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Abstract. We extend the buckling and clamped-plate problems to the context of differen-
tial forms on compact Riemannian manifolds with smooth boundary. We characterize their
smallest eigenvalues and prove that, in the case of bounded Euclidean domains, their spectra
without multiplicities on forms coincide with the spectra of the corresponding problems on
functions. We obtain various estimates involving the first eigenvalues of the mentioned prob-
lems and the ones of the Hodge Laplacian with respect to Dirichlet and absolute boundary
conditions on forms. These estimates generalize previous ones in the case of functions.
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1 Introduction

Let (M, g) be an n-dimensional compact Riemannian manifold with smooth boundary ∂M and
let ν be the inward unit vector field normal to ∂M . For a smooth function f on M , we consider
the following two problems:

∆2f = Γf on M,

f = 0 on ∂M, (1.1)

∂f

∂ν
= 0 on ∂M

and

∆2f = Λ∆f on M,

f = 0 on ∂M, (1.2)

∂f

∂ν
= 0 on ∂M
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called the clamped plate and the buckling problem respectively. Note that ∆f = −tr
(
∇2f

)
is

the Laplace operator of f and ∆2 its square, which is sometimes called the bi-Laplace operator.
It is well known that these two problems have discrete spectra consisting of eigenvalues of finite
multiplicities

0 < Γ1 ≤ Γ2 ≤ · · · ≤ Γk ≤ · · · −→ ∞

and

0 < Λ1 ≤ Λ2 ≤ · · · ≤ Λk ≤ · · · −→ ∞,

where each eigenvalue is repeated according to its multiplicity. Physically, problem (1.1) de-
scribes the vibrations of a clamped plate, whereas problem (1.2) describes the critical buckling
load of a clamped plate subjected to a uniform compressive force around its boundary.

These two problems were studied by numerous authors. In 1955, Payne [16] proved that,
if M is a planar bounded domain, then

Λ1 ≥ λ2,

where λ2 is the second eigenvalue of the Dirichlet problem on M (see also [11] for a corrected
proof). In 1996, Ashbaugh and Laugesen showed, in their work in [2], that whenever M is
a bounded and connected open subset of the Euclidean space Rn,

Λ2
1 ≥ Γ1 ≥ Λ1λ1 > λ2

1, (1.3)

where λ1 is the first eigenvalue of the Dirichlet problem on M . In [4], Chen, Cheng, Wang and
Xia proved that, if the Ricci curvature is bounded below by n− 1, then

Γ1 > nλ1 and Λ1 > n.

Ilias and Shouman gave in [15] an estimate relating the first eigenvalue Λ1 of the buckling
problem to µ1, the first nonzero eigenvalue of the Neumann problem

µ1 < Λ1. (1.4)

In this paper, we first generalize problems (1.1) and (1.2) to the context of differential forms
on the manifold M . We prove that each problem has a discrete spectrum consisting of a non-
decreasing sequence of real eigenvalues of finite multiplicities and the corresponding eigenforms
form a Hilbert basis of L2-integrable p-forms on M . We also characterize the first eigenvalue of
each problem (see Theorems 2.2 and 2.4).

In Section 3, we prove that if (M, g) is a bounded domain of the Euclidean space Rn, the spec-
tra without multiplicities of both problems on p-forms, for p = 1, . . . , n, and on functions on M
coincide (see Proposition 3.1). This allows us, for example, to determine the first eigenvalues of
both of the problems on p-forms for the Euclidean ball of arbitrary radius. In the same section,
namely in Theorem 3.3, we establish a relationship between the first eigenvalues of the buckling
and clamped-plate problems on an arbitrary compact Riemannian manifold (M, g) with smooth
boundary. In the same context, we consider the following problem, called the Dirichlet problem
on forms,

∆ω = λω in M,

ω = 0 on ∂M
(1.5)

and give estimates relating the first eigenvalues of the buckling, clamped-plate and Dirichlet
problems. The estimates that we obtain generalize inequalities (1.3) to differential forms on M .



The Buckling and Clamped Plate Problems on Differential Forms 3

We prove as well that there exists a connection with the first eigenvalue of the absolute boundary
value problem on forms

∆ω = µω on M,

ν⌟ω = 0 on ∂M,

ν⌟dω = 0 on ∂M

given in Theorem 3.11. This connection allows to extend (1.4) to differential forms.
Further in the same section, we show that, under the condition that the Weitzenböck curva-

ture operator is bounded below by a positive constant γ, the first eigenvalue λ1,p of problem (1.5)
is also bounded below by a quantity depending on γ, see Theorem 3.16. This gives new estimates
of the first eigenvalues of the buckling and clamped-plate problems under the same conditions,
see Corollary 3.18.

We end Section 3 by considering domains M of the unit round sphere Sn and derive in-
equalities relating the first eigenvalues of the buckling and clamped plate problems on forms of
different degrees (see Theorem 3.20).

Finally, we point out that our boundary conditions for the buckling and clamped plate prob-
lems are the most natural in the context of differential forms. To what extent there exist further
boundary conditions generalizing the ones for the scalar problem is a question which has not
been addressed in this article. Independently, so-called universal inequalities have been estab-
lished in the scalar case [5, 6, 7]. Extending those to our problems constitutes the object of
future work.

2 The buckling and clamped plate problems

In order to make this work self-contained, we collect here some classical and useful formulae
in the study of p-forms on manifolds with boundary. In the following, (Mn, g) denotes an n-
dimensional compact Riemannian manifold with smooth boundary and ν the inner unit normal
to ∂M . Then we recall from [19, Lemma 18] that for any p-form ω on M , we have

ι∗(∇νω) = ν⌟ dω + d(ν⌟ω) + S[p](ι∗ω) (2.1)

and

ν⌟∇νω = δ∂M (ι∗ω)− ι∗(δω)− S[p−1](ν⌟ω) + (n− 1)Hν⌟ω. (2.2)

Here δ∂M denotes the codifferential on ∂M , S[p] is the natural extension as an endomorphism
of Ωp(∂M) of the shape operator S := −∇ν of the embedding ι of ∂M in M and H = 1

n−1 tr(S)
is its mean curvature, see, e.g., [19, p. 624].

We are especially interested in p-forms ω ∈ Ωp(M) which satisfy the boundary condition
ω|∂M = 0. Then, using (2.1) and (2.2), it is not difficult to compute that, along ∂M , we have
ι∗∇νω = ν⌟ dω and ν⌟∇νω = −ι∗δω. So it is straightforward to see that

ω|∂M = 0,

∇νω|∂M = 0,
⇐⇒

ι∗ω = 0,

ν⌟ω = 0,

ι∗δω = 0,

ν⌟dω = 0.

(2.3)

In the following, we will denote by Z the vector space of smooth p-forms on M which satisfy
these boundary conditions that is

Z :=
{
ω ∈ Ωp(M) | ω|∂M = 0 and ∇νω|∂M = 0

}
.
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In this work, we will also often use integration by parts formulae which are cumbersome to
write down in the general framework of p-forms on manifolds with boundary. However, as we
restrict our attention to elements in Z, it may be very useful to observe that in this context
they become very simple. In fact, for any ω, ω′ ∈ Ωp(M), it holds that∫

M

〈
∆ω, ω′〉dµ =

∫
M

(〈
dω,dω′〉+ 〈δω, δω′〉)dµ

+

∫
∂M

(〈
ν⌟dω, ι∗ω′〉− 〈ι∗δω, ν⌟ω′〉)dσ (2.4)

=

∫
M

〈
ω,∆ω′〉dµ+

∫
∂M

(〈
ν⌟dω, ι∗ω′〉− 〈ι∗ω, ν⌟dω′〉

+
〈
ν⌟ω, ι∗δω′〉− 〈ι∗δω, ν⌟ω′〉)dσ, (2.5)

and so we immediately deduce from (2.3) that if ω, ω′ ∈ Z, then∫
M

〈
∆ω, ω′〉dµ =

∫
M

(〈
dω,dω′〉+ 〈δω, δω′〉)dµ =

∫
M

〈
ω,∆ω′〉dµ. (2.6)

Here dµ (resp. dσ) denotes the Riemmanian measure density of (Mn, g) (resp. ∂M endowed
with the induced metric). Now by replacing ω by ∆ω in (2.5), we obtain∫

M

〈
∆2ω, ω′〉dµ =

∫
M

〈
∆ω,∆ω′〉dµ+

∫
∂M

(〈
ν⌟d∆ω, ι∗ω′〉− 〈ι∗∆ω, ν⌟dω′〉)dσ

+

∫
∂M

(〈
ν⌟∆ω, ι∗δω′〉− 〈ι∗δ∆ω, ν⌟ω′〉)dσ (2.7)

and so if ω, ω′ ∈ Z, we get∫
M

〈
∆2ω, ω′〉dµ =

∫
M

〈
∆ω,∆ω′〉dµ. (2.8)

In the following, we will also denote by (·, ·)L2(M) the L
2-scalar product on Ωp(M) and ∥ ·∥L2(M)

its associated norm. We finally notice that the boundary conditions studied here turn out to
be elliptic in the sense of Lopatinskĭı–Shapiro (see [21, Definition 1.6.1]). This was proved in
a more general setting by the first four authors (see [9, Lemma 6.1]) and we restate this result
in our context.

Lemma 2.1. Let (Mn, g) be a compact Riemannian manifold with smooth boundary ∂M and
let ν be the inward unit normal vector field to the boundary. The following boundary value
problem:

∆2ω = f on M,

ω = ω1 on ∂M,

ι∗δω = ω2 on ∂M,

ν⌟dω = ω3 on ∂M

for given f ∈ Ωp(M), ω1 ∈ Ωp(M)|∂M , ω2 ∈ Ωp−1(∂M), ω3 ∈ Ωp(∂M), is elliptic in the sense
of Lopatinskĭı–Shapiro.

2.1 The buckling problem

The buckling eigenvalue problem on differential forms is

∆2ω = Λ∆ω on M,

ω = 0 on ∂M,

∇νω|∂M = 0 on ∂M,

(2.9)
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for some real constant Λ. Let us begin with the following existence result.

Theorem 2.2. There exists a Hilbert basis of the space of L2-integrable p-forms on (Mn, g)
consisting of eigenforms solutions of the problem (2.9) associated to an unbounded and positive
sequence of eigenvalues (Λi,p)i≥1. Moreover, each eigenspace has a finite multiplicity and the
corresponding eigenforms are smooth. Finally, the first eigenvalue Λ1,p is characterized by

Λ1,p = inf

{
∥∆ω∥2L2(M)

∥dω∥2
L2(M)

+ ∥δω∥2
L2(M)

, ω ∈ Ωp(M) \ {0}, ω|∂M = 0, ∇νω|∂M = 0

}
. (2.10)

Equality holds if and only if ω is an eigenform associated to the first eigenvalue.

Proof. The proof is classical and so we only recall the main steps. For all p-forms ω, ω′, the
two bilinear forms(

ω, ω′)
V
:=

∫
M

〈
∆ω,∆ω′〉dµ and

(
ω, ω′)

W
:=

∫
M

(〈
dω,dω′〉+ 〈δω, δω′〉)dµ

define scalar products on Z whose associated norms will be denoted by ∥ ·∥V and ∥ ·∥W . We will
also denote by V and W the completions of Z with respect to these norms. Then one can easily
show that there exists a positive constant C such that ∥ · ∥W ≤ C∥ · ∥V on Z so that there is
a natural bounded linear operator I : V → W extending the identity map on Z. Since by [1] –
see [3] for a corrected proof – any closed and co-closed p-form vanishing along ∂M must vanish
identically on M , the operator I is actually injective.

Now let K : V → V be the linear operator defined by(
Kω, ω′)

V
=
(
Iω, Iω′)

W

for all (ω, ω′) ∈ V 2. By definition, the operator K is self-adjoint and positive-definite. On the
other hand, since from standard elliptic estimates both norms ∥·∥V and ∥·∥H2(M) are equivalent
on Z, the Rellich theorem ensures that I is compact and so is K. The spectral theorem for
positive compact self-adjoint operators applies and yields the existence of a countable Hilbert
orthonormal basis (ωi)i≥1 of V associated to a monotonously nonincreasing positive real sequence
of eigenvalues of finite multiplicities (αi,p)i≥1 going to 0 such that Kωi = αi,pωi for all i ≥ 1.
Now fixing i ≥ 1 and using the definition of K as well as the integration by part formula (2.6),
it can be computed that, for every ω ∈ Z,

αi,p(∆ωi,∆ω)L2(M) = (Kωi, ω)V = (ωi, ω)W = (∆ωi, ω)L2(M).

At the same time, we also have by (2.8) that

(∆ωi,∆ω)L2(M) =
(
∆2ωi, ω

)
L2(M)

for every ω ∈ Z and so the previous equality now reads as(
∆2ωi − Λi,p∆ωi, ω

)
L2(M)

= 0,

where we let Λi,p =
1

αi,p
. It follows that ωi is a weak solution of the eigenvalue problem (2.9)

which, by ellipticity (see in Lemma 2.1), is in fact smooth. Thus the form ωi becomes a smooth
eigenform to problem (2.9) associated with the eigenvalue Λi,p =

1
αi,p

which is of finite multi-
plicity, since αi,p is.

Conversely, observe that if there exists a nontrivial solution ω to (2.9) for a certain Λ ∈ R,
then by (2.8), we have(

ω, ω′)
V
= Λ

(
ω, ω′)

W
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for every ω′ ∈ Z. Note that Λ > 0, since otherwise ∆2ω = 0 which from (2.8) implies that ∆ω = 0
and then ω = 0 by [1] since ω|∂M = 0. By definition of K, we have (ω, ω′)V = Λ(Kω, ω′)V for all
ω′ ∈ Z and hence in V , therefore Kω = 1

Λω. This shows that ω is an eigenform of K associated
to the eigenvalue α = 1

Λ .
Finally, given any eigenform ω associated to a positive eigenvalue Λ of (2.9), we have by

formula (2.8) that

Λ

∫
M
⟨∆ω, ω⟩dµ =

∫
M

|∆ω|2dµ.

Applying (2.6) to the left-hand side of this equality ensures that

Λ1,p ≤
∥∆ω∥2L2(M)

∥dω∥2
L2(M)

+ ∥δω∥2
L2(M)

for every such eigenform, with equality for ω associated to Λ1,p. Finally, if ω ∈ V , one may write
its decomposition in the Hilbert basis (ωi)i≥1 so that

∥dω∥2L2(M) + ∥δω∥2L2(M) = (Kω,ω)V =
∑
i≥1

1

Λi,p
|(ω, ωi)V |2 ≤

1

Λ1,p

∑
i≥1

|(ω, ωi)V |2

=
1

Λ1,p
∥∆ω∥2L2(M).

This prove the characterization (2.10) since Z is dense in V . ■

Remark 2.3. When M is oriented, the Hodge ⋆ operator is an isometry commuting with the
Laplacian and preserving the boundary conditions in the buckling problem so that Λi,p = Λi,n−p

for any i ≥ 1 and 1 ≤ p ≤ n.

2.2 The clamped plate problem

The clamped plate eigenvalue problem on differential forms is

∆2ω = Γω on M,

ω = 0 on ∂M,

∇νω|∂M = 0 on ∂M,

(2.11)

for some real constant Γ. As previously, we immediately get the following existence result.

Theorem 2.4. There exists a Hilbert basis of the space of L2-integrable p-forms on (Mn, g)
consisting of eigenforms solutions of the problem (2.11) associated to an unbounded and positive
sequence of eigenvalues (Γi,p)i≥1. Moreover, each eigenspace has a finite multiplicity and the
corresponding eigenforms are smooth. Finally, the first eigenvalue Γ1,p is characterized by

Γ1,p = inf

{
∥∆ω∥2L2(M)

∥ω∥2
L2(M)

, ω ∈ Ωp(M) \ {0}, ω|∂M = 0 and ∇νω|∂M = 0

}
. (2.12)

Equality holds if and only if ω is an eigenform associated to the first eigenvalue.

Proof. It is enough to take ( , )W to be the L2(M)-scalar product on Ωp(M) in the proof
of Theorem 2.2 and then the proof goes the same. Note that if ω ∈ Ωp(M) is an eigenform
associated to Γ1,p, it follows from (2.8) that Γ1,p ≥ 0. Moreover, if Γ1,p = 0, then any associated
eigenform ω has to be harmonic with ω|∂M = 0 and so ω = 0 by [1]. In particular, Γ1,p > 0. ■

Remark 2.5. As for the buckling problem, when M is oriented, the Hodge ⋆ operator preserves
the clamped plate problem so that Γi,p = Γi,n−p for any i ≥ 1 and 1 ≤ p ≤ n.
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3 Eigenvalues of the buckling and clamped plate operators

3.1 Eigenvalues for bounded Euclidean domains

In this subsection, we completely describe the spectrum of the buckling and clamped plate
problems for bounded domains in the Euclidean space. More precisely, we prove the following
characterization.

Proposition 3.1. Let (Mn, g) be a bounded domain in the Euclidean space Rn. Then the
spectrum without multiplicities of the buckling problem on p-forms on (Mn, g) coincides with the
spectrum of the buckling problem on functions that is Λi,p = Λi,0 for all i ≥ 1 and p ∈ {1, . . . , n}.
The same holds for the clamped plate problem that is Γi,p = Γi,0 for all i ≥ 1 and p ∈ {1, . . . , n}.
The multiplicities of Λi,p and Γi,p are exactly

( n
p

)
times those of Λi,0 and Γi,0 respectively.

Proof. First recall that on Rn, there exists for each p ∈ {1, . . . , n} a maximal number of parallel
p-forms. Fix p ∈ {1, . . . , n} and denote by ω0 a nontrivial parallel p-form on M . Then note that
for any smooth function f on M with f|∂M = 0 and ∂f

∂ν |∂M = 0, the p-form ωf := fω0 satisfies

ωf|∂M
= 0 and ∇νωf|∂M

= 0. (3.1)

On the other hand, since ω0 is parallel, we have dωf = df ∧ω0 and δωf = −df⌟ω0 and therefore
∆ωf = (∆f)ω0. Applying twice this formula leads to

∆2ωf = ∆((∆f)ω0) =
(
∆2f

)
ω0. (3.2)

Now if we take f1 (resp. f2) to be an eigenfunction for the buckling (resp. clamped plate) prob-
lem (1.2) (resp. (1.1)) associated with the eigenvalue Λ (resp. Γ), we conclude combining (3.1)
and (3.2) that ωf1 (resp. ωf2) is a p-eigenform for (2.9) (resp. (2.11)) associated with the eigen-
value Λ (resp. Γ).

Conversely, first note that if f ∈ C∞(M) is a smooth nontrivial function such that f = ⟨ω, ω0⟩
where ω is a smooth p-form and ω0 is a smooth parallel p-form, we have

∆f = ⟨∇∗∇ω, ω0⟩ = ⟨∆ω, ω0⟩, (3.3)

where the last equality follows from the Bochner formula (see (3.12) below) and the fact that M
is Euclidean. Note also that if ω satisfies the boundary condition (2.3) then f and ∂f/∂ν vanish
on ∂M . Now if ω1 and ω2 denote respectively p-eigenforms to the problems (2.9) and (2.11)
associated to the eigenvalues Λ and Γ, then there exist two parallel p-forms ωi

0 on Rn such that
fi :=

〈
ωi, ω

i
0

〉
are smooth nontrivial functions for i = 1, 2. Therefore, we easily deduce from (3.3)

that these functions are smooth eigenfunctions of (1.2) and (1.1) respectively associated to Λ
and Γ. ■

Remarks 3.2.

1. Proposition 3.1 gives immediately the value of the first eigenvalues of the buckling and
clamped plate problems on p-forms for the Euclidean ball of radius R = 1

H0
. More precisely,

it follows from [2, Section 1] that

Λ1,p = j2n
2
,1H

2
0 and Γ1,p = k4n

2
−1,1H

4
0 ,

where jn
2
,1 is the first positive zero of the Bessel function Jn

2
and kn

2
−1,1 is the first positive

zero of Jn
2
−1In

2
+ Jn

2
In

2
−1, with Iℓ being the corresponding modified Bessel function of

the first kind.
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2. If (Mn, g) is a compact Riemannian manifold carrying a nontrivial parallel p-form for
a certain p ∈ {1, . . . , n}, we can mimic the first part of the proof of Proposition 3.1 to
ensure that if SpecΛ,p(M) and SpecΓ,p(M) denote respectively the buckling and clamped
plate spectra on p-forms for p ∈ {0, . . . , n}, then we have

SpecΛ,0(M) ⊂ SpecΛ,p(M) and SpecΓ,0(M) ⊂ SpecΓ,p(M)

3.2 General estimates

In this subsection, we prove general estimates between the first eigenvalues of the buckling and
the clamped plate problems and other classical problems. These estimates hold on (Mn, g) with-
out any extra assumption, except being a compact Riemannian manifold with smooth boundary.

The first result of this part establishes a direct link between the buckling and the clamped
plate problems.

Theorem 3.3. On an n-dimensional compact Riemannian manifold (Mn, g) with smooth bound-
ary, we have Γ1,p < Λ2

1,p for all p ∈ {0, . . . , n}.
Before giving the proof of this result, we first note that if ω is a p-form satisfying ω|∂M =

∇νω|∂M = 0, then it follows from the identity ∆ = dδ+δd and from an integration by parts that

∥∆ω∥2L2(M) = ∥δdω∥2L2(M) + ∥dδω∥2L2(M)

and from (2.6) that

(∆ω, ω)L2(M) = ∥dω∥2L2(M) + ∥δω∥2L2(M). (3.4)

Proof. Let ω be a smooth nonzero p-form on M with ω|∂M = 0 and ∇νω|∂M = 0. By (3.4) and
the Cauchy–Schwarz inequality, we get

∥dω∥2L2(M) + ∥δω∥2L2(M) ≤ ∥∆ω∥L2(M)∥ω∥L2(M)

and this implies that

∥∆ω∥L2(M)

∥ω∥L2(M)
≤

∥∆ω∥2L2(M)

∥dω∥2
L2(M)

+ ∥δω∥2
L2(M)

.

Taking ω to be an eigenform of the buckling problem associated to Λ1,p gives the desired inequal-
ity. Moreover, if equality holds, then for any eigenform ω of the buckling problem associated
to Λ1,p, the p-form ∆ω is pointwise proportional to ω, therefore ∆ω = Λ1,pω on M and thus ω
is an eigenform of the Dirichlet problem associated to the eigenvalue Λ1,p. But because ω sat-
isfies ∇νω|∂M = 0 along ∂M , the unique continuation theorem for elliptic second-order linear
operators (see, e.g., [20, Theorem 1.4] and [14, Chapter VIII]) implies that ω = 0 on M . This
shows that the inequality must actually be strict. ■

Now we consider λ1,p the smallest eigenvalue of the Hodge Laplacian of M with Dirichlet
boundary condition. It is well-known that there exists a Hilbert basis of the space of L2-
integrable p-forms on (Mn, g) consisting of smooth eigenforms solutions of the problem

∆ω = λω on M,

ω = 0 on ∂M
(3.5)

associated to an unbounded and positive sequence of eigenvalues (λi,p)i≥1. Moreover the first
eigenvalue is characterized by

λ1,p = inf

{
∥dω∥2L2(M) + ∥δω∥2L2(M)

∥ω∥2
L2(M)

, ω ∈ Ωp(M) \ {0}, ω|∂M = 0

}
and has to be positive because of [1].
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Remarks 3.4.

1. The Hodge ⋆ operator preserves the Dirichlet problem so that λi,p = λi,n−p for any i ≥ 1
and 1 ≤ p ≤ n.

2. If (Mn, g) is a bounded domain in the Euclidean space, one can show, reasoning as in
the proof of Proposition 3.1, that the Dirichlet eigenvalues on p-forms do not depend on p
and correspond to the Laplacian Dirichlet eigenvalues on functions.

We are now in position to give explicit estimates between the first eigenvalues of the three
previous problems, restricting our attention to 1 ≤ p ≤ [n2 ] by Hodge symmetry of these spectra.
Namely, we get the following.

Theorem 3.5. On an n-dimensional compact Riemannian manifold (Mn, g) with smooth bound-
ary, the following inequalities hold:

(1) Λ1,pλ1,p < Γ1,p for 0 ≤ p ≤ n,

(2) inf(λ1,p+1, λ1,p−1) ≤ Λ1,p for 1 ≤ p ≤ n,

(3) λ1,1 ≤ Λ1,0.

Remarks 3.6.

1. The inequalities of Theorems 3.3 and 3.5 give the analogue of some well-known results in
the case of functions (see [2] for example).

2. In general, it is not clear whether equality can occur in the second and third inequalities
of Theorem 3.5. We will see that this cannot occur for bounded Euclidean domains.

Proof. To prove the first inequality, we consider ω an eigenform of the clamped plate prob-
lem (2.11) associated with Γ1,p. Then the form ω can be considered as a test-form for the first
eigenvalue of the buckling problem as well as for the first eigenvalue of the Dirichlet problem on
differential forms. Therefore, we first get

Λ1,p

(
∥dω∥2L2(M) + ∥δω∥2L2(M)

)
≤ ∥∆ω∥2L2(M),

which can be rewritten as

Λ1,p

(
∥dω∥2L2(M) + ∥δω∥2L2(M)

∥ω∥2
L2(M)

)
≤

∥∆ω∥2L2(M)

∥ω∥2
L2(M)

,

from which the estimate follows. If the inequality is an equality, then any eigenform ω of the
clamped plate problem must be an eigenform of the Dirichlet problem for the Hodge Laplacian
on M . As above, the unique continuation theorem implies that ω = 0. Therefore, the inequality
is strict.

For the second estimate, we consider ω an eigenform of the buckling eigenvalue problem (2.9)
associated with the first eigenvalue Λ1,p for 1 ≤ p ≤ [n2 ]. We first notice that the two differential
forms ω1 = dω ∈ Ωp+1(M) and ω2 = δω ∈ Ωp−1(M) cannot be both trivial otherwise ω would
be a harmonic p-form which vanishes on the boundary which is impossible by [1]. Moreover,
it follows from (2.3) that

ι∗ω1 = dι∗ω = 0, ν⌟ω1 = ν⌟dω = 0

and

ι∗ω2 = ι∗(δω) = 0, ν⌟ω2 = −δ∂M (ν⌟ω) = 0,
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which imply that both ω1 and ω2 vanish along the boundary. So one can respectively take these
forms as test-forms in (3.5) leading to

λ1,p+1∥dω∥2L2(M) ≤ ∥δdω∥2L2(M) and λ1,p−1∥δω∥2L2(M) ≤ ∥dδω∥2L2(M).

By adding these two inequalities, we get

inf(λ1,p+1, λ1,p−1)
(
∥dω∥2L2(M) + ∥δω∥2L2(M)

)
≤ ∥δdω∥2L2(M) + ∥dδω∥2L2(M)

and the variational characterization (2.10) allows to conclude.
For the last one, take a smooth eigenfunction f for the buckling problem (1.2) on functions

associated to Λ1,0 and let ω = df ∈ Ω1(M). Then as above we observe that ω vanishes on ∂M
so that it can be used as a test-form in the variational characterization of λ1,1 leading to the
inequality

λ1,1 ≤
∫
M

(
∆f)2dµ∫

M |df |2dµ
= Λ1,0.

This proves the third inequality in the broad sense. ■

A direct consequence of Theorem 3.3 and the first inequality in Theorem 3.5 is the following
estimate.

Corollary 3.7. Let (Mn, g) be a compact Riemannian manifold with boundary, then

λ1,p <
√

Γ1,p < Λ1,p (3.6)

for all 0 ≤ p ≤ n.

Since for bounded domains in Euclidean space, the eigenvalues λ1,p and Λ1,p do not depend
on p, it follows from the previous corollary with p = 0 that equality cannot occur in the second
and third inequalities of Theorem 3.5.

Remark 3.8. In [8], the Robin problem is defined as

∆ω = λω on M,

ν⌟ω = 0 on ∂M,

ν⌟dω = τι∗ω on ∂M

and it is proven that the first eigenvalue satisfies λ1,p(τ) ≤ λ1,p for any parameter τ > 0. Hence,
it follows from (3.6) that λ1,p(τ) <

√
Γ1,p < Λ1,p.

Remark 3.9. It is in fact not difficult to show that λj,p ≤ Λj,p for all j ≥ 1 and p = 0, . . . , n,
where the inequality is strict for j = 1 by Corollary 3.7. Indeed, it can be checked that the
eigenvalue problem (3.5) is equivalent to the problem

∆2ω = λ∆ω on M,

ω = 0 on ∂M,

∆ω = 0 on ∂M

in such a way that the Dirichlet eigenvalues are determined by applying the min-max formula
to the functional∫

M |∆ω|2dµ∫
M |dω|2 + |δω|2dµ
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on subspaces of p-forms which are in
(
H2 ∩ H1

0

)
(M). Namely, any critical point ω ∈

(
H2 ∩

H1
0

)
(M) of that functional associated with a critical value ℓ must satisfy∫

M

〈
∆ω,∆ω′〉dµ = ℓ ·

∫
M

(〈
dω,dω′〉+ 〈δω, δω′〉)dµ

for all ω′ ∈
(
H2 ∩H1

0

)
(M), that is,∫

M

〈
∆2ω, ω′〉dµ+

∫
∂M

(〈
ι∗∆ω, ν⌟dω′〉− 〈ν⌟∆ω, ι∗δω′〉)dµ = ℓ ·

(∫
M

∆ω, ω′〉),
which reduces to∫

M

〈
∆2ω − ℓ∆ω, ω′〉dµ =

∫
∂M

(〈
ν⌟∆ω, ι∗δω′〉− 〈ι∗∆ω, ν⌟dω′〉)dµ.

Here we have used that ω′ vanishes along ∂M . It can be deduced in the usual way that
∆2ω − ℓ∆ω = 0 on M as well as ν⌟∆ω = 0 and ι∗∆ω = 0 along ∂M , using the fact that,
for ω′ ∈ H1

0 (M), we have ι∗δω′ = −ν⌟∇νω
′ and ν⌟dω′ = ι∗∇νω

′, and both the tangential and
normal components of ∇νω

′ can be prescribed independently. Thus ∆ω = 0 along ∂M , which
yields the above equivalent problem.

Comparing now the above characterization to that of Λj,p, where the same quotient is consid-
ered on the smaller space H2

0 (M), allows to conclude. Mind that it cannot be deduced for j ≥ 2
whether the equality can be attained or not.

Now for p ∈ {0, . . . , n}, we consider the Hodge Laplacian with respect to the absolute bound-
ary condition which satisfies the eigenvalue problem

∆ω = µω on M,

ν⌟ω = 0 on ∂M,

ν⌟dω = 0 on ∂M.

(3.7)

We will denote by µ1,p the first positive eigenvalue which is given by

µ1,p = inf
ω∈Ωp(M)\{0}

{
∥dω∥2L2(M) + ∥δω∥2L2(M)

∥ω∥2
L2(M)

, ν⌟ω = 0 and ω ∈ Hp
A(M)⊥

}
. (3.8)

The eigenspace associated with the zero eigenvalue, if non empty, corresponds to the absolute
de Rham cohomology group in degree p defined by

Hp
A(M) = {ω ∈ Ωp(M) | dω = δω = 0 on M and ν⌟ω = 0}.

With these notations, it is clear that µ1,0 corresponds to the first nonzero eigenvalue of the
Laplace operator under the Neumann boundary condition. Note also that the dual eigenvalue
problem is the relative one whose zero eigenvalue reflects the relative de Rham cohomology
group

Hp
R(M) = {ω ∈ Ωp(M) | dω = δω = 0 on M and ι∗ω = 0}

and is related to the absolute boundary condition by the Hodge star operator which induces
an isomorphism Hp

A(M) ≃ Hn−p
R (M) for all p = 0, . . . , n. The Hodge star operator maps (3.7)

onto the boundary problem

∆ω = κω on M,

ι∗ω = 0 on ∂M,

ι∗(δω) = 0 on ∂M,
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where κ is the corresponding eigenvalue. As usual, up to the possible eigenvalue 0, the (mono-
tonously nondecreasing) sequence of real eigenvalues is denoted by (κi,p)i≥1, where κ1,p is the
smallest positive one. It is a straightforward consequence of that correspondence via the Hodge
star operator that, for all i ≥ 1 and p ∈ {0, . . . , n}, the identity µi,p = κi,n−p holds. Moreover,
µ1,n = κ1,0 > 0 holds because of H0

R(M) = {0}. By definition, the identity κ1,0 = λ1,0 also holds.

Remark 3.10. If Hp
A(M) = {0}, an eigenform for the Dirichlet problem (3.5) can be taken as

a test-form in the variational characterization of µ1,p leading to the estimate µ1,p ≤ λ1,p for all
p = 1, . . . , n. Note that this inequality does not hold in general for p = 0. However, it is a well-
known result of Pólya [17] (see also [10]) that µ1,0 < λ1,0 for bounded Euclidean domains. On the
other hand, for p = 0, . . . , [n2 ], Guerini and Savo proved in [13, Theorem 2.6 (b))] that µ1,p ≤ κ1,p
for a convex bounded domain M in the Euclidean space. Even more, if M is strictly convex,
this inequality is strict for 0 ≤ p < [n2 ] (see [13, Theorem 2.6 (c))]). Therefore, for a bounded
convex Euclidean domain with Hp

R(M) = {0} for some p = 0, . . . , [n2 ], we have

µ1,p ≤ κ1,p = µ1,n−p ≤ λ1,n−p = λ1,p.

This is the case, for example, for strictly convex bounded domains in Rn and in addition the
first inequality is strict for 0 ≤ p < [n2 ] by the above discussion.

It turns out that the first nonzero eigenvalue of the Hodge Laplacian under the absolute
boundary condition can be related with the first eigenvalue of the buckling problem, as is stated
below.

Theorem 3.11. On an n-dimensional oriented compact Riemannian manifold (Mn, g) with
smooth boundary, we have

max(µ1,p, µ1,n−p) ≤ Λ1,p (3.9)

for all p = 0, . . . , n. Moreover, equality occurs for some p if and only if there exist k ∈ {p, n−p},
ω ∈ Ωk(M) as well as ω0 ∈ Hk

A(M) \ {0} satisfying the overdetermined boundary value problem

∆ω = µ1,kω on M,

ω = ω0 on ∂M,

ι∗(δω) = 0, ν⌟dω = 0 on ∂M.

(3.10)

Proof. Let ω1 ∈ Ωp(M) be an eigenform of the buckling problem associated to the eigen-
value Λ1,p. We denote by ω0 the L2(M)-orthogonal projection of ω1 onto Hp

A(M) and we set
ω := ω1 − ω0 ∈ Ωp(M). Note that ω0 may vanish, which is the case if and only if ν⌟ d∆ω1

is L2(∂M)-orthogonal to ι∗Hp
A(M) by (2.7). Then dω = dω1 and δω = δω1 on M , and in

particular ∆ω = ∆ω1, as well as ν⌟ω = 0 and ν⌟dω = 0 along ∂M . For this form ω, using the
first equality in (2.6) and the Cauchy–Schwarz inequality leads to(

∥dω∥2L2(M) + ∥δω∥2L2(M)

)2
= (∆ω, ω)2L2(M) ≤ ∥∆ω∥2L2(M)∥ω∥

2
L2(M),

so that, together with the fact that ω ̸= 0 (otherwise, Λ1,p = 0),

∥dω∥2L2(M) + ∥δω∥2L2(M)

∥ω∥2
L2(M)

≤
∥∆ω∥2L2(M)

∥dω∥2
L2(M)

+ ∥δω∥2
L2(M)

.

Note that ∥dω∥2L2(M) + ∥δω∥2L2(M) = ∥dω1∥2L2(M) + ∥δω1∥2L2(M) > 0. Moreover, since ∆ω = ∆ω1

and ω1 is an eigenform associated with Λ1,p, we deduce that

∥dω∥2L2(M) + ∥δω∥2L2(M)

∥ω∥2
L2(M)

≤
∥∆ω1∥2L2(M)

∥dω1∥2L2(M)
+ ∥δω1∥2L2(M)

= Λ1,p.
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But ν⌟ω = 0 and (ω, ω′)L2(M) = 0 for all ω′ ∈ Hp
A(M) so that the p-form ω can be taken as

a test-form in (3.8) and therefore µ1,p ≤ Λ1,p. The same argument ensures that µ1,n−p ≤ Λ1,n−p

and the result follows from Λ1,n−p = Λ1,p as was noticed in Remark 2.3.
If equality occurs, then it can be assumed without loss of generality that µ1,p = Λ1,p up to

replacing p by n−p. Then the p-form ω is a µ1,p-Laplace-eigenform with respect to the absolute
boundary condition, so that it satisfies the problem (3.7). On the other hand, it is clear that,
since ω = ω1 − ω0 with ω1 a buckling-eigenform and ω0 ∈ Hp

A(M), we have ι∗ω = −ι∗ω0 and
ι∗(δω) = 0, therefore ω solves (3.10) where −ω0 takes the role of ω0. Note that necessarily the ω0

from (3.10) cannot vanish, otherwise ω = 0 by the unique continuation property for second-order
elliptic systems, which would be a contradiction. This gives the first part of the equality case.
Conversely, assume the existence of ω ∈ Ωp(M) satisfying (3.10) with ω0 ∈ Hp

A(M) \ {0}. Let
ω1 := ω−ω0 ∈ Ωp(M). Notice that ω1 ̸= 0 (otherwise µ1,p = 0) and that ω is L2(M)-orthogonal
to Hp

A(M) by integrating ∆ω = µ1,pω against any ω′
0 ∈ Hp

A(M) on M and using (2.4). Then it
is not difficult to check using (2.3) that

ω1|∂M = 0 and ∇νω1|∂M = 0,

so that ω1 can be taken as a test-form in the variational characterization of Λ1,p. On the other
hand, since ω0 is a harmonic form, we have dω1 = dω and δω1 = δω and then

Λ1,p ≤
∥∆ω1∥2L2(M)

∥dω1∥2L2(M)
+ ∥δω1∥2L2(M)

=
∥∆ω∥2L2(M)

∥dω∥2
L2(M)

+ ∥δω∥2
L2(M)

= µ1,p.

This implies that µ1,p = Λ1,p. Note that (3.10) is invariant under the Hodge star operator:
if ω ∈ Ωp(M) solves (3.10), then so does ⋆ω ∈ Ωn−p(M) for the same µ = µ1,p. This shows
that, if µ1,p = Λ1,p, then actually µ1,p must also be a Laplace-eigenvalue with absolute boundary
conditions on n − p-forms, however it does not have to be the smallest one. This concludes
the proof. ■

Note that problem (3.10) would not be elliptic without the boundary condition ν⌟dω = 0.

Remark 3.12. In other words, Theorem 3.11 states that

max(µ1,p, κ1,p) ≤ Λ1,p

for all p = 0, . . . , n. Moreover, equality occurs if and only if there exist either ω ∈ Ωp(M) and
ω0 ∈ Hp

A(M) \ {0} satisfying (3.10), or ω̃ ∈ Ωp(M) and ω̃0 ∈ Hp
R(M) \ {0} such that

∆ω̃ = κ1,pω̃ on M,

ω̃ = ω̃0 on ∂M,

ι∗(δω̃) = 0, ν⌟dω̃ = 0 on ∂M.

(3.11)

For p = 0 or p = n, (3.11) and (3.10) are both equivalent to the existence of a nonzero function f
satisfying ∆f = µ1,0f on M with f|∂M = 1 (up to rescaling f) as well as ∂νf = 0 along ∂M .
The existence of a nontrivial such solution is related to the so-called Schiffer conjecture, see
comments after Remarks 3.14 below.

As a direct consequence of Theorem 3.11, we get the following.

Corollary 3.13. Let (Mn, g) be an n-dimensional compact Riemannian manifold with boundary,
then the following hold:

(1) if Hp
A(M) = {0} then µ1,p < Λ1,p for p = 0, . . . , n;

(2) if Hp
A(M) = {0} and Hp

R(M) = {0} then inequality (3.9) is strict for p = 0, . . . , n.
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Note that, when Hp
A(M) = {0}, the inequality µ1,p < Λ1,p is a straightforward consequence

of Corollary 3.7 because of max(µ1,p, µ1,n−p) ≤ λ1,p by [8, Proposition 5.4].

Remarks 3.14.

1. Since Hn
A(M) = {0}, it follows from Theorem 3.11 that µ1,n < Λ1,n, which directly follows

from the inequality λ1,0 < Λ1,0.

2. Let ωi ∈ Ωp(M), i = 1, 2, be two p-forms on M such that ω1|∂M = ω2|∂M . Then it follows
directly from (2.1) and (2.2) that(

ι∗(δω1) = ι∗(δω2) and ν⌟dω1 = ν⌟dω2

)
⇐⇒ ∇νω1|∂M = ∇νω2|∂M .

Using this characterization, it is not difficult to show that ω ∈ Ωp(M) and ω0 ∈ Hp
A(M)

satisfy (3.10) if and only if

∆ω = µ1,pω on M,

ω = ω0 on ∂M,

∇νω|∂M = ∇νω0|∂M on ∂M.

Obviously, the same holds for the eigenvalue boundary problem (3.11) with ω̃ ∈ Ωp(M)
and ω̃0 ∈ Hp

R(M).

From the estimates (3.9) and (3.6), we have, for p = 0, both µ1,0 ≤ Λ1,0 and λ1,0 < Λ1,0. The
first inequality was first proved in [15] and states more precisely that µ1,0 < Λ1,0 on any compact
Riemannian manifold with boundary. However the arguments given in the proof of [15, Lem-
ma 3.1], which establishes that the inequality is strict, are not clear. Indeed, if M is assumed to
be connected, we haveH0

A(M) ≃ R and so, as indicated in Theorem 3.11, the equality µ1,0 = Λ1,0

ensures the existence of a smooth function f on M satisfying the overdetermined problem

∆f = µ1,0f on M,

f = 1 on ∂M,

∂f

∂ν
= 0 on ∂M,

which is a particular case of the so-called Schiffer conjecture (see, for example, [18] and the
references therein). However, the fact that the inequality is strict can be proved at least for
bounded Euclidean domains.

Corollary 3.15. Let (Mn, g) be a bounded domain in the Euclidean space. Then µ1,0 < Λ1,0.

Proof. As recalled in Remark 3.10, we have µ1,0 < λ1,0 for any bounded domain in Euclidean
space and so the result follows from Corollary 3.7. ■

On a bounded convex Euclidean domain withHp
R(M) = {0}, since the spectrum of the Dirich-

let and the buckling problems do not depend on p, we deduce from Remark 3.10 that

µ1,p ≤ λ1,p = λ1,0 < λ2,0 ≤ Λ1,0 = Λ1,p

for p = 0, . . . , [n2 ]. The last inequality is due to Payne [16] (with a gap in the proof filled by
Friedlander [11]).
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3.3 Manifolds with Weitzenböck curvature operator bounded from below

In this subsection, we give a lower bound for the first eigenvalue λ1,p of the Dirichlet Hodge
Laplacian under the condition that the Weitzenböck curvature operator of the Riemannian
manifold (Mn, g) is bounded from below by a positive constant γ > 0. Combined with some
results of the former part, we obtain estimates for the first eigenvalues of the buckling and
clamped plate problems in this context. These last results generalize previous results by Chen,
Cheng, Wang and Xia [4].

For this, we first recall that the Weitzenböck formula for p-forms states that

∆ω = ∇∗∇ω +W [p]ω (3.12)

for any ω ∈ Ωp(M) where ∇ (resp. ∇∗) is the Levi-Civita connection
(
resp. its L2-adjoint

)
on

forms and W [p] is the curvature term. This last term is usually called the Weitzenböck curvature
operator and it defines a self-adjoint endomorphism acting on p-forms. In the following, we will
say that W [p] is bounded from below by γp(n− p) ∈ R for a fixed p = 1, . . . , n if it satisfies〈

W [p]ω, ω
〉
≥ γp(n− p)|ω|2 (3.13)

for all ω ∈ Ωp(M). For p = 1, this is equivalent to the fact that the Ricci curvature satisfies
Ric ≥ (n − 1)γg. From [12], this condition is satisfied for all p if the curvature operator is
bounded from below by γ ∈ R.

Now integrating (3.12) on M leads to the so-called Reilly formula on p-forms [19, Theorem 3]
which writes as∫

M

(
|dω|2 + |δω|2

)
dµ =

∫
M

(
|∇ω|2 +

〈
W [p]ω, ω

〉)
dµ+

∫
∂M

B(ω, ω)dσ (3.14)

for all ω ∈ Ωp(M) and where

B(ω, ω) = 2
〈
ν⌟ω, δ∂M (ι∗ω)

〉
+
〈
S[p](ι∗ω), ι∗ω

〉
+ (n− 1)H|ν⌟ω|2 −

〈
S[p−1](ν⌟ω), ν⌟ω

〉
.

As a direct consequence of this formula, we get the following estimate on λ1,p.

Theorem 3.16. Let (Mn, g) be a compact Riemannian manifold with boundary whose Weitzen-
böck curvature operator W [p] is bounded from below by a positive constant γp(n − p) for some
1 ≤ p ≤ [n2 ]. Then we have λ1,p > γp(n− p+ 1).

Proof. We first observe that if ω is a p-form on M satisfying ω|∂M = 0, the boundary term in
the Reilly formula (3.14) vanishes and then, from (3.13), we get∫

M

(
|dω|2 + |δω|2

)
dµ ≥

∫
M

(
|∇ω|2 + γp(n− p)|ω|2

)
dµ.

On the other hand, with the help of the pointwise inequality

|∇α|2 ≥ 1

p+ 1
|dα|2 + 1

n− p+ 1
|δα|2,

which is true for any p-form α (see [12, Lemme 6.8]), we obtain

∥dω∥2L2(M) + ∥δω∥2L2(M) ≥
1

n− p+ 1

(
∥dω∥2L2(M) + ∥δω∥2L2(M)

)
+ γp(n− p)∥ω∥2L2(M)

since 1 ≤ p ≤ [n2 ]. Note that equality occurs if ω is a conformal Killing form (see Lemma 3.17
below for a precise definition and [22] for more general properties) and if n = 2p or if 1 ≤ p < [n2 ]
and dω = 0. We finally get

∥dω∥2L2(M) + ∥δω∥2L2(M) ≥ γp(n− p+ 1)∥ω∥2L2(M), (3.15)
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which, by taking ω an eigenform associated to λ1,p, leads to the desired estimate in a broad
sense. Assume now that equality holds so that ω is a conformal Killing p-form which vanishes
on the boundary. Then Lemma 3.17 ensures that ∇νω|∂M = 0 and this is impossible since ω is
also a p-eigenform for the Dirichlet Hodge Laplacian. ■

In the previous proof, we considered conformal Killing p-forms ω, that is p-forms satisfying
the following equation

∇Xω =
1

p+ 1
X⌟dω − 1

n− p+ 1
X♭ ∧ δω (3.16)

for all X ∈ Γ(TM) and used the following result that we prove now.

Lemma 3.17. On a (not necessarily compact) Riemannian manifold (Mn, g) with boundary ∂M ,
a conformal Killing p-form with 1 ≤ p ≤ n− 1 which vanishes on ∂M satisfies ∇νω|∂M = 0.

Proof. It is a direct consequence of (3.16) that

ι∗(∇νω) =
1

p+ 1
ν⌟dω and ν⌟∇νω = − 1

n− p+ 1
ι∗(δω).

On the other hand, since ω ∈ Ωp(M) vanishes on ∂M it is straightforward from (2.1) and (2.2)
to compute that

ι∗(∇νω) = ν⌟dω and ν⌟∇νω = −ι∗(δω).

Putting these relations together implies that

ν⌟dω = 0 and
n− p

n− p+ 1
ι∗(δω) = 0,

which, with the help of (2.3), allows us to conclude. ■

Combining Theorem 3.16 with (3.6) leads to the following estimates for the buckling and
clamped plate first eigenvalues.

Corollary 3.18. Let (Mn, g) be a compact Riemannian manifold with boundary whose Weitzen-
böck curvature operator W [p] is bounded from below by γp(n−p) > 0 for some 1 ≤ p ≤ [n2 ]. Then
we have

Λ1,p > γp(n− p+ 1) and Γ1,p > γ2p2(n− p+ 1)2.

Remarks 3.19.

1. From these estimates, known lower bounds for the first eigenvalues of the buckling and
clamped plate problems on functions [4] can be deduced. Indeed, for p = 1, the fact
that W [1] is bounded from below by n − 1 is equivalent to the fact that the Ricci tensor
of (Mn, g) satisfies Ric ≥ (n−1)g. Then the first estimate in Corollary 3.18 reads Λ1,1 > n
under this curvature assumption.

2. Independently, the third inequality of Theorem 3.5, which reads Λ1,0 ≥ λ1,1, combined
with the inequality λ1,1 > n from Theorem 3.16, yields Λ1,0 > n. This is exactly [4,
Theorem 1.6]. Now putting together this estimate with the first inequality in Theorem 3.5
gives Γ1,0 > nλ1,0, which is precisely [4, Theorem 1.5].
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3.4 Domains in the unit sphere

In this subsection, we derive an inequality which relates the first eigenvalues of the clamped
plated problem for different degrees for domains of the n-dimensional unit sphere Sn carrying its
metric of constant sectional curvature 1. This result is a consequence of a more general estimate
for submanifolds isometrically immersed in the Euclidean space Rn+m which can be obtained
using [9, Lemma 3.8]. However, it is in general difficult to control all the terms which appear in
these estimates so that we shall restrict ourselves to the case when M is a domain of Sn. We also
obtain a similar result for the first buckling eigenvalue. More precisely, we obtain the following.

Theorem 3.20. Let (Mn, g) be a domain in the unit sphere Sn.

1. For 1 ≤ p ≤ [n2 ], we have

pΓ1,p−1 + (n− p)Γ1,p+1 < Cn,pΓ1,p, (3.17)

and

min(pΛ1,p−1, (n− p)Λ1,p+1) <
Cn,p

2
· Λ1,p, (3.18)

where Cn,p = n+ 4+2(n−2p)2

p(n−p+1) + n(n−2p)2

p2(n−p+1)2
.

2. For n = 2p, we have

Λ1,n
2
−1 <

(
1 +

16

n2(n+ 2)

)
· Λ1,n

2
. (3.19)

Proof. Let ω be a smooth p-form on M which vanishes on ∂M and whose normal covariant
derivative is also zero on the boundary. For any 1 ≤ i ≤ n + 1, we consider the (p − 1)-form
∂T
xi
⌟ω on M where ∂T

xi
denotes the tangential part in TM of the unit parallel vector field ∂xi

of Rn+1. It is not difficult to check that(
∂T
xi
⌟ω
)
|∂M = 0 and ∇ν

(
∂T
xi
⌟ω
)
|∂M = 0

so that it can be used as a test-form in the variational characterizations of Γ1,p−1 and Λ1,p−1.
1. From (2.12), we get

Γ1,p−1

∫
M

|∂T
xi
⌟ω|2dµ ≤

∫
M

|∆(∂T
xi
⌟ω)|2dµ.

Summing that inequality over i and using the pointwise identity
∑n+1

i=1 |∂T
xi
⌟ω|2 = p|ω|2 (see,

e.g., [9, equation (22)]), we obtain

pΓ1,p−1

∫
M

|ω|2dµ ≤
∫
M

n+1∑
i=1

|∆(∂T
xi
⌟ω)|2dµ.

Now the right-hand side of that inequality was computed for every p-form ω in the right-hand
side of [9, equations (31) and (33)] and we obtain

pΓ1,p−1∥ω∥2L2(M) ≤ 4∥δω∥2L2(M) + p∥∆ω + (2p− n)ω∥2L2(M). (3.20)

Since inequality (3.20) is true for any p-eigenform ω, we can apply it to the (n−p)-eigenform ⋆ω
to get

(n− p)Γ1,n−p−1∥ω∥2L2(M) ≤ 4∥dω∥2L2(M) + (n− p)∥∆ω + (n− 2p)ω∥2L2(M).
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Summing both inequalities and using the fact that Γ1,n−p−1 = Γ1,p+1 yields

(pΓ1,p−1 + (n− p)Γ1,p+1) ∥ω∥2L2(M) ≤ n∥∆ω∥2L2(M) + n(2p− n)2∥ω∥2L2(M)

+
(
4 + 2(n− 2p)2

)
(∆ω, ω)L2(M)

≤ n∥∆ω∥2L2(M) + n(2p− n)2∥ω∥2L2(M)

+
(
4 + 2(n− 2p)2

)
∥∆ω∥L2(M)∥ω∥L2(M),

where we used the Cauchy–Schwarz inequality in the last inequality. On the other hand, since M
is in the unit sphere, the estimate (3.15) holds with γ = 1, and therefore we get

(pΓ1,p−1 + (n− p)Γ1,p+1)∥ω∥2L2(M) ≤ Cn,p∥∆ω∥2L2(M),

which allows us to deduce (3.17) in the broad sense by taking ω to be an eigenform associated
to Γ1,p. If (3.17) were an equality, then for any clamped-plate-eigenform ω associated to Γ1,p,
the p-form ∆ω would be pointwise proportional to ω because of the equality in the Cauchy–
Schwarz inequality. But, because of ∆2ω = Γ1,pω on M , we would have ∆ω =

√
Γ1,pω on M ,

therefore ω would be a Dirichlet eigenform associated to the eigenvalue
√

Γ1,p. Again, because ω
satisfies ∇νω|∂M = 0 along ∂M , the unique continuation property for elliptic second-order
linear operators would imply that ω = 0 on M . This would lead to a contradiction and shows
that (3.17) must be strict.

Now, we prove (3.18). Using the variational characterization (2.10) of Λ1,p−1 for p = 1, . . . , n
gives

Λ1,p−1

∫
M

(∣∣d(∂T
xi
⌟ω
)∣∣2 + ∣∣δ(∂T

xi
⌟ω
)∣∣2)dµ ≤

∫
M

∣∣∆(∂T
xi
⌟ω
)∣∣2dµ

and summing as above on i from 1 to n+ 1 leads to

Λ1,p−1

n+1∑
i=1

∫
M

(∣∣d(∂T
xi
⌟ω
)∣∣2 + ∣∣δ(∂T

xi
⌟ω
)∣∣2)dµ ≤ 4∥δω∥2L2(M) + p∥∆ω + (2p− n)ω∥2L2(M).

By the Cartan identity and [13, formula (4.3)] (see also [9, formula (20)]), we have, for every
1 ≤ i ≤ n+ 1,

d(∂T
xi
⌟ω) = L∂T

xi
ω − ∂T

xi
⌟ dω = ∇∂T

xi
ω + II

[p]

∂⊥
xi

ω − ∂T
xi
⌟ dω,

where LXω is the Lie derivative of ω in the X-direction and II
[p]

∂⊥
xi

is the natural extension
onto ΛpT ∗M of the pointwise endomorphism field II∂⊥

xi
of TM defined for all X,Y ∈ TM by〈

II∂⊥
xi
(X), Y

〉
=
〈
II(X,Y ), ∂⊥

xi

〉
and II is the second fundamental form of M in Rn+1. Here ∂⊥

xi
denotes the normal component

of ∂xi that is, ∂⊥
xi

= ∂xi − ∂T
xi
. Note that, because IIx = −gx ⊗ x for every x ∈ Sn and hence

x ∈ M , we have II∂⊥
xi

= −xi · Id at x = (x1, . . . , xn+1), so that II
[p]

∂⊥
xi

= −pxi · Id at x. It can be
deduced that∣∣d(∂T

xi
⌟ω
)∣∣2 = ∣∣∣∇∂T

xi
ω + II

[p]

∂⊥
xi

ω − ∂T
xi
⌟ dω

∣∣∣2
=
∣∣∇∂T

xi
ω
∣∣2 + ∣∣∣II[p]∂⊥

xi

ω
∣∣∣2 + ∣∣∂T

xi
⌟ dω

∣∣2
+2
〈
∇∂T

xi
ω, II

[p]

∂⊥
xi

ω
〉
− 2
〈
∇∂T

xi
ω, ∂T

xi
⌟ dω

〉
− 2
〈
II
[p]

∂⊥
xi

ω, ∂T
xi
⌟ dω

〉
.
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Choosing any orthonormal basis (ej)1≤j≤n of TxM for some x ∈ M , we have

n∑
i=1

∣∣∇∂T
xi
ω
∣∣2 = n+1∑

i=1

n∑
j,k=1

〈
∂T
xi
, ej
〉〈
∂T
xi
, ek
〉
⟨∇ejω,∇ekω⟩

=

n+1∑
i=1

n∑
j,k=1

⟨∂xi , ej⟩⟨∂xi , ek⟩⟨∇ejω,∇ekω⟩

=
n∑

j,k=1

(
n+1∑
i=1

⟨∂xi , ej⟩⟨∂xi , ek⟩

)
· ⟨∇ejω,∇ekω⟩

=

n∑
j,k=1

⟨ej , ek⟩⟨∇ejω,∇ekω⟩ =
n∑

j=1

|∇ejω|2 = |∇ω|2.

As a second step, at every x ∈ M , because of |x| = 1,

n+1∑
i=1

∣∣∣II[p]∂⊥
xi

ω
∣∣∣2 = p2

n+1∑
i=1

x2i |ω|2 = p2|x|2|ω|2 = p2|ω|2.

By [9, equation (22)],

n+1∑
i=1

∣∣∂T
xi
⌟ dω

∣∣2 = (p+ 1)|dω|2.

Moreover,

n+1∑
i=1

2
〈
∇∂T

xi
ω, II

[p]

∂⊥
xi

ω
〉
= p

n+1∑
i=1

2xi
〈
∇∂T

xi
ω, ω

〉
= p

n+1∑
i=1

xi∂
T
xi

(
|ω|2

)
= pxT

(
|ω|2

)
= 0

because of xT = 0 for every x ∈ Sn. For the same reason,

n+1∑
i=1

〈
II
[p]

∂⊥
xi

ω, ∂T
xi
⌟ dω

〉
= p

n+1∑
i=1

xi
〈
ω, ∂T

xi
⌟ dω

〉
= p
〈
ω, xT ⌟ dω

〉
= 0.

Applying the same computational method as above, we also have, in any pointwise orthonormal
basis (ej)1≤j≤n of TM ,

n+1∑
i=1

⟨∇∂T
xi
ω, ∂T

xi
⌟ dω⟩ =

n∑
j=1

⟨∇ejω, ej⌟ dω⟩ =
n∑

j=1

〈
e♭j ∧∇ejω, dω

〉
= |dω|2.

On the whole, we obtain

n+1∑
i=1

∣∣d(∂T
xi
⌟ω)

∣∣2 = |∇ω|2 + p2|ω|2 + (p+ 1)|dω|2 − 2|dω|2

= |∇ω|2 + p2|ω|2 + (p− 1)|dω|2.

Therefore,

n+1∑
i=1

∥∥d(∂T
xi
⌟ω
)∥∥2

L2(M)
= ∥∇ω∥2L2(M) + p2∥ω∥2L2(M) + (p− 1)∥dω∥2L2(M).
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Using the Weitzenböck formula (3.12) with W [p] = p(n−p) · Id and ω|∂M = ∇νω|∂M = 0 leads to

n+1∑
i=1

∥∥d(∂T
xi
⌟ω
)∥∥2

L2(M)
= (∇∗∇ω, ω)L2(M) + p2∥ω∥2L2(M) + (p− 1)∥dω∥2L2(M)

= (∆ω, ω)L2(M) −
(
W [p]ω, ω

)
L2(M)

+ p2∥ω∥2L2(M)

+(p− 1)∥dω∥2L2(M)

= (∆ω, ω)L2(M) +
(
p2 − p(n− p)

)
∥ω∥2L2(M) + (p− 1)∥dω∥2L2(M)

= p(2p− n)∥ω∥2L2(M) + (p− 1)∥dω∥2L2(M) + (∆ω, ω)L2(M).

On the other hand, for every i ∈ {1, . . . , n+1}, we can compute, using a local orthonormal basis
(ej)1≤j≤n of TM as well as ∇X∂T

xi
= −xiX for every X ∈ TxM ,

δ
(
∂T
xi
⌟ω
)
= −

n∑
j=1

ej⌟∇ej

(
∂T
xi
⌟ω
)

= −
n∑

j=1

ej⌟
((
∇ej∂

T
xi

)
⌟ω + ∂T

xi
⌟∇ejω

)
= −

n∑
j,k=1

〈
∇ej∂

T
xi
, ek
〉
ej⌟ ek⌟ω − ∂T

xi
⌟ δω

=

n∑
j,k=1

xi⟨ej , ek⟩ej⌟ ek⌟ω︸ ︷︷ ︸
0

−∂T
xi
⌟ δω

= −∂T
xi
⌟ δω,

where we used the skew-symmetry of ⟨ej , ek⟩ej⌟ ek⌟ω in (j, k). As a consequence, again by [9,
equation (22)],

n+1∑
i=1

∣∣δ(∂T
xi
⌟ω)
∣∣2 = n+1∑

i=1

∣∣∂T
xi
⌟ δω

∣∣2 = (p− 1)|δω|2,

from which
∑n+1

i=1

∥∥δ(∂T
xi
⌟ω
)∥∥2

L2(M)
= (p− 1)∥δω∥2L2(M) follows. Finally, we deduce that

Λ1,p−1

(
p(2p− n)∥ω∥2L2(M) + (p− 1)

(
∥dω∥2L2(M) + ∥δω∥2L2(M)

)
+ (∆ω, ω)L2(M)

)
≤ 4∥δω∥2L2(M) + p∥∆ω + (2p− n)ω∥2L2(M),

that is, using ∥dω∥2L2(M) + ∥δω∥2L2(M) = (∆ω, ω)L2(M),

pΛ1,p−1

(
(∆ω, ω)L2(M) + (2p− n)∥ω∥2L2(M)

)
≤ 4∥δω∥2L2(M) + p∥∆ω + (2p− n)ω∥2L2(M).

Notice that the left-hand side of that last identity must be positive since it is actually

n+1∑
i=1

∥∥d(∂T
xi
⌟ω
)∥∥2

L2(M)
+
∥∥δ(∂T

xi
⌟ω
)∥∥2

L2(M)
.

Replacing ω by ⋆ω and using the Hodge symmetry of the buckling, eigenvalues ensure that

(n− p)Λ1,p+1

(
(∆ω, ω)L2(M) + (n− 2p)∥ω∥2L2(M)

)
≤ 4∥dω∥2L2(M) + (n− p)∥∆ω + (n− 2p)ω∥2L2(M).
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Adding those two inequalities, we obtain

2min(pΛ1,p−1, (n− p)Λ1,p+1) · (∆ω, ω)L2(M)

≤ 4
(
∥dω∥2L2(M) + ∥δω∥2L2(M)

)
+ p∥∆ω + (2p− n)ω∥2L2(M)

+ (n− p)∥∆ω + (n− 2p)ω∥2L2(M)

= 4(∆ω, ω)L2(M) + n∥∆ω∥2L2(M) + 2(p(2p− n) + (n− p)(n− 2p))(∆ω, ω)L2(M)

+
(
p(2p− n)2 + (n− p)(n− 2p)2

)
∥ω∥2L2(M)

= n∥∆ω∥2L2(M) + n(n− 2p)2∥ω∥2L2(M) +
(
4 + 2(n− 2p)2

)
(∆ω, ω)L2(M). (3.21)

But (3.15) with γ = 1 gives

∥ω∥L2(M) ≤
1

p(n− p+ 1)
∥∆ω∥L2(M).

Substituting that estimate in (3.21) yields the following inequality:

2min(pΛ1,p−1, (n− p)Λ1,p+1) ·
(
∥dω∥2L2(M) + ∥δω∥2L2(M)

)
≤ Cn,p∥∆ω∥2L2(M),

where Cn,p is the constant defined in the first statement of Theorem 3.20. We deduce inequal-
ity (3.18) by taking ω as an eigenform of the buckling eigenvalue problem associated to Λ1,p.
Similarly to the first case, the equality cannot occur in (3.18).

2. If n = 2p, then (3.18) becomes, because of Λ1,p−1 = Λ1,n−p+1 = Λ1,p+1,

Λ1,n
2
−1 <

Cn,n
2

n
· Λ1,n

2
,

which is (3.19). ■

Notice that, by the assumption p ≤ n− p, inequality (3.18) implies that

min(Λ1,p−1,Λ1,p+1) <
Cn,p

2p
· Λ1,p.
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