|
SIGMA 22 (2026), 010, 22 pages arXiv:2412.05612
https://doi.org/10.3842/SIGMA.2026.010
The Buckling and Clamped Plate Problems on Differential Forms
Fida El Chami a, Nicolas Ginoux b, Georges Habib ab, Ola Makhoul a and Simon Raulot c
a) Department of Mathematics, Faculty of Sciences II, Lebanese University, P.O. Box 90656 Fanar-Matn, Lebanon
b) Université de Lorraine, CNRS, IECL, 57000 Metz, France
c) Université de Rouen Normandie, CNRS, Normandie Univ, LMRS UMR 6085, 76000 Rouen, France
Received July 17, 2025, in final form January 22, 2026; Published online February 03, 2026
Abstract
We extend the buckling and clamped-plate problems to the context of differential forms on compact Riemannian manifolds with smooth boundary. We characterize their smallest eigenvalues and prove that, in the case of bounded Euclidean domains, their spectra without multiplicities on forms coincide with the spectra of the corresponding problems on functions. We obtain various estimates involving the first eigenvalues of the mentioned problems and the ones of the Hodge Laplacian with respect to Dirichlet and absolute boundary conditions on forms. These estimates generalize previous ones in the case of functions.
Key words: boundary value problem; eigenvalue estimate; buckling problem; clamped plate problem.
pdf (452 kb)
tex (26 kb)
References
- Anné C., Principe de Dirichlet pour les formes différentielles, Bull. Soc. Math. France 117 (1989), 445-450.
- Ashbaugh M.S., Laugesen R.S., Fundamental tones and buckling loads of clamped plates, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 23 (1996), 383-402.
- Chakradhar T., Gittins K., Habib G., Peyerimhoff N., Magnetic Steklov operator on differential forms, arXiv:2511.06877.
- Chen D., Cheng Q.-M., Wang Q., Xia C., On eigenvalues of a system of elliptic equations and of the biharmonic operator, J. Math. Anal. Appl. 387 (2012), 1146-1159, arXiv:1005.2954.
- Cheng Q.-M., Yang H., Universal bounds for eigenvalues of a buckling problem, Comm. Math. Phys. 262 (2006), 663-675.
- Cheng Q.-M., Yang H., Universal bounds for eigenvalues of a buckling problem II, Trans. Amer. Math. Soc. 364 (2012), 6139-6158, arXiv:0908.3745.
- Du F., Mao J., Wang Q., Wu C., Eigenvalue inequalities for the buckling problem of the drifting Laplacian on Ricci solitons, J. Differential Equations 260 (2016), 5533-5564.
- El Chami F., Ginoux N., Habib G., New eigenvalue estimates involving Bessel functions, Publ. Mat. 65 (2021), 681-726, arXiv:1908.02566.
- El Chami F., Ginoux N., Habib G., Makhoul O., Biharmonic Steklov operator on differential forms, Ann. Math. Blaise Pascal 31 (2024), 189-237, arXiv:2206.04914.
- Friedlander L., Some inequalities between Dirichlet and Neumann eigenvalues, Arch. Rational Mech. Anal. 116 (1991), 153-160.
- Friedlander L., Remarks on the membrane and buckling eigenvalues for planar domains, Mosc. Math. J. 4 (2004), 369-375.
- Gallot S., Meyer D., Opérateur de courbure et laplacien des formes différentielles d'une variété riemannienne, J. Math. Pures Appl. 54 (1975), 259-284.
- Guerini P., Savo A., Eigenvalue and gap estimates for the Laplacian acting on $p$-forms, Trans. Amer. Math. Soc. 356 (2004), 319-344.
- Hörmander L., The analysis of linear partial differential operators. I. Distribution theory and Fourier analysis, Classics Math., Springer, Berlin, 2003.
- Ilias S., Shouman A., Inequalities between Dirichlet, Neumann and buckling eigenvalues on Riemannian manifolds, Calc. Var. Partial Differential Equations 59 (2020), 127, 15 pages.
- Payne L.E., Inequalities for eigenvalues of membranes and plates, J. Rational Mech. Anal. 4 (1955), 517-529.
- Pólya G., Remarks on the foregoing paper, J. Math. Phys. 31 (1952), 55-57.
- Provenzano L., Savo A., Isoparametric foliations and the Pompeiu property, Math. Eng. 5 (2023), 031, 27 pages, arXiv:2108.13706.
- Raulot S., Savo A., A Reilly formula and eigenvalue estimates for differential forms, J. Geom. Anal. 21 (2011), 620-640, arXiv:1003.0817.
- Salo M., Unique continuation for elliptic equations, Unpublished lecture notes, 2014.
- Schwarz G., Hodge decomposition – a method for solving boundary value problems, Lecture Notes in Math., Vol. 1607, Springer, Berlin, 1995.
- Semmelmann U., Conformal Killing forms on Riemannian manifolds, Math. Z. 245 (2003), 503-527, arXiv:math.DG/0206117.
|
|