s, s−1, t, t−1) : s, t > 0}.
Next, we discuss a similar problem when D is a cone in A. There are ex-

amples of cones D that admit non-obvious divergent trajectories (e.g., a Weyl
chamber) as well as an example of cones that admit only obvious divergent
trajectories (see [256]). The latter example was constructed for G = SL(3,R)
and the argument used essentially that dim D = 2.

Question 26 (Barak Weiss). Construct examples of cones D in A with dim D ≥
3 and no non-obvious divergent trajectories.

Let AT denote the ball of radius T in A and λ a Haar measure on A.

Question 27 (Barak Weiss). Suppose that dim A ≥ 2 and for some x ∈ G/Γ
and every one-parameter subgroup D of A, the orbits Dx is not divergent in
G/Γ. Is it true that there exists a compact set K ⊂ G/Γ such that

lim sup
T→∞

1

λ(AT )
λ({a ∈ AT : ax ∈ K}) > 0?

6. Symbolic coding

Symbolic dynamics plays important role in the study of Anosov flows (see,
for example, [29]). In the case of surfaces of constant negative curvature, a
symbolic representation of the geodesic flow in terms of a Markov chain can be
given quite explicitly. Such constructions go back to M. Morse, E. Artin, and
G. Hedlund. More recently, these constructions were generalized and improved
by several authors (see [32, 228, 229, 230], [1, 2], [132, 99, 133, 134, 135]). The
geometric code of a geodesic is a biinfinite sequence of symbols that obtained
by fixing a fundamental domain and recording which sides the geodesic hits
along its pass. The arithmetic code of a geodesic is obtained by expanding
the coordinates of the endpoints of the geodesic into a continued fraction
expansion.

Question 28 (S. Katok). Construct analogs of the geometric coding and the
arithmetic codings for the Weyl chamber flow (i.e., the action the diagonal
group) on SL(n,R)/SL(n,Z).

It was pointed out by Barak Weiss that an interesting symbolic coding
for the Weyl chamber flow was used in [236], where a (wrong) proof of the
Littlewood conjecture was given (see also [234, 235, 9]). The above question is
related to the problem of constructing effective multidimensional continuous
fraction algorithms (see [153, 137]).

One should mention that symbolic representations in higher dimensions are
usually quite involved and not explicit. For example, any Markov partition
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of a hyperbolic toral automorphism on the 3-dimensional torus must consist
of fractal sets (see [31]). F. Ledrappier and S. Mozes suggested to look for
a convenient symbolic representation of the Weyl chamber flow using fractal
tilings. This approach was successfully applied to construct explicit symbolic
representations for some automorphisms and shifts on higher-dimensional tori
(see [213, 13, 112, 113]) and for the Cartan action on GL(2,Qp)×GL(2,Qq)/Γ,
Γ a irreducible lattice (see [191, 193]).

7. Polygonal billiards

Question 29 (A. Katok). Construct periodic orbits for triangular billiards.

Every acute triangle has one obvious periodic orbit, but it is not known
whether a general acute triangle has other periodic orbits. It is also not known
whether a general obtuse triangle has at least one periodic orbit. Periodic
orbits were constructed for some special classes of triangles (see [90, 108, 37,
101]). Recently, a computer aided proof, which uses the program McBilliards,
was found that shows that every triangle with all angles less than 100 degrees
has a periodic orbit (see [227]).

The situation is much better for rational triangles and polygons (i.e., if
the angles are rational multiples of π). Unfolding the billiard table, one can
construct a compact Riemannian surface with a flat structure so that billiard
trajectories correspond to geodesics on this surface (see [186] for a survey).
Using this technique, it was shown that the number N(T ) of periodic orbits
of length at most T is bounded from above and below by quadratic polyno-
mials in T (see [182, 183]). Moreover, for some billiard table this number has
quadratic asymptotics (see [248, 249, 67, 66]), but it seems unknown whether
the quadratic asymptotics holds for rational polygons in general. Note that
the convergence N(T ) → ∞ cannot be uniform even on a compact set of tri-
angles. In fact, it was shown by R. E. Schwatz [226] that for any given any
ε > 0 there exists a triangle, within ε of the 30–60–90 triangle, which has no
periodic paths of length less than 1/ε.

Question 30 (A. Katok). Find a triangle whose angle are Diophantine (mod
2π) with ergodic (with respect to the Liouville measure) billiard flow.

Ergodic triangular billiards are generic in the sense of Baire category [136].
Y. Vorobets [252] gave an explicit, albeit extremely fast approximation, con-
dition for the angles which is sufficient for ergodicity. In the case when one of
the angles of a triangle is rational, there is a useful unfolding procedure (see
[244]) that may lead to a proof of ergodicity.

Question 31 (A. Katok). Does there exist a weakly mixing polygonal billiard?
Specifically, are Vorobets’ billiards [252] weakly mixing?
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See [100] for a related result for rational billiards.
It was proved that the set of ergodic (topologically transitive) triangular

billiard table is residual in the sense of Baire category (see [136] and [131]
respectively).

Question 32 (A. Katok). Does the set of ergodic billiard tables have positive
measure?

These problems are better understood for the case of rational billiards. It
is easy to see that rational billiards cannot be ergodic. In this case, the phase
space decomposes into invariant subsets Pθ that correspond to directions θ
of the flow. It was shown in [136] that the billiard flow is uniquely ergodic
on Pθ for the set of directions θ of full measure. There is an estimate of the
Hausdorff dimension of this set, which may be positive (see [185, 184, 36]).
It is also known that the restriction of the billiard flow on all but countably
many of the subsets Pθ is minimal [186, Section 1.6].

Since a polygonal billiard is a parabolic dynamical system, one expects that
invariant measures and invariant closed sets should be scarce.

Question 33 (A. Katok). Classify ergodic invariant probability measure and
closed invariant subsets for polygonal billiards.

Note that Questions 29 and 30 are special cases of Question 33.

8. Arithmeticity

Let G be the direct product of k copies of SL(2,R), k ≥ 2, and U+ and U−

the upper and lower unipotent subgroups G respectively. Let Γ+ and Γ− be
lattices in U+ and U−. We assume that these lattices are “irreducible” in the
sense that the projection maps from G to its components are injective on Γ+

and Γ−.
The following conjecture was communicated by H. Oh:

Conjecture 34 (G. Margulis, A. Selberg). If the group 〈Γ+, Γ−〉 is discrete,
then it an arithmetic lattice in G.

It was observed in [200] that Conjecture 34 for k ≥ 3 follows from Conjecture
39. In particular, one can show that the Hausdorff dimension of the set of
irreducible lattices Γ+ ⊂ U+ for which 〈Γ+, Γ−〉 is discrete for some irreducible
lattice Γ− ⊂ U− is exactly k (see [201]).

9. Diophantine analysis

9.1. A vector y = (y1, . . . , yn) ∈ Rn is called v-approximable (for v > 0) if
there are infinitely many q = (q1, . . . , qn) ∈ Zn and p ∈ Z such that

|y1q1 + · · ·+ ynqn − p| < ‖q‖−v.
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Here ‖ · ‖ denotes the max-norm on Rn. If a vector y ∈ Rn is (n + ε)-
approximable for some ε > 0, it is called very well approximable (VWA).
An easy argument (using Borel-Cantelli lemma) implies that the set of VWA
vectors has Lebesgue measure zero in Rn. Therefore, it is natural to expect
that a generic point on a “nondegenerate” submanifold of Rn is not VWA.
This is the Sprindžuk conjecture proved in [143] (see also [18]).

Similarly, an m×n real matrix A is called VWA if for some ε > 0 there are
infinitely many q ∈ Zn and p ∈ Zm such that

‖Aq− p‖m < ‖q‖−n−ε.

It is easy to see that the set of VWA matrices has measure zero in Rm×n, and
one hopes that an analog of the Sprindžuk conjecture holds in this set-up as
well.

The definition of nondegenerate submanifold of Rn in [143], which is well-
suited for the case of vectors, is a manifold with smooth coordinate charts
f : U(⊂ Rk) → Rn such that the spaces spanned by the partial derivatives f at
points of U have dimension n. It is not quite clear what is the right definition
of “nondegenerate” submanifold for the case of matrices.

Question 35 (D. Kleinbock, G. Margulis (see [143], Sec. 6.2)). Find rea-
sonable and checkable conditions for a smooth map f : U(⊂ Rk) → Mm×n(R)
which generalizes nondegeneracy of vector-valued maps and implies that almost
every point of f(U) is not VWA.

Such conditions were obtained in some cases in [150, 151, 139].

9.2. A far-reaching generalization of the Sprindžuk conjecture was suggested
in [140]. Let µ be a measure on Rk and and f : supp(µ) → Rn that sat-
isfy some reasonable conditions. What are the Diophantine properties of the
generic points in Rn with respect to the measure f∗µ? Several results in this
direction were obtained in [254, 141, 145] for locally finite measure. It would
be interesting to consider the case of Hausdorff measures:

Question 36 (D. Kleinbock). Give estimates on Hausdorff dimension of v-
approximable vectors in a nondegenerate submanifold of Rn using dynamics.

See [52] for a discussion of what is currently known about the Hausdorff
dimension and for a related result.

9.3. For α ∈ R, let 〈α〉 = dist(α,Z). It is not hard to show that the set of
(α, β) ∈ R2 such that

lim inf
q→∞

q(log q)2+ε 〈qα〉 〈qβ〉 > 0

for every ε > 0 has full Lebesgue measure. In fact, it was shown in [239] that

lim
q→∞

q(log q)2+ε 〈qα〉 〈qβ〉 = ∞
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on a set of (α, β) ∈ R2 of full measure. On the other hand, the following
question remains open:

Question 37 (A. Pollington). Are there α, β ∈ R such that for every ε > 0,

lim inf
q→∞

q(log q)2−ε 〈qα〉 〈qβ〉 > 0?

It follows from [89] that

lim inf
q→∞

q(log q)2 〈qα〉 〈qβ〉 = 0

for almost all (α, β). Thus, the set of (α, β) in Question 37 has measure zero.
Question 37 is related to the well-known conjecture of Littlewood:

Conjecture 38 (Littlewood). For any α, β ∈ R,

lim inf
q→∞

q 〈qα〉 〈qβ〉 = 0.

The best result on Conjecture 38 is [60], which shows that the set of ex-
ceptions (α, β) for the Littlewood conjecture is a countable union of sets of
box dimension zero. The proof in [60] uses dynamics on the homogeneous
space SL(3,R)/SL(3,Z), and the crucial step is to establish measure rigidity
discussed in Section 3.1.

It was observed some time ago that Conjecture 38 is implied by the following
conjecture:

Conjecture 39 (G. Margulis [173]). Let A be the group of all diagonal ma-
trices in SL(3,R). Then every bounded A-orbit in SL(3,R)/SL(3,Z) is closed.

Conjecture 39 is a very special case of the general conjecture describing
closed invariant subsets for actions of Cartan subgroups on general homoge-
neous spaces (see [173]).

G. Margulis suggested the following conjecture, which might be easier to
handle than Conjecture 39:

Conjecture 40 (G. Margulis). For every compact set K of SL(3,R)/SL(3,Z),
there are only finitely many closed A-orbits contained in K.

This conjecture can be reformulated in terms of the Markov spectrum of
forms

F (x) =
3∏

i=1

(
3∑

j=1

aijxj

)
, aij ∈ R.

Let

∆(F ) = det(aij) and m(F ) = inf

{∣∣∣∣
F (x)

∆(F )

∣∣∣∣ : x ∈ Z3 − 0

}
.

Then Question 40 is equivalent to the following question:
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Question 41 (G. Margulis). Show that for every ε > 0, the set [ε,∞)∩{m(F )}
is finite.

9.4. For 0 ≤ s ≤ 1, define

Cs =

{
(α, β) ∈ R2 : inf

q≥1
max{qs 〈qα〉 , q1−s 〈qβ〉} > 0

}
.

In particular, C1/2 is the set of badly approximable vectors. Since Conjecture
38 holds for all (α, β) /∈ Cs, one may naively hope to prove it by showing that
intersection of the sets Cs, 0 ≤ s ≤ 1, is empty. In this regard, we mention the
following conjecture:

Conjecture 42 (W. Schmidt [225]). For any s, t ∈ [0, 1], we have Cs∩Ct 6= ∅.
Note that W. Schmidt stated this conjecture in [225] only for s = 1/3 and

t = 2/3.
It is known that each of the sets Cs has zero measure and full Hausdorff

dimension. It was shown that the set Cs∩C0∩C1 has full Hausdorff dimension
as well (see [208]). Conjecture 42 is related to the following conjecture:

Conjecture 43. Let A be the group of all diagonal matrices in SL(3,R), and
A1, A2 ⊂ A are rays in A. Then there exists x ∈ SL(3,R)/SL(3,Z) such that
A1x and A2x are bounded, but Ax is not bounded in SL(3,R)/SL(3,Z).

Note that for rays A1 and A2 which lie in the cone

{diag(eu, ev, e−u−v) : u, v ≥ 0} ⊂ A,

Conjecture 43 follows from Conjectures 42. On the other hand, it was pointed
out by D. Kleinbock that in the case when A1 and A2 lie in the opposite Weyl
chambers, Conjecture 43 can be proved using the argument from [142], and
moreover, the set of x which satisfy Conjecture 43 has full Hausdorff dimension.

9.5. Let Q be a nondegenerate positive definite quadratic form of dimension
d ≥ 3.

Conjecture 44 (Davenport-Lewis). Suppose that Q is not a multiple of a
rational form. Then the gaps between consecutive elements of the set {Q(x) :
x ∈ Zd} go to zero as Q(x) →∞.

Conjecture 44 was proved in [16] for d ≥ 9, and recently the method in [16]
was extended to d ≥ 5 as well. The case d = 3, 4 is still open.

When Q is a nondegenerate indefinite definite quadratic form of dimension
d ≥ 3 which is not a multiple of a rational quadratic form, the set {Q(x) : x ∈
Zd} is dense in R. This is the Oppenheim conjecture proved by Margulis in
[172]. However, the proof in [172] is not effective.



OPEN PROBLEMS 19

Question 45 (G. Margulis [173]). Give an effective estimate on T = T (ε)
such that there exists x ∈ Zd with

0 < |Q(x)| < ε and ‖x‖ < T.

This question is especially difficult since the estimate on T should depend on
the Diophantine properties of coefficients of the quadratic form Q. An easier
question with x satisfying conditions

|Q(x)| < ε and ‖x‖ < T

is treated for d ≥ 5 in an upcoming work of G. Margulis and F. Götze.

9.6. Let Q(x) = ax2
1 + bx1x2 + cx2

2 be a nondegenerate indefinite quadratic
form with rational coefficients that does not represent zero over Q. For x ∈ R2,
define

m(Q, x) = inf
z∈Z2

|Q(x + z)| and m(Q) = sup
x∈R2

m(Q, x).

If the supremum m(Q) is isolated, we also define

m2(Q) = sup{m(Q, x) : x ∈ R2,m(Q, x) < m(Q)}.
The interest in the quantity m(Q) was motivated by the study of existence of
a Euclidean algorithm in quadratic fields Q(

√
m), m > 0. If Q represents the

norm of Q(
√

m) computed with respect to an integral basis, then Euclidean
algorithm exists iff m(Q) < 1.

The following conjecture was communicated by A. Pollington:

Conjecture 46 (E. Barnes, H. Swinnerton-Dyer [11]). For any quadratic form
Q as above, the supremum m(Q) is rational and isolated. Both m(Q) and
m2(Q) are attained at points with coordinates in the the splitting field of Q.

Conjecture 46 is based on numerous computations performed in [10, 11].
The supremum m2(Q) need not be isolated (see [95]).

9.7. The following question was communicated by D. Kleinbock:

Question 47 (Y. Bugeaud). Let

Bs =

{
(α, β) ∈ R2 : inf

n≥1
n(min{‖nα‖, ‖nβ‖})s(max{‖nα‖, ‖nβ‖})2−s > 0

}
.

Compute the Hausdorff dimension of the set Bs, 0 < s < 1.

Note that B0 is the set of badly approximable vectors and its Hausdorff
dimension is 2. On the other hand, B1 is the set of exceptions of the Littlewood
conjecture, and its Hausdorff dimension is 0.

9.8. Some other interesting open problems on Diophantine approximation are
stated in [144], Section 13.
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10. Quantum ergodicity and quantum chaos

10.1. The term “quantum chaos” refers to the study of quantizations of
Hamiltonian systems whose dynamics is chaotic. More generally, one is in-
terested in connections between properties classical dynamical systems and
corresponding quantum systems. We concentrate on the case of the geodesic
flow on compact (or, more generally, finite volume) Riemannian manifold X
possibly with piecewise smooth boundary (e.g. billiards in R2). The geo-
desic flow on the boundary is defined as elastic reflection. Denote by ∆ the
Laplace-Beltrami operator on X and by dV the normalized Riemannian vol-
ume on X. Let 0 = λ0 < λ1 ≤ λ2 . . . be the eigenvalues of −∆ and φi, i ≥ 0,
the corresponding eigenfunctions with the Dirichlet boundary condition such
that ‖φi‖2 = 1:

−∆φi = λiφi, φi|∂X = 0.

One is interested in the semiclassical limit of this system, i.e., in the behavior
of the eigenvalues and the eigenfunctions as i → ∞. According to the corre-
spondence principle in quantum mechanics, certain properties of the classical
dynamical system are inherited by the semiclassical limit of its quantization.

Consider the probability measures

dµi(x) = |φi(x)|2dV (x)

on X. One of the fundamental questions is to describe all possible weak∗

limits of the sequence {µi} as i →∞, which are called quantum limits. It was
discovered by A. Shnirelman [237] and later proved by S. Zelditch [260] and
Y. Colin de Verdière [41] (see also [264]) that if the geodesic flow is ergodic
on X, then µik → dV in the weak∗ topology as ik → ∞ along a subsequence
{ik} of density one. This property is referred as quantum ergodicity. We refer
to [220, 21, 179] for a more detailed discussion.

In general, it might be possible that some of the quantum limits are not
absolutely continuous and even assign positive measure to an unstable periodic
orbit (this is called a scar) or to a family of marginally stable periodic orbits
(this is called a bouncing ball mode). However, it seems that no rigorous proof
of this phenomena has been given for the systems discussed here (see [51] for a
partial result and [180] for a result on escape of mass to infinity). Existence of
scars was proved for quantum cat maps of [70]. For the stadium billiard, there
are substantial numerical and heuristic evidences of the existence of scars and
bouncing ball modes (see, for example, [106, 107, 121, 158, 8, 242, 263] and
references therein). On the other hand, the numerical data in [12] suggest that
no scarring occurs for some dispersive billiards.

A. Katok constructed an example of a Finsler metric on 2-dimensional sphere
such that the corresponding geodesic flow is ergodic and has only two periodic
orbits (see [122]). If it is constructed with a certain care (along the line of [71,
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Section 3]), then there are only three ergodic invariant measures corresponding
to closed orbits and the volume measure.

Question 48 (A. Katok). Do the closed geodesics in this example correspond
to scars?

Some numerical experiments were performed for X = Γ\H2, where Γ is an
arithmetic lattice, and no scars were observed (see [105, 104, 5]). Z. Rudnick
and P. Sarnak [215] formulated the following conjecture:

Conjecture 49 (Quantum unique ergodicity). Suppose that X has negative
sectional curvature. Then

µi → dV as i →∞.

A recent important breakthrough was made by N. Anantharaman [3] who
gave lower bounds on the entropy of the limits of the sequence {µi} in some
cases. Besides this result, very little is known about general negatively curved
manifolds, and we concentrate on the case of arithmetic manifolds X = Γ\X̃,
where X̃ is a symmetric space of noncompact type and Γ an arithmetic lat-
tice. The arithmeticity assumption implies that there is an infinite set of Hecke
operators acting on X, which commute with the left invariant differential op-
erators (in rank one the Laplacian is the only such operator). We assume that
φi, i ≥ 0, are joint eigenfunctions of the invariant differential operators and
Hecke operators. Then the weak∗ limits of the sequence of measures {µi} are
called arithmetic quantum limits. It is believed (see [34]) that the Laplace-
Beltrami operator on X = SL2(Z)\H2 has simple cuspidal spectrum; then the
assumption on Hecke operators is automatic.

Conjecture 50 (Arithmetic quantum unique ergodicity). The Riemannian
volume is the only arithmetic quantum limit.

Positive results towards this conjecture were obtained for the case X =
Γ\H2, where Γ is a congruence subgroup in either SL2(Z) or in the group of
quaternions of norm one. In this case, T. Watson [253] proved Conjecture
50 assuming the generalized Riemann hypothesis. His proof also implies the
optimal rate of convergence. Unconditionally, Conjecture 50 for this case was
proved by E. Lindenstrauss [159]. The only issue that was not handled in [159]
is the escape of the limit measure to the cusp in noncompact case. To handle
this difficulty, E. Lindenstrauss suggested the following intermediate problem:

Problem 51 (E. Lindenstrauss). Let X = Γ\H2 where Γ is a noncocompact
arithmetic lattice. Show that for all f, g ∈ Cc(X),∫

X
f dµi∫

X
g dµi

→
∫

X
f dV∫

X
g dV

as i →∞.



OPEN PROBLEMS 22

The formula of T. Watson [253] gives an explicit connection between the
arithmetic quantum unique ergodicity and subconvexity estimates for L-function.
Such subconvexity estimates have been carried out in several case (see, for ex-
ample, [205, 221, 163]), and they imply Conjecture 50 (and answer Question
51) for some natural subsequences of the sequence {µi}.

We also mention that analogs of Conjecture 50 for continuous spectrum was
proved in [115, 167, 149], and some partial results toward Conjecture 50 for
higher-rank symmetric spaces were proved by L. Silberman and A. Venkatesh
[233].

10.2. M. Berry [20] conjectured that eigenfunctions of a typical chaotic sys-
tems behave like a superposition of plane waves with random amplitude, phase
and direction. This model predicts that the eigenfunctions φi behave like in-
dependent Gaussian random variables as i → ∞. In particular, the follow-
ing conjecture should hold for generic negatively curved compact Riemannian
manifolds:

Conjecture 52 (J. Marklof).

Vol({x ∈ X : a ≤ φi(x) ≤ b}) → 1√
2π

∫ b

a

e−t2/2dt

as i →∞.

Conjecture 52 is supported by numerical experiments (see [105, 106]).
The random wave model also predicts a central limit theorem for the con-

vergence in Conjecture 49 (see [72, 55]). To formulate this, we need some
notations. For a smooth function a on the unit cotangent bundle S∗X of X,
we denote by Op(a) a pseododifferential operator of order zero with principal
symbol a. For example, when a is a function on X, then Op(a) is a multipli-
cation by a. Let λ be the Liouville measure on S∗X and gt is the geodesic
flow. It is expected that for generic negatively curved compact Riemannian
manifolds,we have the following. (Suppose w.l.o.g. the surface has area 4π so
that Weyl’s law reads N(λ) = #{i : λi ≤ λ} ∼ λ.)

Conjecture 53 (J. Marklof (after Feingold-Peres [72])). Suppose X is “generic”.
For a ∈ C∞

c (S∗X,R) with ∫

S∗X
a dλ = 0,

put

ξi(a) = λ
1/4
i |〈Op(a)φi, φi〉| .

Then the sequence ξi(a) has a Gaussian limit distribution whose variance is
given by the classical autocorrelation function

V (a)
def
=

∫ ∞

−∞

∫

S∗X
a(xgt)a(x) dλ(x)dt.
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That is, as λ →∞,

(1)
1

λ

∑

λi≤λ

ξi(a)2 → V (a),

(2) for any interval I ∈ R
1

λ
#

{
λi ≤ λ : V (a)−1/2ξi(a) ∈ I

} → 1√
2π

∫

I

e−t2/2dt.

It was proved by W. Luo and P. Sarnak [168] that for the modular surface
X = SL2(Z)\H2,

∑

λi≤λ

|〈Op(a)φi, φi〉|2 ∼
√

λB(a) as λ →∞,

where B is a quadratic form on C∞
c (X) which is closely related to but distinct

from the form V defined above (see [222]). In this respect the modular and
other arithmetic surfaces are ruled out as “generic” examples for the above
conjecture.

10.3. A. Katok suggested polygonal billiards as a promising model for quan-
tum chaos.

Question 54 (A. Katok). Do periodic orbits in a triangular billiard corre-
spond to scars? More precisely, are there quantum limits supported on periodic
orbits?

Based on the investigation [23], it seems likely that the answer to this ques-
tion is ‘yes’ for rational billiards.

Problem 55 (J. Marklof). Classify all quantum limits of the eigenfunctions
of a polygonal billiard.

10.4. According to the Berry-Tabor conjecture (see [176]), the eigenvalues of
the Laplacian for generic integrable dynamical system have the same statistical
properties as a Poisson process. For 2-dimensional torus, the set of eigenvalues
is {Q(x) : x ∈ Z2} where Q is a positive definite quadratic form.

Question 56 (J. Marklof). What is the distribution of the set

{(Q(x1)−Q(x2), Q(x2)−Q(x3)) : xi ∈ Z2, xi 6= xj for i 6= j} ⊂ R2?

More precisely, determine the asymptotics of

NT ((a, b), (c, d))
def
= #



(x1, x2, x3) ∈ (Z2)3 :

a < Q(x1)−Q(x2) < b,
c < Q(x2)−Q(x3) < d,
xi 6= xj for i 6= j, ‖xi‖ < T



 .
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The distribution of the set {Q(x) − Q(y) : x, y ∈ Z2} was studied in [223,
64, 65], and in [177, 178] in the case of rational forms over shifted lattice
points. It depends on Diophantine properties of coefficients of the quadratic
form. The Berry-Tabor conjecture predicts that the set in Question 56 should
be equidistributed in R2 for a generic quadratic form Q, i.e, after a suitable
normalization, NT ((a, b), (c, d)) converges to (b− a)(d− c). However, it is not
even known whether the set in Conjecture 56 is dense in R2.

11. André-Oort conjecture

We refer to [189] for an introduction to Shimura varieties, to to [247] for an
accessible account of André-Oort conjecture, to [198] for a recent survey.

A Shimura datum is a pair (G, X) where G is a reductive algebraic group
defined over Q and X is a G(R)-conjugacy class of homomorphisms h : C× →
G(R) such that

(1) The adjoint action of h(C×) on Lie(Gad(R))4 decomposes as a direct
sum of eigenspaces with characters z/z̄, 1, z̄/z.

(2) ad h(i) acts as a Cartan involution on Gad(R).
(3) Gad(R) has no factors on which the adjoint action of h(C×) is trivial.

Morphisms (G̃, X̃) → (G,X) of Shimura datums are induced by morphisms
G̃ → G of algebraic groups in obvious way. Note that X has a natural struc-
ture of complex manifold such that its connected components are Hermitian
symmetric domains, G(R) acts on X by holomorphic automorphisms, and
morphisms are equivariant holomorphic maps.

Let Af denote the ring of finite adeles, and K is an open compact subgroup
in G(Af ). Define

ShK(G,X) = G(Q)\(X ×G(Af ))/K

One can show that ShK(G,X) is a finite disjoint union of Hermitian locally
symmetric domains. In particular, by the Baily-Borel theorem, ShK(G,X) has
a natural structure of an algebraic variety. In fact, it is canonically defined
over a number field.

Example: Let G = GL2, h(a + bi) =

(
a b
−b a

)
and K = GL2(Ẑ). Then

ShK(G,X) ' SL2(Z)\H2 parameterizes isomorphism classes of elliptic curves
over C.

The Shimura variety associated to (G,X) is the projective limit of ShK(G,X)
where K runs over open compact subgroups of G(Af ). A point h ∈ X is called
special if there exists a torus T of G defined over Q such that h(C×) ⊂ T (R).
One can check that in the above example, the special points are imaginary

4Gad is the adjoint group which is the factor of G by its center.
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quadratic irrationals that correspond to elliptic curves with complex multipli-
cation.

For g ∈ G(Af ), we have natural projection maps

π1 : ShK∩gKg−1(G,X) → ShK(G,X)

π2 : ShK∩gKg−1(G,X) → ShgKg−1(G,X).

with finite fibers. This defines Hecke correspondence

Tg(x) = π2(π
−1
1 (x))g : ShK(G,X) → ShK(G,X).

Let (G̃, X̃) → (G,X) be morphism of Shimura datums that induces the map
ShK̃(G̃, X̃) → ShK(G,X). The special subvarieties (also called subvarieties of
Hodge type) are the irreducible components of the image

ShK̃(G̃, X̃) → ShK(G,X)
Tg−→ ShK(G,X).

Using Hecke correspondences, one shows that the set of special points in a
special subvariety is dense with respect to Zariski (or even analytic) topology.
The following conjecture is the converse of this fact.

Conjecture 57 (Y. André-F. Oort [4, 202]). Zariski closure of a set of special
point is a finite union of special subvarieties.

Recently, B. Klinger and A. Yafaev announced a prove of Conjecture 57
assuming the generalized Riemann Hypothesis.

There have been two main approaches to Conjecture 57. One is number-
theoretic and is due to S. J. Edixhoven and A. Yafaev [56, 57, 259]. It uses
Hecke correspondences and requires lower estimates on the size of Galois or-
bits of special points. The other approach is ergodic-theoretic and is due to
L. Clozel and E. Ullmo [38, 39]. It uses the Ratner theory of unipotent flows
and in particular [194].

Conjecture 57 was partially motivated by an analogy with the theory of
abelian varieties, according to which special points correspond to torsion points
and special subvarieties correspond to translates of abelian subvarieties by
torsion points. Analogous conjectures for abelian varieties is due to S. Lang,
Yu. Manin, and D. Mumford. These conjectures were settled (see [245] for
a survey). One of the proofs (see [246, 265]) is based on equidistribution of
Galois orbits of “generic” sequences of points, which was established in [241]
(see also [22]). This approach may also lead to a proof of Conjecture 57 (see,
for example, [266]).

Conjecture 58. Let {xn} be a sequence of special points on a Shimura variety.
Suppose that xn lies outside of any special subvariety for sufficiently large n.
Then the Galois orbits of xn become equidistributed as n →∞ with respect to
the normalized Haar measure.
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For some partial results on this conjecture using convexity and subconvexity
bounds for L-functions see [53, 102, 39, 40, 266]. Note that for the above
example, Conjecture 58 was established in [53].

Question 59 (L. Silberman). Give an ergodic-theoretic proof of the equidis-
tribution of special points on SL2(Z)\H2.

Recently, M. Einsidler, E. Lindenstrauss, P. Michel, and A. Venkatesh [62]
gave an ergodic-theoretic argument, which proves the equidistribution of closed
geodesic established in [53], under the condition that mass does not escape to
infinity.
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Études Sci. Publ. Math. No. 50 (1979), 153–170.
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Sup. (4) 37 (2004), no. 5, 769–799.

[169] R. Lyons, On measures simultaneously 2- and 3-invariant. Israel J. Math. 61 (1988),
no. 2, 219–224.

[170] A. Manning, There are no new Anosov diffeomorphisms on tori. Amer. J. Math. 96
(1974), 422–429.



OPEN PROBLEMS 34

[171] G. A. Margulis, Certain applications of ergodic theory to the investigation of manifolds
of negative curvature. (Russian) Funkcional. Anal. i Priložen. 3 (1969), no. 4, 89–90.
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[213] G. Rauzy, Nombres algébriques et substitutions. Bull. Soc. Math. France 110 (1982),
no. 2, 147–178.

[214] F. Rodriguez Hertz, Global rigidity of Z2 actions on T3. Preprint.
[215] Z. Rudnick and P. Sarnak, The behaviour of eigenstates of arithmetic hyperbolic

manifolds. Comm. Math. Phys. 161 (1994), no. 1, 195–213.
[216] Z. Rudnick and P. Sarnak, The pair correlation function of fractional parts of polyno-

mials. Comm. Math. Phys. 194 (1998), 61–70.



OPEN PROBLEMS 36

[217] Z. Rudnick, P. Sarnak and A. Zaharescu, The distribution of spacings between the
fractional parts of n2α. Invent. Math. 145 (2001), 37–57.

[218] D. Rudolph, ×2 and ×3 invariant measures and entropy. Ergodic Theory Dynam.
Systems 10 (1990), no. 2, 395–406.

[219] O. Sarig, Invariant Radon measures for horocycle flows on Abelian covers. Invent.
Math. 157 (2004), no. 3, 519–551.

[220] P. Sarnak, Arithmetic quantum chaos. The Schur lectures (1992) (Tel Aviv), 183–236,
Israel Math. Conf. Proc., 8, Bar-Ilan Univ., Ramat Gan, 1995.

[221] P. Sarnak, Estimates for Rankin-Selberg L-functions and quantum unique ergodicity.
J. Funct. Anal. 184 (2001), no. 2, 419–453.

[222] P. Sarnak, Spectra of hyperbolic surfaces. Bull. Amer. Math. Soc. (N.S.) 40 (2003),
no. 4, 441–478.

[223] P. Sarnak, Values at integers of binary quadratic forms. Harmonic Analysis and Num-
ber Theory (Montreal, PQ, 1996), 181-203, CMS Conf. Proc. 21, Amer. Math. Soc.,
Providence, RI, 1997.

[224] P. Sarnak and M. Wakayama, Equidistribution of holonomy about closed geodesics.
Duke Math. J. 100 (1999), no. 1, 1–57.

[225] W. M. Schmidt, Open problems in Diophantine approximation. Diophantine approx-
imations and transcendental numbers (Luminy, 1982), 271–287, Progr. Math., 31,
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(2) 147 (1998), no. 1, 167–179.
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