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Abstract. We extend the buckling and clamped-plate problems to the context of differen-
tial forms on compact Riemannian manifolds with smooth boundary. We characterize their
smallest eigenvalues and prove that, in the case of bounded Euclidean domains, their spectra
without multiplicities on forms coincide with the spectra of the corresponding problems on
functions. We obtain various estimates involving the first eigenvalues of the mentioned prob-
lems and the ones of the Hodge Laplacian with respect to Dirichlet and absolute boundary
conditions on forms. These estimates generalize previous ones in the case of functions.
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1 Introduction

Let (M, g) be an n-dimensional compact Riemannian manifold with smooth boundary 0M and
let v be the inward unit vector field normal to M. For a smooth function f on M, we consider

the following two problems:

A2f=TFf on M,

f=0 on OM,
gi—() on OM

and

A%f =AAf  on M,
f= on OM,

520 on OM

(1.1)
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called the clamped plate and the buckling problem respectively. Note that Af = —tr (V2 f ) is
the Laplace operator of f and A? its square, which is sometimes called the bi-Laplace operator.
It is well known that these two problems have discrete spectra consisting of eigenvalues of finite
multiplicities

0<T  <Teg <+ <ITp <vvv — 00
and
O0<A <A< <A< —5 00,

where each eigenvalue is repeated according to its multiplicity. Physically, problem (1.1) de-
scribes the vibrations of a clamped plate, whereas problem (1.2) describes the critical buckling
load of a clamped plate subjected to a uniform compressive force around its boundary.

These two problems were studied by numerous authors. In 1955, Payne [16] proved that,
if M is a planar bounded domain, then

Al > )\27

where A9 is the second eigenvalue of the Dirichlet problem on M (see also [11] for a corrected
proof). In 1996, Ashbaugh and Laugesen showed, in their work in [2], that whenever M is
a bounded and connected open subset of the Euclidean space R",

A2>T > A > X2 (1.3)

where \; is the first eigenvalue of the Dirichlet problem on M. In [4], Chen, Cheng, Wang and
Xia proved that, if the Ricci curvature is bounded below by n — 1, then

I'y >n\ and AL >n.

Ilias and Shouman gave in [15] an estimate relating the first eigenvalue A; of the buckling
problem to g1, the first nonzero eigenvalue of the Neumann problem

1 < Aq. (14)

In this paper, we first generalize problems (1.1) and (1.2) to the context of differential forms
on the manifold M. We prove that each problem has a discrete spectrum consisting of a non-
decreasing sequence of real eigenvalues of finite multiplicities and the corresponding eigenforms
form a Hilbert basis of L?-integrable p-forms on M. We also characterize the first eigenvalue of
each problem (see Theorems 2.2 and 2.4).

In Section 3, we prove that if (M, g) is a bounded domain of the Euclidean space R", the spec-
tra without multiplicities of both problems on p-forms, for p = 1,...,n, and on functions on M
coincide (see Proposition 3.1). This allows us, for example, to determine the first eigenvalues of
both of the problems on p-forms for the Euclidean ball of arbitrary radius. In the same section,
namely in Theorem 3.3, we establish a relationship between the first eigenvalues of the buckling
and clamped-plate problems on an arbitrary compact Riemannian manifold (M, g) with smooth
boundary. In the same context, we consider the following problem, called the Dirichlet problem
on forms,

Aw = dw in M,

1.5
w=0 on OM (1.5)

and give estimates relating the first eigenvalues of the buckling, clamped-plate and Dirichlet
problems. The estimates that we obtain generalize inequalities (1.3) to differential forms on M.
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We prove as well that there exists a connection with the first eigenvalue of the absolute boundary
value problem on forms

Aw = uw on M,
vaw =10 on OM,
vadw =20 on OM

given in Theorem 3.11. This connection allows to extend (1.4) to differential forms.

Further in the same section, we show that, under the condition that the Weitzenbock curva-
ture operator is bounded below by a positive constant v, the first eigenvalue Ay ,, of problem (1.5)
is also bounded below by a quantity depending on v, see Theorem 3.16. This gives new estimates
of the first eigenvalues of the buckling and clamped-plate problems under the same conditions,
see Corollary 3.18.

We end Section 3 by considering domains M of the unit round sphere S"™ and derive in-
equalities relating the first eigenvalues of the buckling and clamped plate problems on forms of
different degrees (see Theorem 3.20).

Finally, we point out that our boundary conditions for the buckling and clamped plate prob-
lems are the most natural in the context of differential forms. To what extent there exist further
boundary conditions generalizing the ones for the scalar problem is a question which has not
been addressed in this article. Independently, so-called universal inequalities have been estab-
lished in the scalar case [5, 6, 7]. Extending those to our problems constitutes the object of
future work.

2 The buckling and clamped plate problems

In order to make this work self-contained, we collect here some classical and useful formulae
in the study of p-forms on manifolds with boundary. In the following, (M™, g) denotes an n-
dimensional compact Riemannian manifold with smooth boundary and v the inner unit normal
to OM. Then we recall from [19, Lemma 18] that for any p-form w on M, we have

F(Vyw) = vodw + d(raw) + SP(Fw) (2.1)
and
vaViw = 0M (W) — *(6w) — SP U (wiw) + (n — 1) Hrow. (2.2)

Here %M denotes the codifferential on &M, S is the natural extension as an endomorphism
of QP(OM) of the shape operator S := —Vv of the embedding ¢ of 9M in M and H = ﬁ tr(S)
is its mean curvature, see, e.g., [19, p. 624].

We are especially interested in p-forms w € QP(M) which satisfy the boundary condition

Wi,y = 0. Then, using (2.1) and (2.2), it is not difficult to compute that, along M, we have
*Vyw =vidw and vaoV,yw = —1*dw. So it is straightforward to see that
Jw =0,
w =0, vaw = 0,
oM = : (2.3)
Vywian =0, Fow =0,
vadw = 0.

In the following, we will denote by Z the vector space of smooth p-forms on M which satisfy
these boundary conditions that is

Z = {w e Q(M) | woy =0 and V,wgr = 0}.
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In this work, we will also often use integration by parts formulae which are cumbersome to
write down in the general framework of p-forms on manifolds with boundary. However, as we
restrict our attention to elements in Z, it may be very useful to observe that in this context
they become very simple. In fact, for any w,w’ € QP(M), it holds that

/M<Aw,w'>du = /M(<dw,dw'> + <5w, 5w'>)du

—i—/ ((vodw, ') — (Féw,vow’))do (2.4)
oM
= / (w, Aw')dp +/ ((vodw, ") — (w, vadw')
M oM
+ <V_JO.), L*éw’> — <L*5w, I/_le>)d0', (2.5)

and so we immediately deduce from (2.3) that if w,w’ € Z, then

/M<Aw,w’>du = /M(<dw,dw’> + <5w, 5w’>)du = /M<w, Aw'>d,u. (2.6)

Here dp (resp. do) denotes the Riemmanian measure density of (M",g) (resp. OM endowed
with the induced metric). Now by replacing w by Aw in (2.5), we obtain

/ (Aw,w)dp = / (Aw, Aw")dp +/ ((vodAw, W) = (FAw,vodw'))do
M M oM
+/ ((volAw,*6w'y — (6 Aw, vw'))do (2.7)
oM
and so if w,w’ € Z, we get

/<A2w,w'>du:/ <Aw,Aw'>du. (2.8)
M M

In the following, we will also denote by (-, -) 12(ps) the L*-scalar product on QP(M) and ||| r2(an
its associated norm. We finally notice that the boundary conditions studied here turn out to
be elliptic in the sense of Lopatinskii-Shapiro (see [21, Definition 1.6.1]). This was proved in
a more general setting by the first four authors (see [9, Lemma 6.1]) and we restate this result
in our context.

Lemma 2.1. Let (M™,g) be a compact Riemannian manifold with smooth boundary OM and
let v be the inward unit normal vector field to the boundary. The following boundary value
problem:

Aw=f on M,

w=w on OM,
M ow = wo on OM,
vodw = ws on OM

for given f € QP(M), w1 € QP(M)
of Lopatinskii-Shapiro.

we € QP7HOM), w3 € QP(OM), is elliptic in the sense

|81M ’

2.1 The buckling problem
The buckling eigenvalue problem on differential forms is

A%w = AAw on M,
w=20 on OM, (2.9)
Viwjarr =0 on OM,
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for some real constant A. Let us begin with the following existence result.

Theorem 2.2. There exists a Hilbert basis of the space of L*-integrable p-forms on (M™,g)
consisting of eigenforms solutions of the problem (2.9) associated to an unbounded and positive
sequence of eigenvalues (A p)i>1. Moreover, each eigenspace has a finite multiplicity and the
corresponding eigenforms are smooth. Finally, the first eigenvalue A1y, is characterized by

|Aw||?
Ay = inf 2‘ 2200 .
||d°~’”L2(M) + H5w||L2(M)

Equality holds if and only if w is an eigenform associated to the first eigenvalue.

,w € QP(M)\ {0}, wy,,, =0, Vowan = 0}. (2.10)

Proof. The proof is classical and so we only recall the main steps. For all p-forms w, &/, the
two bilinear forms

(w,w), = /M<Aw,Aw’>du and (1w, = /M(<dw,dw'>+<5w,5w'>)du

define scalar products on Z whose associated norms will be denoted by || ||y and || - ||w. We will
also denote by V and W the completions of Z with respect to these norms. Then one can easily
show that there exists a positive constant C' such that || - || < C|| - |[v on Z so that there is
a natural bounded linear operator Z: V' — W extending the identity map on Z. Since by [1] —
see [3] for a corrected proof — any closed and co-closed p-form vanishing along OM must vanish
identically on M, the operator Z is actually injective.

Now let K: V — V be the linear operator defined by

(ICw, w')v = (Iw,Iw')W

for all (w,w’) € V2. By definition, the operator K is self-adjoint and positive-definite. On the
other hand, since from standard elliptic estimates both norms |- ||y and || - || z2(as) are equivalent
on Z, the Rellich theorem ensures that Z is compact and so is . The spectral theorem for
positive compact self-adjoint operators applies and yields the existence of a countable Hilbert
orthonormal basis (w;);>1 of V associated to a monotonously nonincreasing positive real sequence
of eigenvalues of finite multiplicities (o p)i>1 going to 0 such that Kw; = o pw; for all ¢ > 1.
Now fixing ¢ > 1 and using the definition of I as well as the integration by part formula (2.6),
it can be computed that, for every w € Z,

aiyp(Awi,Aw)Lz(M) = (lei,w)V = (wi,w)w = (Awi,w)Lz(M).
At the same time, we also have by (2.8) that

(Aw;, AW)LZ(M) = (AQW% w)LQ(M)

for every w € Z and so the previous equality now reads as

(A2wi - Ai,pAwi,w)LQ(M) =0,

where we let A; ), = % It follows that w; is a weak solution of the eigenvalue problem (2.9)

which, by ellipticity (gé% in Lemma 2.1), is in fact smooth. Thus the form w; becomes a smooth
eigenform to problem (2.9) associated with the eigenvalue A;), = %p which is of finite multi-
plicity, since a; ), is. ’

Conversely, observe that if there exists a nontrivial solution w to (2.9) for a certain A € R,
then by (2.8), we have

(w, w’)v = A(w, w’)W
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for every w’ € Z. Note that A > 0, since otherwise A%w = 0 which from (2.8) implies that Aw = 0
and then w = 0 by [1] since wy,,, = 0. By definition of K, we have (w,w’)y = A(Kw,w’)y for all
w’ € Z and hence in V, therefore Kw = %w. This shows that w is an eigenform of K associated
to the eigenvalue a = %

Finally, given any eigenform w associated to a positive eigenvalue A of (2.9), we have by
formula (2.8) that

A/ (Aw,w>du—/ | Awl|?dp.
M M

Applying (2.6) to the left-hand side of this equality ensures that

1AW 22

1p <
P Hdeiz(M) + HdWH%z(M)

for every such eigenform, with equality for w associated to Ay . Finally, if w € V, one may write
its decomposition in the Hilbert basis (w;);>1 so that

1 1
ldwlF2ary + 160l 72(ar) = (Kw,w)y = A |(w,wi)v]? < . > l(w,wi)v?
i>1 ,p 1p i>1
1 2
= EHAWHLZ(M)‘
This prove the characterization (2.10) since Z is dense in V. [

Remark 2.3. When M is oriented, the Hodge * operator is an isometry commuting with the
Laplacian and preserving the boundary conditions in the buckling problem so that A;, = A; —p
forany i >1and 1 <p<n.

2.2 The clamped plate problem

The clamped plate eigenvalue problem on differential forms is

A%w =Tw on M,
w=20 on OM, (2.11)
Viwjgnr =0 on OM,

for some real constant I'. As previously, we immediately get the following existence result.

Theorem 2.4. There exists a Hilbert basis of the space of L?-integrable p-forms on (M™, g)
consisting of eigenforms solutions of the problem (2.11) associated to an unbounded and positive
sequence of eigenvalues (I'; p)i>1. Moreover, each eigenspace has a finite multiplicity and the
corresponding eigenforms are smooth. Finally, the first eigenvalue I' )y, is characterized by

. HAWH2L2(M) »
I'y, = inf Tl w e Q(M)\ {0}, w,,, =0 and V,wigprr =0 . (2.12)
L2(M)

Equality holds if and only if w is an eigenform associated to the first eigenvalue.
Proof. It is enough to take (, )y to be the L?(M)-scalar product on QP(M) in the proof
of Theorem 2.2 and then the proof goes the same. Note that if w € QP(M) is an eigenform

associated to I' p, it follows from (2.8) that I'y ,, > 0. Moreover, if I'; ,, = 0, then any associated
eigenform w has to be harmonic with wjgy; = 0 and so w = 0 by [1]. In particular, I'; , > 0. B

Remark 2.5. As for the buckling problem, when M is oriented, the Hodge * operator preserves
the clamped plate problem so that I'; , = I'; ,—, for any i > 1 and 1 < p < n.
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3 Eigenvalues of the buckling and clamped plate operators

3.1 Eigenvalues for bounded Euclidean domains

In this subsection, we completely describe the spectrum of the buckling and clamped plate
problems for bounded domains in the Euclidean space. More precisely, we prove the following
characterization.

Proposition 3.1. Let (M",g) be a bounded domain in the Euclidean space R™. Then the
spectrum without multiplicities of the buckling problem on p-forms on (M", g) coincides with the
spectrum of the buckling problem on functions that is A; , = Njo for alli > 1 andp € {1,...,n}.
The same holds for the clamped plate problem that isT'; , =T for alli > 1 andp € {1,...,n}.
The multiplicities of A;, and I';,, are exactly (Z) times those of Ao and I'; o respectively.

Proof. First recall that on R", there exists for each p € {1,...,n} a maximal number of parallel

p-forms. Fix p € {1,...,n} and denote by wy a nontrivial parallel p-form on M. Then note that

for any smooth function f on M with figp; = 0 and %WM =0, the p-form wy := fwy satisfies
Wi, =0 and Vowy, = 0. (3.1)

On the other hand, since wy is parallel, we have dw; = df Awp and dw; = —d f_wy and therefore
Awr = (Af)wo. Applying twice this formula leads to

A’wy = A((Af)wo) = (A% f)wp. (3.2)

Now if we take fi (resp. f2) to be an eigenfunction for the buckling (resp. clamped plate) prob-
lem (1.2) (resp. (1.1)) associated with the eigenvalue A (resp. I'), we conclude combining (3.1)
and (3.2) that wy, (resp. wy,) is a p-eigenform for (2.9) (resp. (2.11)) associated with the eigen-
value A (resp. I').

Conversely, first note that if f € C°°(M) is a smooth nontrivial function such that f = (w,wp)
where w is a smooth p-form and w is a smooth parallel p-form, we have

Af = (V'Vw,wp) = (Aw, wp), (3.3)

where the last equality follows from the Bochner formula (see (3.12) below) and the fact that M
is Euclidean. Note also that if w satisfies the boundary condition (2.3) then f and 0 f/Jv vanish
on M. Now if w; and wy denote respectively p-eigenforms to the problems (2.9) and (2.11)
associated to the eigenvalues A and I', then there exist two parallel p-forms wé on R” such that
fi:= <w2-, wé> are smooth nontrivial functions for i = 1,2. Therefore, we easily deduce from (3.3)
that these functions are smooth eigenfunctions of (1.2) and (1.1) respectively associated to A
and T |

Remarks 3.2.

1. Proposition 3.1 gives immediately the value of the first eigenvalues of the buckling and
clamped plate problems on p-forms for the Euclidean ball of radius R = HLO More precisely,
it follows from [2, Section 1] that

-2 2 4 4
A1y =i Hy and  I'yp=Fkn_,, Hy,

where j 21 is the first positive zero of the Bessel function J n and k%—l,l is the first positive
zero of Jg,lf 2+ J% 1 n_q, with I, being the corresponding modified Bessel function of
the first kind.
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2. If (M"™,g) is a compact Riemannian manifold carrying a nontrivial parallel p-form for
a certain p € {1,...,n}, we can mimic the first part of the proof of Proposition 3.1 to
ensure that if Specy (M) and Specp ,(M) denote respectively the buckling and clamped
plate spectra on p-forms for p € {0,...,n}, then we have

Specy o(M) C Specy ,(M) and Specr (M) C Specr ,(M)

3.2 General estimates

In this subsection, we prove general estimates between the first eigenvalues of the buckling and
the clamped plate problems and other classical problems. These estimates hold on (M™, g) with-
out any extra assumption, except being a compact Riemannian manifold with smooth boundary.

The first result of this part establishes a direct link between the buckling and the clamped
plate problems.

Theorem 3.3. On an n-dimensional compact Riemannian manifold (M™, g) with smooth bound-
ary, we have ', < Aip forallp €{0,...,n}.

Before giving the proof of this result, we first note that if w is a p-form satisfying wy,, =
Vow,,, = 0, then it follows from the identity A = dd +dd and from an integration by parts that

1A][7 2y = 18dw 1725y + A8l Z2py
and from (2.6) that
(Aw,w) r2(an) = 1dwll72ap) + 189l 72 a1y (3.4)

Proof. Let w be a smooth nonzero p-form on M with wy,,, = 0 and V,wjsp; = 0. By (3.4) and
the Cauchy—Schwarz inequality, we get

Hde%Q(M) + ”(SWH%Q(M) < lAwll L2 anllwll 2 (ar
and this implies that

[ Awl|z2(ar) ||AWH%2

HWHLQ(M) HdeL2(M =+ ||5WHL2(M

Taking w to be an eigenform of the buckling problem associated to A, gives the desired inequal-
ity. Moreover, if equality holds, then for any eigenform w of the buckling problem associated
to A1, the p-form Aw is pointwise proportional to w, therefore Aw = Ay pw on M and thus w
is an eigenform of the Dirichlet problem associated to the eigenvalue A;,. But because w sat-
isfies V,wigys = 0 along M, the unique continuation theorem for elliptic second-order linear
operators (see, e.g., [20, Theorem 1.4] and [14, Chapter VIII]) implies that w = 0 on M. This
shows that the inequality must actually be strict. |

Now we consider A;, the smallest eigenvalue of the Hodge Laplacian of M with Dirichlet
boundary condition. It is well-known that there exists a Hilbert basis of the space of L*-
integrable p-forms on (M™, g) consisting of smooth eigenforms solutions of the problem

Aw = \w on M,

(3.5)
w=20 on OM

associated to an unbounded and positive sequence of eigenvalues (\;)i>1. Moreover the first
eigenvalue is characterized by

N { ldwllZaap) + 190220,
-

||WHL2(M)

, we P(M)\ {0}, wy,,, = 0}

and has to be positive because of [1].
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Remarks 3.4.
1. The Hodge * operator preserves the Dirichlet problem so that A;, = A;,,—p for any i > 1
and 1 <p<n.

2. If (M™,g) is a bounded domain in the Euclidean space, one can show, reasoning as in
the proof of Proposition 3.1, that the Dirichlet eigenvalues on p-forms do not depend on p
and correspond to the Laplacian Dirichlet eigenvalues on functions.

We are now in position to give explicit estimates between the first eigenvalues of the three
previous problems, restricting our attention to 1 < p < [§] by Hodge symmetry of these spectra.
Namely, we get the following.

Theorem 3.5. On an n-dimensional compact Riemannian manifold (M™, g) with smooth bound-
ary, the following inequalities hold:

(1) Mphip <Tip for0<p<n,

(2) inf()\17p+1, )\Lp_l) S Al,p fO?" 1 S p < n,

(3) A1 < Agp.

Remarks 3.6.

1. The inequalities of Theorems 3.3 and 3.5 give the analogue of some well-known results in
the case of functions (see [2]| for example).

2. In general, it is not clear whether equality can occur in the second and third inequalities
of Theorem 3.5. We will see that this cannot occur for bounded Euclidean domains.

Proof. To prove the first inequality, we consider w an eigenform of the clamped plate prob-
lem (2.11) associated with I'; ,. Then the form w can be considered as a test-form for the first
eigenvalue of the buckling problem as well as for the first eigenvalue of the Dirichlet problem on
differential forms. Therefore, we first get
ALp(HdWH%?(M) + H&"}H%Q(M)) < HAWH%z(M),

which can be rewritten as

<HdWH2L2(M) + H‘Swuiz(]\/])) < |’AWH%2(M)

Lp

w20

)

w20

from which the estimate follows. If the inequality is an equality, then any eigenform w of the
clamped plate problem must be an eigenform of the Dirichlet problem for the Hodge Laplacian
on M. As above, the unique continuation theorem implies that w = 0. Therefore, the inequality
is strict.

For the second estimate, we consider w an eigenform of the buckling eigenvalue problem (2.9)
associated with the first eigenvalue A, for 1 <p < [%] We first notice that the two differential
forms w; = dw € QPTH(M) and wy = dw € QP~1(M) cannot be both trivial otherwise w would
be a harmonic p-form which vanishes on the boundary which is impossible by [1]. Moreover,
it follows from (2.3) that

Jwp =dfw =0, vaw; = vadw =0
and
_53M(

fwy = 1" (dw) =0, V_iwy = vaiw) =0,
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which imply that both w; and ws vanish along the boundary. So one can respectively take these
forms as test-forms in (3.5) leading to

Mprildwllfzy < 10dwlZay  and  ApoalléwlTacy) < I1dowll7zgy.
By adding these two inequalities, we get
inf (M p+1, Ap—1) (ldwl T2 ary + 10012 (ar)) < 18dwlT2apy + 1002y

and the variational characterization (2.10) allows to conclude.

For the last one, take a smooth eigenfunction f for the buckling problem (1.2) on functions
associated to A1 and let w = df € Q'(M). Then as above we observe that w vanishes on OM
so that it can be used as a test-form in the variational characterization of \;; leading to the
inequality

Ju(A)?dp
A1 < 57~ = Ao
Jarldf2dp
This proves the third inequality in the broad sense. |

A direct consequence of Theorem 3.3 and the first inequality in Theorem 3.5 is the following
estimate.

Corollary 3.7. Let (M™,g) be a compact Riemannian manifold with boundary, then

)\17p < \/Fl,p < ALP (36)
for all0 <p <n.

Since for bounded domains in Euclidean space, the eigenvalues A, and A;, do not depend
on p, it follows from the previous corollary with p = 0 that equality cannot occur in the second
and third inequalities of Theorem 3.5.

Remark 3.8. In [8], the Robin problem is defined as

Aw = lw on M,
vaw =10 on OM,
vodw = Tfw on OM

and it is proven that the first eigenvalue satisfies A1 ,(7) < A1, for any parameter 7 > 0. Hence,
it follows from (3.6) that A; ,(7) < /T'1p < A1 .

Remark 3.9. It is in fact not difficult to show that A\;, < A, forall j > 1 and p =0,...,n,
where the inequality is strict for 5 = 1 by Corollary 3.7. Indeed, it can be checked that the
eigenvalue problem (3.5) is equivalent to the problem

A%w = M\w on M,
w=20 on OM,
Aw =0 on OM

in such a way that the Dirichlet eigenvalues are determined by applying the min-max formula
to the functional

Ju |Aw*dp
Tor e + 0wd
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on subspaces of p-forms which are in (H N H&)(M ). Namely, any critical point w € (H N
H{) (M) of that functional associated with a critical value £ must satisfy

/M<Aw, Aw/>du =/ /M(<dw, dw/> + <5w,5w/>)d,u

for all W' € (H? N Hy)(M), that is,

/ <A2w,w'>du +/ (<L*Aw, y_ndw'> — <1/JA(J),L*(SLU/>)C1/.L =/ </ Aw,w'>>,
M oM M

which reduces to
/ (AW — (AW, W' )dp = / ((vodw, *0w’) = (" Aw, vadw')) dpr.
M oM

Here we have used that ' vanishes along OM. It can be deduced in the usual way that
A% —0Aw =0 on M as well as vJAw = 0 and (*Aw = 0 along OM, using the fact that,
for ' € HY(M), we have 1*6w’ = —v.V,w’ and vodw' = 1*V,w’, and both the tangential and
normal components of V,w’ can be prescribed independently. Thus Aw = 0 along M, which
yields the above equivalent problem.

Comparing now the above characterization to that of A;,, where the same quotient is consid-
ered on the smaller space HZ (M), allows to conclude. Mind that it cannot be deduced for j > 2
whether the equality can be attained or not.

Now for p € {0,...,n}, we consider the Hodge Laplacian with respect to the absolute bound-
ary condition which satisfies the eigenvalue problem

Aw = pw on M,
vaw =0 on OM, (3.7)
vidw =0 on OM.

We will denote by p1,, the first positive eigenvalue which is given by

{ ldwlZa gy + 1801220

HwHiz(M)

Hip = in

=0and w e HY(M)" 5. 3.8
et o) , Viw and w € H (M) } (3.8)

The eigenspace associated with the zero eigenvalue, if non empty, corresponds to the absolute
de Rham cohomology group in degree p defined by

HY (M) ={w e Q"(M) | dw = éw =0 on M and vow = 0}.

With these notations, it is clear that p; o corresponds to the first nonzero eigenvalue of the
Laplace operator under the Neumann boundary condition. Note also that the dual eigenvalue
problem is the relative one whose zero eigenvalue reflects the relative de Rham cohomology

group
HY (M) ={we QP(M) | dw = dw =0 on M and t*w = 0}
and is related to the absolute boundary condition by the Hodge star operator which induces

an isomorphism H% (M) ~ Hp (M) for all p = 0,...,n. The Hodge star operator maps (3.7)
onto the boundary problem

Aw = Kw on M,
Cfw=0 on OM,
F(dw) =0 on OM,
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where k is the corresponding eigenvalue. As usual, up to the possible eigenvalue 0, the (mono-
tonously nondecreasing) sequence of real eigenvalues is denoted by (k;p)i>1, where K1, is the
smallest positive one. It is a straightforward consequence of that correspondence via the Hodge
star operator that, for all ¢ > 1 and p € {0,...,n}, the identity p;, = ki n—p holds. Moreover,
f1,n = k1,0 > 0 holds because of H%(M) = {0}. By definition, the identity £1,9 = A1,0 also holds.

Remark 3.10. If H (M) = {0}, an eigenform for the Dirichlet problem (3.5) can be taken as
a test-form in the variational characterization of y; , leading to the estimate p;, < A1, for all
p=1,...,n. Note that this inequality does not hold in general for p = 0. However, it is a well-
known result of Pélya [17] (see also [10]) that p1,9 < A1,0 for bounded Euclidean domains. On the
other hand, for p =0, ..., [%], Guerini and Savo proved in [13, Theorem 2.6 (b))] that 1, < k1,
for a convex bounded domain M in the Euclidean space. Even more, if M is strictly convex,
this inequality is strict for 0 < p < [5] (see [13, Theorem 2.6 (c))]). Therefore, for a bounded
convex Buclidean domain with H},(M) = {0} for some p =0, ..., [5], we have

’Llllvp S 1‘1171) = /"Llﬂ’b—p S Alvn_p = )\1717‘

This is the case, for example, for strictly convex bounded domains in R™ and in addition the
first inequality is strict for 0 < p < [§] by the above discussion.

It turns out that the first nonzero eigenvalue of the Hodge Laplacian under the absolute
boundary condition can be related with the first eigenvalue of the buckling problem, as is stated
below.

Theorem 3.11. On an n-dimensional oriented compact Riemannian manifold (M™,g) with
smooth boundary, we have

max(/u,p, Ml,n—p) <Ay (3.9)

forallp=0,...,n. Moreover, equality occurs for some p if and only if there exist k € {p,n—p},
w € QF(M) as well as wy € HE (M) \ {0} satisfying the overdetermined boundary value problem

Aw = py pw on M,

W= wp on OM, (3.10)

F(0w) =0, vadw =0 on OM.
Proof. Let wy € QP(M) be an eigenform of the buckling problem associated to the eigen-
value A1 ,. We denote by wp the L?(M)-orthogonal projection of w; onto HY (M) and we set
w = w; —wy € QP(M). Note that wy may vanish, which is the case if and only if vidAw;
is L*(0M)-orthogonal to *HY4(M) by (2.7). Then dw = dwy and dw = dw; on M, and in

particular Aw = Aws, as well as vaow = 0 and vadw = 0 along OM. For this form w, using the
first equality in (2.6) and the Cauchy—Schwarz inequality leads to

2
(1w liF2(ary + 18wll720p) " = (Aw,w)T2(ar) < ATl F2ary:
so that, together with the fact that w # 0 (otherwise, A1, = 0),

ldollZa gy + 180122 JAwlZa 0y

Note that Hde%z(M) + ||5w|]%2(M) = Hdw1||%2(M) + H5w1H%2(M) > 0. Moreover, since Aw = Aw;
and wy is an eigenform associated with A;,, we deduce that

HdWH%2(M) + ||5WH%2(M) HAW1||%2(M)

= 1,p
o lZz TorlBagary + 10r gy "
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But vaw = 0 and (w,w’)2(apy = 0 for all W' € HY(M) so that the p-form w can be taken as
a test-form in (3.8) and therefore p1, < Aj ;. The same argument ensures that 1 ,—p < Ay p—p
and the result follows from Ay ,_, = A1, as was noticed in Remark 2.3.

If equality occurs, then it can be assumed without loss of generality that p;, = A1, up to
replacing p by n —p. Then the p-form w is a 1 ,-Laplace-eigenform with respect to the absolute
boundary condition, so that it satisfies the problem (3.7). On the other hand, it is clear that,
since w = w1 — wp with w; a buckling-eigenform and wy € HZ(M), we have (*w = —*wp and
t*(dw) = 0, therefore w solves (3.10) where —wy takes the role of wy. Note that necessarily the wp
from (3.10) cannot vanish, otherwise w = 0 by the unique continuation property for second-order
elliptic systems, which would be a contradiction. This gives the first part of the equality case.
Conversely, assume the existence of w € QP(M) satisfying (3.10) with wy € H% (M) \ {0}. Let
w1 = w—wp € QP(M). Notice that wy # 0 (otherwise 1 , = 0) and that w is L?(M)-orthogonal
to HY (M) by integrating Aw = 1 pw against any w( € H4 (M) on M and using (2.4). Then it
is not difficult to check using (2.3) that

Wigp =0 and Vilipy =0,

so that w; can be taken as a test-form in the variational characterization of A ,. On the other
hand, since wy is a harmonic form, we have dw; = dw and dw; = dw and then

A< ||AW1||%2(M) - ||AWH%2(M) .
1p = = = U1p-
P = By + 1wty N80y + Nl

This implies that p1, = A1p. Note that (3.10) is invariant under the Hodge star operator:
if w e QP(M) solves (3.10), then so does xw € Q"P(M) for the same p = 1. This shows
that, if 1, = A1, then actually 7, must also be a Laplace-eigenvalue with absolute boundary
conditions on n — p-forms, however it does not have to be the smallest one. This concludes
the proof. |

Note that problem (3.10) would not be elliptic without the boundary condition vidw = 0.

Remark 3.12. In other words, Theorem 3.11 states that

max(p1,p, K1,p) < A1p

for all p = 0,...,n. Moreover, equality occurs if and only if there exist either w € QP(M) and
wo € HY (M) \ {0} satisfying (3.10), or @ € QP(M) and @y € Hp(M) \ {0} such that
AW = K1 pw on M,
w=w on OM, (3.11)
(0w) =0, vadw =0 on OM.
For p=0orp=n, (3.11) and (3.10) are both equivalent to the existence of a nonzero function f
satisfying Af = p10f on M with fi, =1 (up to rescaling f) as well as 9, f = 0 along OM.

The existence of a nontrivial such solution is related to the so-called Schiffer conjecture, see
comments after Remarks 3.14 below.

As a direct consequence of Theorem 3.11, we get the following.

Corollary 3.13. Let (M™, g) be an n-dimensional compact Riemannian manifold with boundary,
then the following hold:

(1) if HY (M) = {0} then p1p < A1p forp=0,...,n;
(2) if H}(M) = {0} and H},(M) = {0} then inequality (3.9) is strict for p=0,...,n.
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Note that, when H' (M) = {0}, the inequality p1, < A1p is a straightforward consequence
of Corollary 3.7 because of max(f1,p, ft1.n—p) < A1p by [8, Proposition 5.4].

Remarks 3.14.

1. Since H’}(M) = {0}, it follows from Theorem 3.11 that 1, < Ay, which directly follows
from the inequality A1 9 < Aqp.

2. Let w; € QP(M), i = 1,2, be two p-forms on M such that wygrs = wyjgps- Then it follows
directly from (2.1) and (2.2) that

(L*(5w1) =1"(dwe) and wvidw; = V_:dwg) — Vowijonr = Vewgionr-

Using this characterization, it is not difficult to show that w € QP(M) and wy € HY (M)
satisfy (3.10) if and only if

Aw = 1 pw on M,
w = wy on OM,
Vowianr = Vuwolam on OM.

Obviously, the same holds for the eigenvalue boundary problem (3.11) with w € QP(M)
and Wy € HY(M).

From the estimates (3.9) and (3.6), we have, for p = 0, both p10 < A1 and A1 < Ajg. The
first inequality was first proved in [15] and states more precisely that 1110 < Ao on any compact
Riemannian manifold with boundary. However the arguments given in the proof of [15, Lem-
ma 3.1], which establishes that the inequality is strict, are not clear. Indeed, if M is assumed to
be connected, we have H 91 (M) ~ R and so, as indicated in Theorem 3.11, the equality p10 = A1
ensures the existence of a smooth function f on M satisfying the overdetermined problem

Af=pmof on M,

f=1 on OM,
of
%—0 on OM,

which is a particular case of the so-called Schiffer conjecture (see, for example, [18] and the
references therein). However, the fact that the inequality is strict can be proved at least for
bounded Euclidean domains.

Corollary 3.15. Let (M",g) be a bounded domain in the Euclidean space. Then puio < Aqp.

Proof. As recalled in Remark 3.10, we have j119 < A1 for any bounded domain in Euclidean
space and so the result follows from Corollary 3.7. |

On a bounded convex Euclidean domain with H7,(M) = {0}, since the spectrum of the Dirich-
let and the buckling problems do not depend on p, we deduce from Remark 3.10 that

H1p < )\1,p = )\1,0 < )\270 < Al,O - Al,p
The last inequality is due to Payne [16] (with a gap in the proof filled by

for p=0,...

 [5]
Friedlander [11

)
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3.3 Manifolds with Weitzenbock curvature operator bounded from below

In this subsection, we give a lower bound for the first eigenvalue A1, of the Dirichlet Hodge
Laplacian under the condition that the Weitzenbock curvature operator of the Riemannian
manifold (M™, g) is bounded from below by a positive constant 4 > 0. Combined with some
results of the former part, we obtain estimates for the first eigenvalues of the buckling and
clamped plate problems in this context. These last results generalize previous results by Chen,
Cheng, Wang and Xia [4].

For this, we first recall that the Weitzenbock formula for p-forms states that

Aw = V*Vw + WPy (3.12)

for any w € QOP(M) where V (resp. V*) is the Levi-Civita connection (resp. its L?-adjoint) on
forms and W) is the curvature term. This last term is usually called the Weitzenbock curvature
operator and it defines a self-adjoint endomorphism acting on p-forms. In the following, we will
say that WPl is bounded from below by vp(n —p) € R for a fixed p = 1,...,n if it satisfies

(W, w) > yp(n — p)|w|® (3.13)

for all w € QP(M). For p = 1, this is equivalent to the fact that the Ricci curvature satisfies
Ric > (n — 1)yg. From [12], this condition is satisfied for all p if the curvature operator is
bounded from below by v € R.

Now integrating (3.12) on M leads to the so-called Reilly formula on p-forms [19, Theorem 3]
which writes as

/(!dw\2+|5w|2)d,u:/ (Vol? + (WWw, oV dp+ [ Blw,w)do (3.14)
M M oM

for all w € QP(M) and where
B(w,w) = 2(vw, 68M(L*w)> + <S[p](L*w), Cw) + (n— DH|vw|* - <S[p_1](l/JOJ), vaw).
As a direct consequence of this formula, we get the following estimate on Ay .

Theorem 3.16. Let (M™,g) be a compact Riemannian manifold with boundary whose Weitzen-
béck curvature operator WP is bounded from below by a positive constant yp(n — p) for some
1 <p<|[5]. Then we have A1 > yp(n —p+1).

Proof. We first observe that if w is a p-form on M satisfying w),,, = 0, the boundary term in
the Reilly formula (3.14) vanishes and then, from (3.13), we get

[ el + 3P)ap = [ (19 +2p(n — p)e)dn
M M
On the other hand, with the help of the pointwise inequality
1 1
Va|? > ——|da* + ———|da]?,
p+1 n—p+1

which is true for any p-form « (see [12, Lemme 6.8]), we obtain

1

HdWH%%M) + ||5WH%2(M) 2 m(”dWH%?(M) + H(SWH%?(M)) +yp(n —p)||w||%2(M)

since 1 < p < [5]. Note that equality occurs if w is a conformal Killing form (see Lemma 3.17
below for a precise definition and [22] for more general properties) and if n = 2p orif 1 < p < [5]
and dw = 0. We finally get

ldeolZaagy + 109lB20r) = 7000 = p + 1) [w]Z2 0 (3.15)
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which, by taking w an eigenform associated to A1 ,, leads to the desired estimate in a broad
sense. Assume now that equality holds so that w is a conformal Killing p-form which vanishes
on the boundary. Then Lemma 3.17 ensures that V,wjgy, = 0 and this is impossible since w is
also a p-eigenform for the Dirichlet Hodge Laplacian. |

In the previous proof, we considered conformal Killing p-forms w, that is p-forms satisfying
the following equation

1 1
\Y% =— Xudw————X"AG 3.16
Xw P adw p— w (3.16)

for all X € I'(T'M) and used the following result that we prove now.

Lemma 3.17. On a (not necessarily compact) Riemannian manifold (M", g) with boundary OM ,
a conformal Killing p-form with 1 <p < n — 1 which vanishes on OM satisfies V,wjgnr = 0.

Proof. It is a direct consequence of (3.16) that

1
e lu_:dw and vaVyw = —mb*(éw).

(Vyw) =

On the other hand, since w € QP(M) vanishes on OM it is straightforward from (2.1) and (2.2)
to compute that

S (Vyw) = vadw and vaVyw = —1*(dw).

Putting these relations together implies that

vidw =0 and &L*((Sw) =0,
n—p+1
which, with the help of (2.3), allows us to conclude. |

Combining Theorem 3.16 with (3.6) leads to the following estimates for the buckling and
clamped plate first eigenvalues.

Corollary 3.18. Let (M™, g) be a compact Riemannian manifold with boundary whose Weitzen-
bick curvature operator W) is bounded from below by yp(n—p) > 0 for some 1 < p < [5]. Then
we have

Aip>pn—p+1) and  Ti,>*p*(n—p+1)>
Remarks 3.19.

1. From these estimates, known lower bounds for the first eigenvalues of the buckling and
clamped plate problems on functions [4] can be deduced. Indeed, for p = 1, the fact
that W is bounded from below by n — 1 is equivalent to the fact that the Ricci tensor
of (M™, g) satisfies Ric > (n—1)g. Then the first estimate in Corollary 3.18 reads A1 1 > n
under this curvature assumption.

2. Independently, the third inequality of Theorem 3.5, which reads A;g > Aq1, combined
with the inequality A;; > n from Theorem 3.16, yields Ajg > n. This is exactly [4,
Theorem 1.6]. Now putting together this estimate with the first inequality in Theorem 3.5
gives I'1 o > nA1, which is precisely [4, Theorem 1.5].
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3.4 Domains in the unit sphere

In this subsection, we derive an inequality which relates the first eigenvalues of the clamped
plated problem for different degrees for domains of the n-dimensional unit sphere S™ carrying its
metric of constant sectional curvature 1. This result is a consequence of a more general estimate
for submanifolds isometrically immersed in the Euclidean space R™™ which can be obtained
using [9, Lemma 3.8]. However, it is in general difficult to control all the terms which appear in
these estimates so that we shall restrict ourselves to the case when M is a domain of S™. We also
obtain a similar result for the first buckling eigenvalue. More precisely, we obtain the following.

Theorem 3.20. Let (M™,g) be a domain in the unit sphere S™.

1. For1<p<|[3], we have

Plip—1+ (n—=p)lipt1 < Cpplip, (3.17)
and
. Chp
min(pA1p-1, (n — p)A1pt1) < 9 A, (3.18)
44+2(n—2p)* (n—2p)*
where Crp =n+ 20200 T apt0e:
2. For n = 2p, we have
16
AMnrn 1< |(14+————) Ain. 3.19
1,2-1 ( + n2(n +2)) 1,2 (3.19)

Proof. Let w be a smooth p-form on M which vanishes on 0M and whose normal covariant
derivative is also zero on the boundary. For any 1 < ¢ < n + 1, we consider the (p — 1)-form
6T_|w on M where 8T denotes the tangential part in 7'M of the unit parallel vector field 0,
of R, Tt is not difficult to check that

(392 Jw

=0 and V. (8{1 Jw) =0

)|8M oM

so that it can be used as a test-form in the variational characterizations of I'y ,—1 and Aj ;.
1. From (2.12), we get

rl,pl/ |8£Jw|2du§/ AGT w)Pda.
M M

Summlng that inequality over i and using the pointwise identity Z"Jrl\ _nw]2 = plw|? (see,

g., [9, equation (22)]), we obtain

n+1

T TR I SINC I
Mz 1

Now the right-hand side of that inequality was computed for every p-form w in the right-hand
side of [9, equations (31) and (33)] and we obtain

PL1p-1lwll7zan < 410wll72(0r + Pl AW + (20 — n)wl[72(0y)- (3:20)

Since inequality (3.20) is true for any p-eigenform w, we can apply it to the (n — p)-eigenform xw
to get

(n ~ DT 1nmpr @l 3aqary < AldwlZqary + (0~ PIIAW + (1 — 2p)w] 22
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Summing both inequalities and using the fact that I'1,,—,—1 = I'1 41 yields

(11 + (2= D1 pi1) [laary < 2l AwlZaap, + (20 — )2 wlaay
+ (44 2(n — 2p)*) (Aw, W) L2 (M)
< nf| Aw[Fagary + (20 — 02wl Z2ary
+(4+2(n - 2p)°) | Awll g2 (an) |l 22 ar)

where we used the Cauchy—Schwarz inequality in the last inequality. On the other hand, since M
is in the unit sphere, the estimate (3.15) holds with v = 1, and therefore we get

(Pl1p-1+ (n— p)rl,p-i-l)HWH%?(M) < Cn,p”AWH%?(M)

which allows us to deduce (3.17) in the broad sense by taking w to be an eigenform associated
to I'1p. If (3.17) were an equality, then for any clamped-plate-eigenform w associated to I'y p,
the p-form Aw would be pointwise proportional to w because of the equality in the Cauchy—
Schwarz inequality. But, because of A%w = I' pw on M, we would have Aw = /I'1 ,w on M,
therefore w would be a Dirichlet eigenform associated to the eigenvalue |/I'1 ,. Again, because w
satisfies V,wigpr = 0 along OM, the unique continuation property for elliptic second-order
linear operators would imply that w = 0 on M. This would lead to a contradiction and shows
that (3.17) must be strict.

Now, we prove (3.18). Using the variational characterization (2.10) of Ay p—q forp=1,...,n
gives

Ager [ (@) + 308 0))an < [ A0 ) Pan
M M

and summing as above on ¢ from 1 to n + 1 leads to

n+1
Ay 12/ (]d( 8TJw)} - \6(8TJw)} Jdp < 4H6w||Lz oy T PllAw + (2p—n)w\|L2

By the Cartan identity and [13, formula (4.3)] (see also [9, formula (20)]), we have, for every
1<:1<n+1,
d(afiJw) £3Tw—8 _Idw_vaTw—F]I[J]_w—a,Tinw’

where Lxw is the Lie derivative of w in the X-direction and ]I[p ] is the natural extension

onto APT*M of the pointwise endomorphism field I[aj_ of TM deﬁned for all X,Y € TM by
(s (X).Y) = (KX, ). 0%)

and I is the second fundamental form of M in R™*!. Here [“)ji denotes the normal component
of 0., that is, 82%1, = Oy, — 8;{2_. Note that, because I, = —g, ® x for every x € S™ and hence
z € M, we have [y, = —x;-1d at z = (Z1,.+ . Tnt1), so that Ty1 = —px; -Id at . It can be
deduced that ' "

\d(a;’;w ‘VaTer]I[lwff)T._ndw‘Q
—‘VBTCU‘ —i—’][ w‘ —i—}aTde‘

+2<Va£w,11(%w> - 2<V8§{iw or adw) — <]I([9ﬂ_w,8£_n dw>.
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Choosing any orthonormal basis (e;)1<j<pn of T, M for some z € M, we have

n+l n

Z‘Vaériw‘ Z Z 6]> - ,ek> Ve,w, Ve,w)
i=1

i=1 j,k=1
n+l n

=573 (B, ) n, 1) (Vey0, Vo)

i=1 jk=1

n n+1
= Z <Z<8ﬂﬁiv€j><8x“€k>) '<v@jW,Vekw>

jk=1 \i=1

n
= > {ejien)(Ve,w, Ve,w) = Y [Ve,wf* = [Vwl.
jk=1 =
As a second step, at every x € M, because of |z| =1,

n+1 n+1
Z]umw) =Y 2l = pPaflwf? = pluf?
i=1

By [9, equation (22)],

n+1
ST1OE Sdwl® = (p + 1)|dwl?.
=1

Moreover,
n+1 n+1 n+1
Z <V8TW,H6J_W> 22x1<V8Tw w Zx,@T (Jwl )—px (jw]?) =
=1

because of 27 = 0 for every 2 € S™. For the same reason,

n+1 n+1

Z<H([9P;1- W,ag;_ldw> :Pz$i<W,a£_| dw> :p<w’1;T_| dw> =0.
' =1

=1

Applying the same computational method as above, we also have, in any pointwise orthonormal
basis (e;j)1<j<n of TM,

n+1 n n
Z<VaTW IL sdw) = Z (Ve,w,ejadw) = Z<eg- AVe,w,dw) = |dew|?.
i=1 j=1 j=1

On the whole, we obtain
n+1
ST1dE% w)? = Vel + pPw]? + (p+ 1)]dw]? — 2|dw]?
= Vol + p*lwl” + (p — 1)|dw”.
Therefore,

n+1
ZHd AW HL2 = HVWHLQ +p HWHL2 (M) +( - I)Hdw”%%M
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Using the Weitzenbock formula (3.12) with WP = p(n —p)-1d and Won = VW), = 0 leads to

n+1
ZHd AW HLz ) (V*V%w)m(M)+P2HWH%2(M)+(p—1)Hde%2(M)

= (Aw,w)r2ar) — (WPw,w) |, L2(M +P w172 ar
+(p— 1) w220
= (Aw,w)2an) + (07 = p(n = D)) [wlZ2(ar) + (0 = Dlldw]| 72
=p(2p — )Wl F20ar) + (0 = DI dwl|T2(apy + (A, w) 22 (ar)-
On the other hand, for every i € {1,...,n+1}, we can compute, using a local orthonormal basis
(ej)1<j<n of TM as well as VX(?; = —x;X for every X € T, M,

n

5(8%;_10.1) = —ZejJ Vej (8:%;_1(,0)

j=1
n

_ _Ze]_l Veﬁf Jw + 83,14 Vejw)

n

T
= — g <Ve] x,ek>ej_|ek_:w—8xi_:(5w

.]7

= zi(ej, ex)e; eka—agiJ(Sw
Jh=1

T
= —0,,10w,

where we used the skew-symmetry of (e;,ex)ejieguw in (j, k). As a consequence, again by [9,
equation (22)],

n+1 n+1
> 71697 w)|? Z\aﬁw p—1)]6w|?,
=1

from which 7] |6(0%, w) HLQ(M) =(p— 1)||5w||%2(M) follows. Finally, we deduce that
At (p(20 = ) [@l22 gy + (0 = D (1ol Zegary + 1012 ar)) + (B, w) 2an)
< 40w]12 gy + Pl AW + (2 — )2 0
that is, using Hde%Q(M) + ||5wH%2(M) = (Aw,w) 2 (a5
PA1p—1 (Aw,w)p2(an) + (20 = )|l F2(ary) < 410wl F20ar) + PIIAW + (2 = n)w|[F2 ()
Notice that the left-hand side of that last identity must be positive since it is actually

n+1 )
ZHd (02, -w) HL2(M) + H‘S(aa:cpr‘w)HLZ(M)'
Replacing w by *w and using the Hodge symmetry of the buckling, eigenvalues ensure that

(n = p)A1pi1 ((Aw,w) 2(ar) + (0 = 2p)[|w|72(apy)
<Al dwlF2pr) + (2 = )| Aw + (0 = 2p)wl|Z2 (5
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Adding those two inequalities, we obtain

2min(pAy p-1, (1 = p)Aipt1) - (Aw,w)2(ar)
< A([1dwllF2(ary + 18wl 72ap) + 2l Aw + (20 = n)w [ F2 ()
T (= Pl|Aw+ (0 — 2p)] 2,
= 4(Bw,w) g2(ary + 1 AwlZagar) + 2020 — 1) + (1 — p)(n — 20)(Aw, @) p2(an)
T (p(2p — 1) + (0 — p)n — 20)%) [l Zaan
= )| Aw| 7 + 1l = 20) (Wl T2(ar) + (4 +2(n = 2)%) (Aw, w) L2 (). (3.21)
But (3.15) with v =1 gives

1

—||A .
p(n_p+1)|| wHL2(M)

|wllz2(ary <
Substituting that estimate in (3.21) yields the following inequality:

2min(pArp-1, (n = p)Arps1) - (|dwllZegary + 100l Z2(ar)) < Crpll Awll72(ns),

where C,, , is the constant defined in the first statement of Theorem 3.20. We deduce inequal-
ity (3.18) by taking w as an eigenform of the buckling eigenvalue problem associated to Aj,,.
Similarly to the first case, the equality cannot occur in (3.18).

2. If n = 2p, then (3.18) becomes, because of A p—1 = A1 p—pt1 = A1 pt1,

Con

Al,%*l <

: Al,%v

which is (3.19). [ |
Notice that, by the assumption p < n — p, inequality (3.18) implies that

Cn 7p
2p

min(Ayp—1, A1 py1) < A
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