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Abstract. We describe a differential graded Lie algebra controlling infinitesimal deforma-
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1 Introduction

Let Z be a possibly singular hypersurface on a smooth variety X. It is known, at least to experts
in deformation theory, that deformations of the pair (X,Z) are controlled by the hypercohomol-
ogy of the complex of sheaves

D : ΘX
γ−→ NZ|X .

More precisely, considering the tangent sheaf ΘX in degree 0 and the normal sheaf NZ|X in de-
gree 1, the space of first-order deformations is H1(D), while obstructions are contained in H2(D).
The kernel of γ is the sheaf ΘX(− logZ) of vector fields tangent to Z, that controls the locally
trivial deformations of the pair (X,Z) [8, 17].

The cokernel of γ is precisely Schlessinger’s T 1-sheaf T 1
Z of the variety Z and this controls,

locally, the deformations of Z; note that, since X is smooth, the local deformations of Z are the
same, up to isomorphism, as the local deformations of the pair (X,Z).

While both sheaves ΘX and ΘX(− logZ) carry natural structures of sheaves of DG-Lie alge-
bras, the same does not hold for the complex D (see next Example 6.2): this may be a problem
if one wants to study the deformations of the pair (X,Z) via DG-Lie algebras, or more modestly
if one is interested in computing the primary obstruction and the Massey products.

If Z is defined as the zero locus of a section σ of a line bundle L ∈ Pic(X), then the
deformations of the pair (X,Z) correspond to the deformations of the triple (X,L, σ), up to
isomorphism.

In [21], the author investigated the deformation theory of the triple (X,L, σ). In particular,
he proved that the first-order deformations are controlled by the first hypercohomology group
of the complex

P(X,L) eσ−→ L, (1.1)
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where P(X,L) is the sheaf of first-order differential operators of L and eσ is the evaluation at σ.
The complex (1.1) is quasi-isomorphic to the complex D, for Z equal to the divisor of σ (see
Remark 6.1).

The main goal of this paper is to extend this analysis. First of all, we observe that the above
complex (1.1) has a natural structure of a coherent sheaf of DG-Lie algebras and we prove that
the DG-Lie algebra of derived global sections controls the deformations of the triple (X,L, σ) in
the usual sense of Maurer–Cartan solutions/gauge equivalence.

More generally, we provide an explicit construction of a DG-Lie algebra controlling defor-
mations of a triple (X,F , σ), where X is a smooth variety, F a coherent sheaf on X and
σ ∈ H0(X,F) a global section of F over X. More precisely, taking a finite locally free resolu-
tion E∗ of the sheaf F and a section s ∈ H0

(
X, E0

)
lifting σ, we are able to prove the following

theorem.

Theorem (Theorem 5.6). The infinitesimal deformations of the triples (X,F , σ) are controlled
by the DG-Lie algebra L of the derived global sections of the complex

P∗(X, E∗) es−→ E∗. (1.2)

Moreover, the homotopy type of the DG-Lie algebra L is independent of the choice of E∗ and s.

Our choice of considering only one section is motivated by the simplicity of exposition; it
will be clear from our proof that a similar result holds also for any finite sequence of sec-
tions σ1, . . . , σn, whenever the complex (1.2) is replaced by

P∗(X, E∗)
(es1 ,...,esn )−−−−−−−→

n⊕
i=1

E∗.

The idea behind the proof of the above theorem is the following. The choice of a pair (E∗, s)
and of an affine open cover of X provides a representative for the DG-Lie algebra L (the
Thom–Whitney totalization of the Čech cochain hypercomplex), together with a (ordinary)
functor G : ArtK → Grpd, such that its connected components are the same as the isomorphism
classes of the deformations of the triple (X,F , σ). Then, using the Fiorenza–Iacono–Martinengo
variation of Hinich’s theorem on descent of Deligne groupoids (see Theorems 3.1 and 3.2), we are
able to show that both G and the Deligne groupoid of L have the same connected components.

Notation. We denote by K a field of characteristic 0, by ArtK the category of local Artin K-
algebras with residue field K, by Set the category of sets and byGrpd the (ordinary) category of
groupoids. By variety, we mean an integral (and so irreducible and reduced), separated scheme
of finite type over K.

2 A brief review of Deligne groupoids of DG-Lie algebras

For the readers’ convenience, we review the Deligne groupoid and the deformation functor as-
sociated to a DG-Lie algebra; we refer to [17] for a more detailed exposition and proofs. For
simplicity of exposition, we define a formal groupoid as a covariant functor from ArtK to the
(ordinary) category of groupoids.

For any DG-Lie algebra L, the associated Deligne groupoid is the formal groupoid

DelL : ArtK → Grpd

defined in the following way. Given A ∈ ArtK, with maximal ideal mA, fix a representative for
the tensor product L⊗mA. Then the objects of DelL(A) are the solutions of the Maurer–Cartan
equation in L⊗mA

Ob(DelL(A)) = MCL(A) =
{
x ∈ L1 ⊗mA | dx+ [x, x]/2 = 0

}
.
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The exponential group of the nilpotent Lie algebra L0⊗mA acts on MCL(A) by the gauge action,
namely

ea ∗ x = x+
∑
n≥0

[a, ·]n

(n+ 1)!
([a, x]− da), a ∈ L0 ⊗mA, x ∈ MCL(A).

In particular, for every ν ∈ L−1 ⊗mA and every x ∈ MCL(A) we have edν+[x,ν] ∗ x = x since

[dν + [x, ν], x]− d(dν + [x, ν]) = 0.

Moreover, for a fixed x ∈ MCL(A), the subset I(x) :=
{
dν + [x, ν] | ν ∈ L−1 ⊗ mA

}
is a Lie

subalgebra of L0 ⊗ mA and then exp(I(x)) is a subgroup contained in the stabiliser of x under
the gauge action.

Given x, y ∈ MCL(A), the set of morphisms x→ y is the quotient set

MorDelL(A)(x, y) =
{
a ∈ L0 ⊗mA | ea ∗ x = y

}
/∼,

where a ∼ b if ea = ebedν+[x,ν] for some ν ∈ L−1 ⊗ mA. As proved in [17, Lemma 6.5.5], we
have a ∼ b if and only if there exists µ ∈ L−1 ⊗mA such that ea = edµ+[y,µ]eb, and this implies
that the composition of morphisms is properly defined. Note that when L−1 = 0, the Deligne
groupoid is the same as the action groupoid for the gauge action on Maurer–Cartan elements.

Every morphism of DG-Lie algebras L → M naturally induces a natural transformation
DelL → DelM . Furthermore, the basic theorem of homotopy invariance of Deligne groupoids
ensures that, if L → M is a quasi-isomorphism of DG-Lie algebras, then DelL(A) → DelM (A)
is an equivalence of groupoids, for every A ∈ ArtK.

The deformation functor

DefL : ArtK → Set

associated to L is the functor of isomorphism classes in the Deligne groupoids, i.e., DefL(A) =
π0(DelL(A)) for every A ∈ ArtK; equivalently, DefL is given by Maurer–Cartan elements modulo
gauge action.

For simplicity of exposition, and to be consistent with the existing literature about Hinich’s
descent theorem and its extensions, in this paper we only consider ordinary functors from ArtK
to the category of groupoids. We point out that an alternative, and for some aspects also concep-
tually clearer, approach is to consider Grpd as a (2, 1)-full subcategory of the 2-category Cat,
and work with pseudo-functors from ArtK to Grpd (see, e.g., [19, Definition 3.10]).

Lemma 2.1. Let f : L→M be a morphism of DG-Lie algebras, A ∈ ArtK and let

DelL(A)
g //

f

��

G

k
��

DelM (A)
h // H

be a diagram in Grpd. Assume that

(1) h ◦ f = k ◦ g;
(2) f : H i(L)→ H i(M) is surjective for i = −1 and injective for i = 0;

(3) g is full and essentially surjective;

(4) h is faithful.

Then g is an equivalence of groupoids.
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Proof. It is sufficient to prove that for every Maurer–Cartan element x ∈ MCL(A) the map

g : MorDelL(A)(x, x)→ MorG(g(x), g(x))

is injective. According to [17, Lemma 6.6.8], hypothesis (2) implies that the morphism

f : MorDelL(A)(x, x)→ MorDelM (A)(f(x), f(x))

is injective, while h is injective on morphisms by assumption.
Hence h◦f is injective on morphisms and the first condition ensures that k◦g is also injective

on morphisms. ■

Remark 2.2. If we work in the (2,1)-category of groupoids, the first item in the above lemma can
be weakened by requiring that the diagram is 2-commutative, i.e., there exists a 2-morphism η
between h ◦ f and k ◦ g. Indeed, this implies the existence of an invertible map ηx for any
x ∈ MCL(A), such that for any a ∈ MorDelL(A)(x, x), k ◦ g(a) = η−1

x ◦ (h ◦ f)(a) ◦ ηx. Then, we
can conclude that the injectivity of h ◦ f on morphisms ensures that k ◦ g is also injective on
morphisms.

Example 2.3. For later use, we explicitly describe the Deligne groupoid for some particular
examples of DG-Lie algebras.

Let R be a commutative K-algebra and let

(E∗, ∂) : · · · ∂−→ En−1 ∂−→ En ∂−→ · · · ∂−→ E0

be a bounded above complex of projective R-modules.
The first DG-Lie algebra that we consider is M = Hom∗

R(E
∗, E∗), with bracket [f, g] = fg−

(−1)fggf and differential d = [∂, ·], i.e., df = ∂f − (−1)ff∂.
For any element x ∈ M1 ⊗ mA ⊆ Hom1

R(E
∗, E∗ ⊗ mA) ⊆ Hom1

R⊗A(E
∗ ⊗ A,E∗ ⊗ A), the

Maurer–Cartan equation can be written as [∂ + x, ∂ + x]/2 = 0 and then x ∈ MCM (A) if and
only if (E∗ ⊗A, ∂ + x) is a complex of R⊗A-modules.

Since the differential d is the inner derivation [∂,−], by a completely standard computation,
see, e.g., either [17, Proposition 2.5.3 and Example 6.3.2] or [16, Example 1.2], given x, y ∈
M1 ⊗mA and a ∈M0 ⊗mA we have

ea ∗ x = y ⇐⇒ e[a,−](∂ + x) = ∂ + y ⇐⇒ ea(∂ + x)e−a = ∂ + y,

where the last equation is expressed in the associative product of Hom∗
R⊗A(E

∗ ⊗ A,E∗ ⊗ A).
Thus, the relation ea ∗ x = y means that ea : (E∗ ⊗ A, ∂ + x)→ (E∗ ⊗ A, ∂ + y) is a morphism
of complexes of R⊗A-modules. Finally, using the power series expansions of ex and log(1− x)
it is easy to see that for x ∈ MCM (A) the morphisms of complexes

edν+[x,ν] : (E∗ ⊗A, ∂ + x)→ (E∗ ⊗A, ∂ + x), ν ∈M−1 ⊗mA,

are exactly those that are homotopic to the identity by a R⊗A-linear homotopy that is trivial
on E∗. Hence, if ea ∗ x = eb ∗ x = y, the equivalence a ∼ b means that the two morphisms
ea, eb : (E∗ ⊗ A, ∂ + x) → (E∗ ⊗ A, ∂ + y) are homotopic by a R ⊗ A-linear homotopy that is
trivial modulo mA, see [3].

Example 2.4. As a second example, fix an element s ∈ E0
(
since E1 = 0 we have ∂s = 0

)
;

let τ be an indeterminate of degree −1 and consider the short exact sequence of complexes

0→ (E∗, ∂)→ (E∗ ⊕Rτ, ∂)→ Rτ → 0, where ∂τ = s.
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Define L ⊆ Hom∗
R(E

∗ ⊕ Rτ,E∗ ⊕ Rτ) as the DG-Lie subalgebra of endomorphisms f such
that f(E∗ ⊕Rτ) ⊆ E∗. Therefore, we have isomorphisms

Li ∼=M i ⊕ Ei−1 = Homi
R(E

∗, E∗)⊕ Ei−1, f 7→ (f|E∗ , f(τ)).

Via the above isomorphism L ∼=M ⊕ E∗[−1], the bracket in L becomes

[(f, v), (g, w)] =
(
[f, g], f(w)− (−1)fgg(v)

)
,

and the differential

d(f, v) = [(∂, s), (f, v)] =
(
[∂, f ], ∂v − (−1)ff(s)

)
.

Then, we have the following short exact sequence of DG-Lie algebras

0→ E∗[−1] ι−→ L
ρ−→M → 0,

where E∗[−1] is equipped with the trivial bracket, ρ is the projection and ι(x) = (−1)i(0, x)
for x ∈ Ei−1.

We observe the following.

(1) Under the above isomorphisms, a pair (u, t) ∈ L1 ⊗ mA, with u ∈ Hom1
R(E

∗, E∗) ⊗ mA

and t ∈ E0 ⊗mA, satisfies the Maurer–Cartan equation if and only if (∂ + u)2 = 0.

(2) For every (u, t) ∈ L1 ⊗mA and every b ∈ E−1 ⊗mA, we have

e(0,b) ∗ (u, t) = (u, t− (∂ + u)b). (2.1)

Lemma 2.5. In the above notation, let (u, t) ∈ L1 ⊗ mA be a solution of the Maurer–Cartan
equation, (f, a) ∈ L0 ⊗mA and denote

(
u′, t′

)
= e(f,a) ∗ (u, t). Then

∂ + u′ = ef (∂ + u)e−f , s+ t′ − ef (s+ t) ∈
(
∂ + u′

)(
E−1 ⊗mA

)
.

In particular, s + t′ = ef (s + t) in the cohomology group H0(E∗ ⊗ A, ∂ + u′) and there ex-
ists b ∈ E−1 ⊗mA such that

e(0,b) ∗
(
u′, t′

)
= e(0,b)e(f,a) ∗ (u, t) =

(
u′, ef (s+ t)− s

)
. (2.2)

Proof. It is convenient to prove the above formulas in the DG-associative algebra Hom∗
R(E

∗⊕
Rτ,E∗ ⊕ Rτ)⊗ A. Then, the elements (u, t),

(
u′, t′

)
and (f, a) correspond, respectively, to the

A-linear extension of the endomorphisms:

(1) α : E∗ ⊕Rτ → E∗ ⊗mA, α|E∗ = u, α(τ) = t;

(2) β : E∗ ⊕Rτ → E∗ ⊗mA, β|E∗ = u′, β(τ) = t′;

(3) γ : E∗ ⊕Rτ → E∗ ⊗mA, γ|E∗ = f , γ(τ) = a.

By the relation ∂ + β = eγ(∂ + α)e−γ , we get

s+ t′ = (∂ + β)(τ) = eγ(∂ + α)e−γ(τ) = eγ(∂ + α)

(
τ − e−γ − I

γ
(a)

)
.

Denoting by c = e−γ−I
γ (a) ∈ E−1 ⊗mA, we conclude that

s+ t′ = eγ(∂ + α)(τ − c) = eγ(s+ t− (∂ + u)(c)) = ef (s+ t)− ef (∂ + u)(c)

= ef (s+ t)−
(
∂ + u′

)
ef (c),

and therefore

s+ t′ − ef (s+ t) ∈
(
∂ + u′

)(
E−1 ⊗mA

)
, ef (s+ t)− s = t′ +

(
∂ + u′

)
ef (c).

According to (2.1), the element b = −ef (c) ∈ E−1 ⊗mA satisfies (2.2). ■
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3 Descent of Deligne groupoids

For later application, we review the extension given in [3] (see Theorem 3.2) of Hinich’s theo-
rem on descent of Deligne groupoids [7] (see Theorem 3.1), which is particularly useful in the
deformation theory of coherent sheaves that are not locally free.

Let

G : G0
//// G1

////// G2

// ////// · · ·

be a semicosimplicial groupoid with face operators δi : Gn → Gn+1 and cosimplicial identi-
ties δlδk = δk+1δl for l ≤ k; in particular δ0δ0 = δ1δ0, δ0δ1 = δ2δ0, δ1δ1 = δ2δ1.

The associated total, or descent groupoid, Tot(G) is defined in the following way:

(1) the objects of Tot(G) are the pairs (l,m), with l ∈ G0 and m : δ0l→ δ1l a morphism in G1

such that the cocycle diagram

δ0δ0l
δ0m

##
δ1δ0l

δ1m
��

δ0δ1l

δ1δ1l δ2δ0l
δ2m

{{
δ2δ1l

is commutative in G2;

(2) the morphisms between (l0,m0) and (l1,m1) are the morphisms a in G0 between l0 and l1
such that the diagram

δ0l0
m0 //

δ0a
��

δ1l0

δ1a
��

δ0l1
m1 // δ1l1

is commutative in G1.

The above construction is functorial; every morphism f : G→H of semicosimplicial groupoids
induces a morphism of groupoids f : Tot(G) → Tot(H). Moreover, if for every n = 0, 1, 2 the
component fn : Gn → Hn is an equivalence of groupoids, then also f : Tot(G) → Tot(H) is an
equivalence of groupoids.

Given a semicosimplicial DG-Lie algebra

L : L0
//// L1

////// L2

// ////// · · ·

with face morphisms δi : Ln−1 → Ln, 0 ≤ i ≤ n, we have the associated semicosimplicial Deligne
groupoids

DelL : DelL0

// // DelL1

////// DelL2

//////// · · ·

that is a semicosimplicial object in the category of functor from ArtK to Grpd and we can
consider its descent groupoid Tot(DelL) : ArtK → Grpd.

Let us denote by Tot(L) the Thom–Whitney totalization of the semicosimplicial DG-Lie
algebra L. We refer to [3, 17] for its explicit construction; here, we just recall some basic
properties that will be used in this paper.
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(1) Tot(L) is a DG-Lie algebra and H∗(Tot(L)) ∼= H∗(TotΠC(L)), where
C(L) : · · · δ−→ Ln−1

δ=
∑n

i=1(−1)i−1δi−−−−−−−−−−−→ Ln
δ−→ · · ·

is the cochain double complex associated to L [20, Section 1.2.6].

(2) Tot is an exact functor from the category of semicosimplicial DG-Lie algebras to the
category of DG-Lie algebras.

Here, we recall two useful results on descent of Deligne groupoids.

Theorem 3.1 ([7]). Let L be a semicosimplicial DG-Lie algebra such that every Li is con-
centrated in nonnegative degrees. Then there exists an equivalence of groupoids DelTot(L) ∼=
Tot(DelL).

This means that there exists a natural transformation of functors Φ: DelTot(L) → Tot(DelL)
that is an equivalence of groupoids for every Artin ring. This was also generalised to an equiva-
lence to the formal groupoid associated to the L∞-structure on the homotopy limit, in the case
of semicosimplicial Lie algebra [4]. If some Li has nontrivial elements of negative degree the
above result is generally false. However, we have the following result.

Theorem 3.2 ([3]). In the above situation, if Hp(Li) = 0 for every i and every p < 0, then
there exists an isomorphism of functors of Artin rings Φ: DefTot(L) → π0(Tot(DelL)).

4 Coherent DG-Lie algebroids on smooth varieties

Let X be a smooth variety over K (i.e., a regular, integral, separated scheme of finite type) and
denote by ΘX = DerK(OX ,OX) its tangent sheaf.

Definition 4.1. A coherent DG-Lie algebroid over X is a pair (L∗, α), where

� L∗ is a sheaf of DG-Lie algebras over K on X such that the underlying sheaf of DG-vector
spaces · · · Li δ−→ Li+1 · · · is a bounded complex of coherent OX -modules (hence δ is OX

linear, while the bracket is assumed only K-bilinear);

� α : L∗ → ΘX is a morphism of complexes of OX -modules, called the anchor map, com-
muting with the brackets;

� finally, we require the Leibniz rule to hold [l, fm] = α(l)(f)m+f [l,m], ∀l,m ∈ L∗, f ∈ OX .

A morphism (resp. quasi-isomorphism) L∗ → M∗ of coherent DG-Lie algebroids over X is
a morphism (resp. quasi-isomorphism) of complexes of OX -modules commuting with brackets
and anchor maps.

An example is given by the sheaf P∗(X, E∗) of first-order differential operators with scalar
symbol of a bounded complex (E∗, ∂) of locally free sheaves on X. For applications to defor-
mation theory it is convenient, following [10], to define P∗(X, E∗) in terms of derivations of
pairs.

Consider the subcomplex of OX -modules

D∗(X, E∗) ⊆ ΘX ×Hom∗
K(E∗, E∗),

D∗(X, E∗) = {(h, u) | u(ax)− au(x) = h(a)x, for every a ∈ OX , x ∈ E∗}.

Then, we define P∗(X, E∗) ⊆ Hom∗
K(E∗, E∗) as the image of D∗(X, E∗) under the projec-

tion on the second factor; since E∗ is torsion-free, we have an isomorphism of sheaves of DG-
Lie algebras P∗(X, E∗) ≃−→ D∗(X, E∗), u 7→ (α(u), u), where α(u) is the (scalar) symbol of u.
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If u ∈ Pn(X, E∗) and n ̸= 0, then u ∈ Homn
OX

(E∗, E∗) and α(u) = 0, while every u ∈ P0(X, E∗)
is a sequence of differential operators of first order ui : E i → E i with the same scalar symbol.

Since the complex E∗ is assumed bounded, it is not difficult to prove that P∗(X, E∗) is also
a coherent DG-Lie algebroid with surjective anchor map α [10, Proposition 5.1]. Therefore,
we have a short exact sequence

0→ Hom∗
OX

(E∗, E∗)→ P∗(X, E∗) α−→ ΘX → 0. (4.1)

Next, we describe another example of DG-Lie algebroid, extending the previous construction,
starting from a coherent sheaf and a section.

Definition 4.2. Let F be a coherent sheaf on a smooth variety X and σ ∈ H0(X,F) a global
section. A resolution of (F , σ) over X is a pair (E∗, s), where

� E∗ is a finite locally free resolution of F , i.e., we have an exact sequence 0→ E−m ∂−→· · · ∂−→
E0 → F → 0 with every E i locally free;

� s ∈ H0
(
X, E0

)
is a section lifting σ.

Since X is a smooth variety, a resolution as above always exists by Kleiman’s theorem,
see, e.g., [6, Exercise III.6.8] or [2, Theorem 3.3], and, for any of them, evaluation at s gives
a morphism of complexes of OX -modules es : P∗(X, E∗)→ E∗, es(u) = u(s).

Mimicking the construction of the DG-Lie algebra M of Section 2, the mapping cocone
of the morphism es, denoted by C∗(X, E∗, s), carries a structure of DG-Lie algebroid. More
explicitly, Cn(X, E∗, s) = Pn(X, E∗)⊕En−1 for every n, then we extend the bracket of P∗(X, E∗)
to C∗(X, E∗, s) by setting{

[u, x] = u(x) for u ∈ P∗(X, E∗), x ∈ E∗,
[x, y] = 0 for x, y ∈ E∗,

and the differential is as follows:

d: C∗(X, E∗, s)→ C∗(X, E∗, s), d(u, x) = ([∂, u], ∂x+ [s, u]) = [(∂, s), (u, x)].

It is straightforward to show that C∗(X, E∗, s) is a sheaf of DG-Lie algebras. Moreover, C∗(X,
E∗, s) inherits the anchor map α of (4.1) so that it has a structure of DG-Lie algebroid.

Note that, for every r ∈ H0
(
X, E−1

)
, there exists an isomorphism of DG-Lie algebroids

C∗(X, E∗, s) ≃−→ C∗(X, E∗, s+ ∂r), (u, x) 7→ (u, x− [r, u]).

The projection C∗(X, E∗, s) → P∗(X, E∗) is a morphism of DG-Lie algebroids and there is
a commutative diagram of sheaves of DG-Lie algebras, with exact rows and columns

0

��

0

��
E∗[−1]

��

E∗[−1]

��
0 // K //

��

C∗(X, E∗, s) //

��

ΘX
// 0

0 // Hom∗
OX

(E∗, E∗)

��

// P∗(X, E∗) α //

��

ΘX
// 0

0 0,

(4.2)

where K is the mapping cocone of the evaluation map es : Hom∗
OX

(E∗, E∗)→ E∗.
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We point out that if (E∗, s) is a resolution of (F , σ) and

E∗ φ //

!!

H∗

��
F

(4.3)

is a morphism of finite locally free resolutions of F , then (H∗, φ(s)) is also a resolution of the
pair (F , σ).

Lemma 4.3. In the above situation (4.3), if φ is injective and its cokernel is a complex of locally
free sheaves, then the DG-Lie algebroids C∗(X, E∗, s) and C∗(X,H∗, φ(s)) are quasi-isomorphic.

Proof. The proof is essentially the same given in [10] for the analogous result for the DG-Lie
algebroids D∗(X, E∗) and D∗(X,H∗). Define

P∗(X, E∗ φ−→ H∗) ⊆ P∗(X, E∗)×ΘX
P∗(X,H∗)

as the subset of pairs (u, v) such that φu = vφ. It is clearly a DG-Lie algebroid on X and,
according to [10, Corollary 3.3], the projections on both factors give two short exact sequences
of complexes of OX -modules

0→ P∗(X, E∗ φ−→ H∗)→ P∗(X,H∗)→ Hom∗
OX

(E∗, cokerφ)→ 0,

0→ Hom∗
OX

(cokerφ,H∗)→ P∗(X, E∗ φ−→ H∗)→ P∗(X, E∗)→ 0.

Since φ is an injective morphism of resolutions, its cokernel is acyclic; since E∗ is locally free and
bounded above, the complex Hom∗

OX
(E∗, cokerφ) is acyclic. Similarly, since cokerφ is acyclic,

locally free and bounded above, also the complex Hom∗
OX

(cokerφ,H∗) is acyclic.

Therefore, we have a commutative diagram

P∗(X, E∗ φ−→ H∗)
vv ((

P∗(X, E∗)
es

��

P∗(X,H∗)

eφ(s)

��
E∗ φ // H∗,

where the oblique arrows are quasi-isomorphisms of DG-Lie algebroids. Denoting by C∗
(
X, E∗ φ−→

H∗, s
)
the mapping cocone of the evaluation map P∗(X, E∗ φ−→ H∗)→ E∗, defined as (u, v) 7→

u(s), we have a span of quasi-isomorphisms of DG-Lie algebroids

C∗(X, E∗, s)←−−− C∗
(
X, E∗ φ−→ H∗, s

)
−−−→ C∗(X,H∗, φ(s)). ■

Theorem 4.4. Let (X,F , σ) be as above and (E∗1 , s1) and (E∗2 , s2) two resolutions of (F , σ).
Then, the DG-Lie algebroids C∗(X, E∗1 , s1) and C∗(X, E∗2 , s2) are quasi-isomorphic, i.e., they are
connected by a zig-zag of quasi-isomorphisms of DG-Lie algebroids.

Proof. Again, the proof is essentially the same of [10, Lemma 7.7]. Denote by f1 : E∗1 →
F and f2 : E∗2 → F the two surjective quasi-isomorphisms of complexes such that fi(si) = σ.
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Since X is smooth, the usual killing cycles procedure gives two bounded complexes H∗ and N ∗

of locally free sheaves and a commutative diagram

0 // E∗1 ⊕ E∗2
j1+j2 //

f1+f2 $$

H∗

h
��

// N ∗ // 0

F

such that h : H∗ → F is a resolution, the upper row is a short exact sequence and there ex-
ists b ∈ H0

(
X,H−1

)
such that db = j1(s1) − j2(s2). By previous lemmas, the DG-Lie alge-

broid C∗(X, E∗i , si) is quasi-isomorphic to C∗(X,H∗, ji(si)), for i = 1, 2, and the two DG-Lie
algebroids C∗(X,H∗, j1(s1)) and C∗(X,H∗, j2(s2)) are isomorphic. ■

Definition 4.5. Let (X,F , σ) be as above and (E∗, s) a resolution of (F , σ). For any i ∈ Z,
we define the coherent sheaves T i

(X,F ,σ) as the cohomology sheaves of C∗(X, E∗, s), i.e., T i
(X,F ,σ) :=

Hi(X, C∗(X, E∗, s)). Analogously, we can define the hyper-cohomology groups T i
(X,F ,σ) = Hi(X,

C∗(X, E∗, s)). By the previous Theorem 4.4, the sheaves T i
(X,F ,σ) and the groups T i

(X,F ,σ) are
well defined, since they do not depend on the choice of the resolution. Moreover, the sheaves
T i
(X,F) = H

i(X,P∗(X, E∗)) and the groups T i
(X,F) = Hi(X,P∗(X, E∗)) are also well defined.

Remark 4.6. Since E∗ is a locally free resolution of the coherent sheaf F , we have

Hi(X, E∗[−1]) = H i−1(X,F), Hi(X,Hom∗
OX

(E∗, E∗)) = ExtiX(F ,F).

Therefore, it follows from (4.2) that the sheaves T i
(X,F ,σ) and the groups T i

(X,F ,σ) vanish for i < 0,
while for i ≥ 0 we have the long exact sequences

0 // H0(X,K) //

��

T 0
(X,F ,σ)

//

��

H0(X,ΘX) // H1(X,K) //

��

T 1
(X,F ,σ)

//

��

· · ·

0 // Ext0X(F ,F) // T 0
(X,F)

// H0(X,ΘX) // Ext1X(F ,F) // T 1
(X,F)

// · · · ,

and

· · · // T i
(X,F ,σ)

// T i
(X,F)

// H i(X,F) // T i+1
(X,F ,σ)

// T i+1
(X,F)

// · · · . (4.4)

Remark 4.7. If F is a locally free sheaf on X and σ ∈ H0(X,F) a global section, then
the pair (F , σ) is itself a resolution. Then, the evaluation at σ gives a morphism of sheaves
of OX -modules eσ : P(X,F)→ F , eσ(u) = u(σ), that is, the differential of the DG-Lie alge-
broid C∗(X,F , σ). Note that in this case the DG-Lie algebroid is concentrated in degree zero
and one: C0(X,F , σ) = P(X,F) and C1(X,F , σ) = F .

5 Deformation of triples (X,F , σ)

In this section, we prove that, for any resolution (E∗, s) of a triple (X,F , σ), the sheaf of DG-Lie
algebras C∗(X, E∗, s) controls the deformations of the triple (X,F , σ). This means that the DG-
Lie algebra RΓ(C∗(X, E∗, s)) of derived global sections of C∗(X, E∗, s) controls the deformations
in the usual sense of Maurer–Cartan solutions modulo gauge action.

Definition 5.1. Let X be a variety over K, F a coherent sheaf on X and σ ∈ H0(X,F)
a global section of F over X. An infinitesimal deformation of (X,F , σ) over A ∈ ArtK is the
data (XA,FA, σA), where
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� XA is an infinitesimal deformation of X over A, i.e., a pull-back diagram

X //

��

XA

π

��
SpecK // SpecA,

where π is flat; since A is an Artin ring, this is given by a sheaf OXA
of flat A-algebras

over X together with an isomorphism of sheaves OXA
⊗A K→ OX .

� FA is a coherent sheaf of OXA
-modules, flat over A, equipped with a morphism FA → F ,

inducing an isomorphism FA ⊗OXA
OX → F .

� σA is a global section of FA extending σ.

Definition 5.2. An isomorphism of (infinitesimal) deformations (XA,FA, σA)→
(
X ′
A,F ′

A, σ
′
A

)
is the data of

(1) an isomorphism of sheaves of A-algebras θ : OXA
→ OX′

A
extending the identity on OX ;

(2) an isomorphism of sheaves of OXA
-modules φ : FA → F ′

A, extending the identity on F ,
where the OXA

-module structure on F ′
A is induced by θ;

(3) φ(σA) = σ′A.

Definition 5.3. We denote by Def(X,F ,σ) : ArtK → Set the functor of isomorphism classes of
infinitesimal deformations of the triple (X,F , σ).

In [10], we considered the functor Def(X,F) of deformations of the pair (X,F), defined in
a completely similar way. It is plain that there exists a natural forgetful natural transforma-
tion Def(X,F ,σ) → Def(X,F).

The case X affine

Assume X smooth affine variety and let 0→ E−m ∂−→ · · · ∂−→ E0 → F → 0 be a finite free res-
olution of F . Denote by M = Γ(X,D∗(X, E∗)) the DG-Lie algebra of global sections of the
sheaf D∗(X, E∗) ∼= P∗(X, E∗).

According to [10, Proposition 7.9], there exists an isomorphism of deformation functors
DefM ∼= Def(X,F); for our application, we need to describe a suitable factorization of this iso-
morphism (see Lemma 5.4).

For every A ∈ ArtK, fix a representative for the tensor product E0 ⊗ A and define the
formal groupoid G(X,F) : ArtK → Grpd in the following way. For every A ∈ ArtK, the objects
of G(X,F)(A) are the A-flat quotients FA of E0⊗A such that the projection map p : E0⊗A→ E0
factors to a morphism p : FA → F and induces an isomorphism FA ⊗A K = F .

A morphism FA → F ′
A is a pair (θ, φ), where

(1) θ is an isomorphism of sheaves of A-algebras θ : OX⊗A→ OX⊗A, extending the identity
on OX ;

(2) φ is an isomorphism of sheaves of A-modules φ : FA → F ′
A, extending the identity on F

such that φ(gx) = θ(g)φ(x) for every g ∈ OX ⊗A, x ∈ FA.

Lemma 5.4. In the above notation, there exist an equivalence of formal groupoids

Ψ: DelM → G(X,F)

and an isomorphism of functors of Artin rings π0(G(X,F)) ≃ Def(X,F).
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Proof. An object in DelM (A) is an element u ∈ Hom1
OX

(E∗, E∗)⊗mA that satisfies the Maurer–
Cartan equation, so that (∂ + u)2 = 0 and this defines the following complex of sheaves

0→ E−m ⊗A ∂+u−−→ · · · ∂+u−−→ E0 ⊗A q−→ FA → 0,

where q is just the cokernel of E1 ⊗A ∂+u−−→ E0 ⊗A. By flatness and lifting of relations [1,
Proposition 3.1], the above complex is an exact sequence, the coherent sheaf FA is flat over A
and FA ⊗A K = F . Thus Ψ(u) := FA is an object of G(X,F).

Assume now that ef ∗ u = u′ is a gauge equivalence between two Maurer–Cartan elements,
with f ∈M0 ⊗mA. Here f ∈ H0

(
X,P0(X, E∗)

)
⊗mA is a first-order differential operator with

scalar symbol α(f) ∈ H0(X,ΘX)⊗mA. Then e
α(f) : OX ⊗A→ OX ⊗A is an automorphism of

sheaves of A-algebras and it is proved in [10] that the isomorphism of complexes of sheaves of A-
modules ef : (E∗⊗A, ∂+u)→ (E∗⊗A, ∂+u′) satisfies the condition ef (gx) = eα(f)(g)ef (x), for
every g ∈ OX ⊗A. In particular, ef induces an isomorphism in cohomology, i.e., ef : FA → F ′

A.
If f is of type f = dν + [u, ν] for some ν ∈ M−1 ⊗ mA, then α(f) = 0, i.e., f is OX -linear and
the isomorphism of complexes ef induces the identity in cohomology.

In conclusion, we have defined a morphism of groupoids Ψ: DelM (A) → G(X,F)(A), for
any A ∈ ArtK.

Since X is smooth affine, every deformation of X is trivial. By flatness and lifting of relations
every deformation of F is obtained as above; this implies that the morphism of groupoids
Ψ: DelM (A) → G(X,F)(A) is surjective on objects and that the natural map π0(G(X,F)(A)) →
Def(X,F )(A) is surjective. Since the morphisms in G(X,F) are, by definition, the same as the
morphisms of deformations, the map π0(G(X,F)(A))→ Def(X,F)(A) is also injective.

Every morphism in G(X,F)(A) lifts to an A-automorphism of the pair (OX⊗A, E∗⊗A) lifting
the identity on (OX , E∗), and according to [10, Lemma 2.10 and Proposition 7.9] the group of
such A-automorphisms is naturally isomorphic to exp

(
H0

(
X,P0(X, E∗)

)
⊗ mA

)
. As in [3] and

in Example 2.3, two elements in exp
(
H0

(
X,P0(X, E∗)

)
⊗ mA

)
give the same morphism in the

Deligne groupoid if and only if the corresponding A-automorphisms of (OX ⊗A, E∗⊗A) are the
same in cohomology, i.e., if they give the same isomorphism of deformations. Then, Ψ is also
full and faithful. ■

We now generalize the above construction introducing the formal groupoid

G(X,F ,σ) : ArtK → Grpd,

depending on the resolution (E∗, s), and defined in the following way. For every A ∈ ArtK, the
objects of G(X,F ,σ)(A) are the pairs (FA, σA), where

(1) FA is an A-flat quotient of E0 ⊗ A such that the projection map p : E0 ⊗ A → E0 factors
to a morphism p : FA → F and induces an isomorphism FA ⊗A K = F ,

(2) σA ∈ H0(X,FA) is a section such that p(σA) = σ.

A morphism (FA, σA)→ (F ′
A, σ

′
A) is a pair (θ, φ), where

(1) θ is an isomorphism of sheaves of A-algebras θ : OX⊗A→ OX⊗A, extending the identity
on OX ;

(2) φ is an isomorphism of sheaves of A-modules φ : FA → F ′
A, extending the identity on F

such that φ(gx) = θ(g)φ(x) for every g ∈ OX ⊗A, x ∈ FA, and φ(σA) = σ′A.

There exists an obvious forgetful map G(X,F ,σ) → G(X,F) and it immediately follows from
Lemma 5.4 that, onX smooth affine, every deformation of the triple over A ∈ ArtK is isomorphic
to an element of G(X,F ,σ)(A); by definition, the morphisms in G(X,F ,σ)(A) are the same as the
morphisms between deformations of the triple.
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Lemma 5.5. Let X be a smooth affine variety, F a coherent sheaf on X and σ ∈ H0(X,F).
Given a resolution (E∗, s) of the triple (X,F , σ), let L be the DG-Lie algebra of global sections
of C∗(X, E∗, s). Then, there exist a natural equivalence of formal groupoids

Φ: DelL → G(X,F ,σ)

and an isomorphism of functors of Artin rings π0(G(X,F ,σ)) ≃ Def(X,F ,σ).

Proof. Suppose A ∈ ArtK and (u, t) ∈ MCL(A); then u ∈ Hom1
OX

(E∗, E∗)⊗mA, t ∈ H0
(
X, E0

)
⊗mA and

0→ E−m ⊗A ∂+u−−→ · · · ∂+u−−→ E−1 ⊗A ∂+u−−→ E0 ⊗A (5.1)

is a complex. Since E∗ is exact in negative degrees, by standard results in homological algebra
(e.g., [17, Corollary 4.1.2]), the complex (5.1) is also exact in negative degrees.

Denoting by FA the cokernel of the rightmost map, we have an exact sequence

0→ E−m ⊗A ∂+u−−→ · · · ∂+u−−→ E−1 ⊗A ∂+u−−→ E0 ⊗A q−→ FA → 0

and the pair Φ(u, t) := (FA, q(s+t)) is an object of G(X,F ,σ)(A); by flatness and relation theorem,
every object of G(X,F ,σ)(A) is obtained in this way.

Assume now that e(f,a) ∗ (u, t) =
(
u′, t′

)
is a gauge equivalence between two Maurer–Cartan

elements, with (f, a) ∈ L0 ⊗ mA. Here f ∈ H0(X,P∗(X, E∗)) ⊗ mA is a first-order differential
operator with scalar symbol α(f) ∈ H0(X,ΘX) ⊗ mA. Then eα(f) : OX ⊗ A → OX ⊗ A is an
automorphism of sheaves of A-algebras and we have proved in [10] that the isomorphism of
graded sheaves of A-modules ef : E∗⊗A→ E∗⊗A satisfies the condition ef (gx) = eα(f)(g)ef (x)
for every g ∈ OX ⊗A.

We consider two exact sequences

E−1 ⊗A ∂+u−−→ E0 ⊗A q−→ FA → 0, E−1 ⊗A ∂+u′
−−−→ E0 ⊗A q′−→ F ′

A → 0.

Arguing as in the proof of Lemma 2.5, we have that q′
(
ef (s + t)

)
= q′(s + t′) and then the

pair Φ(f, a) =
(
eα(f), ef

)
is a morphism between Φ(u, t) and Φ

(
u′, t′

)
. If (f, a) = dν + [u, ν] for

some ν ∈ L−1 ⊗mA, then α(f) = 0 and ef induce the identity in cohomology, hence Φ(f, a) is
the identity on Φ(u, t).

Next, we prove that Φ is surjective on morphisms. Given (u, t),
(
u′, t′

)
∈ MCL(A) and

an isomorphism (θ, φ) : (OX ⊗ A,FA) → (OX ⊗ A,F ′
A) such that φ(q(s + t)) = q′(s + t′),

by Lemma 5.4 there exists f ∈ L0 ⊗ mA such that ef ∗ u = u′ and q′ef = φq. Denoting
by (u′, h) = e(f,0) ∗ (u, t) we have seen that q′(s+h) = q′

(
ef (s+t)

)
, hence also q′(s+h) = q′(s+t′)

and there exists a ∈ H0
(
X, E−1

)
such that e(0,a) ∗ (u′, h) =

(
u′, t′

)
(see equation (2.1)).

The last step is to prove that Φ is an equivalence of groupoids. This follows by applying
Lemmas 5.4 and 2.1 to the diagram

DelL(A)
Φ //

��

G(X,F ,σ)(A)

��
DelM (A)

Ψ // G(X,F)(A),

where the first vertical arrow is induced by the natural projection L→ M , whose kernel is the
complex of vector spaces Γ(X, E∗[−1]), that has cohomology concentrated in degree +1. ■

It is plain that the morphism Φ of Lemma 5.5 commutes with the restrictions to open affine
subsets.
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The general case

Let (X,F , σ) be a triple with X smooth variety and (E∗, s) a resolution of (F , σ). For notational
simplicity, we shall denote by C∗ the DG-Lie algebroid C∗(X, E∗, s).

Let U = {Ui}i be any affine open cover of X, then we have a semicosimplicial DG-Lie algebra

C∗(U) :
∏

i C∗(Ui)
// //
∏

i,j C∗(Uij)
//////
∏

i,j,k C∗(Uijk)
//////// · · · ,

where the face operators

∂h :
∏

i0,...,ik−1

C∗(Ui0...ik−1
)→

∏
i0,...,ik

C∗(Ui0...ik)

are given by

∂h(x)i0...ik = xi0...îh...ik |Ui0...ik

for h = 0, . . . , k.

We denote by Tot(U , C∗) the Thom–Whitney totalization of the semicosimplicial DG-Lie
algebra C∗(U). The quasi-isomorphism class of Tot(U , C∗) is independent of the choice of the
affine cover [3] and only depends on the quasi-isomorphism class of C∗ as coherent DG-Lie
algebroid, which does not depend on the choice of the resolution by Theorem 4.4. In order to
prove that Tot(U , C∗) controls the deformations of the triple (X,F , σ), we may assume that the
restriction of the resolution E∗ to every Ui is a finite free resolution of F|Ui

.

Theorem 5.6. Let X be a smooth variety over K, F a coherent sheaf on X, σ ∈ H0(X,F),
(E∗, s) a resolution of (X,F , σ). Let U be an affine open cover of X as above and Tot(U , C∗)
the Thom–Whitney totalization of the semicosimplicial DG-Lie algebra C∗(U), as above. Then,
there exists an isomorphism of deformation functors DefTot(U ,C∗)

∼= Def(X,F ,σ). In particular, in
the notation of Definition 4.5, T 1

(X,F ,σ) is the tangent space and T 2
(X,F ,σ) is an obstruction space.

Proof. Consider the semicosimplicial formal groupoids

DelC∗(U) :
∏

iDelC∗(Ui)
// //
∏

i,j DelC∗(Uij)
//////
∏

i,j,k DelC∗(Uijk)

//////// · · · ,

associated to the semicosimplicial DG-Lie algebra C∗(U) and the semicosimplicial formal groupoid

G(U) :
∏

i G(Ui,F ,σ)
////
∏

i,j G(Uij ,F ,σ)
//////
∏

i,j,k G(Uij ,F ,σ)

//////// · · · .

By Lemma 5.5, there exists an equivalence of semicosimplicial formal groupoids

Φ: DelC∗(U) → G(U).

By the usual glueing procedure of schemes and sheaves, the functor Def(X,F ,σ) is isomorphic
to π0(Tot(G(U)).

The equivalence Φ induces an isomorphism π0(Tot(G(U)) ∼= π0(Tot(DelC∗(U))). By Re-
mark 4.6, the involved DG-Lie algebras have no negative cohomology; then we can apply The-
orem 3.2 to conclude that π0(Tot(DelC∗(U))) ∼= DefTot(U ,C∗).

In conclusion, we have proved a sequence of three isomorphisms of deformation functors

Def(X,F ,σ)
∼= π0(Tot(G(U))) ∼= π0(Tot(DelC∗(U))) ∼= DefTot(U ,C∗) . ■

Remark 5.7. The case of infinitesimal deformations of a locally free sheaf together with a sub-
space of sections, but on a fixed variety, together with application through Brill–Noether theory,
was already analysed using DG-Lie algebra and formal groupoids in [12] and [13].
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Finally, we are able to recover a well known fact.

Corollary 5.8. Let X be a smooth variety over K, F a coherent sheaf on X and σ ∈ H0(X,F).
If H1(X,F) = 0, then the forgetful morphism π : Def(X,F ,σ) → Def(X,F) is smooth.

Proof. According to the exact sequence (4.4), if H1(X,F) = 0, then π is surjective on tangent
spaces and injective on obstructions. Then, applying the standard smoothness criterion, π is
smooth [17, Theorem 3.65]. ■

6 Deformation of pairs (manifold, divisor)

Let X be a smooth variety over K and Z ⊂ X a divisor, i.e., the schematic zero locus of
a global section σ of a line bundle L; by standard notation we can also write L = OX(Z) and
we have NZ/X = L|Z . Consider the exact sequences

0→ OX
σ−→ L β−→ NZ|X = HomOX

(IZ ,OZ)→ 0,

and 0→ ΘX(− logZ)→ ΘX
γ−→ NZ/X → T 1

Z → 0, where γ is the obvious restriction map from
ΘX = Der(OX ,OX) → HomOX

(IZ ,OZ). Therefore, the kernel is the subsheaf ΘX(− logZ) of
derivation of OX preserving the ideal sheaf IZ , while the cokernel of γ is the Schlessinger’s T 1

Z

sheaf which is supported on the singular locus of Z (see [1, Section 6] and [18]).
The sheaf L is a locally free sheaf of rank 1 and so the exact sequence in (4.1) reduces to the

Atiyah extension 0→ OX → P(X,L)→ ΘX → 0.
The evaluation morphism eσ : P(X,L)→ L defined in Section 4 fits in the following commu-

tative diagram:

0 // OX
// P(X,L)

eσ

��

// ΘX
//

γ

��

0

0 // OX
σ // L β // NZ|X // 0.

In fact, fixing a local nonvanishing section ψ of L, we have σ = fψ, where f is a local generator
of IZ . The same choice of ψ allows to write every differential operator η ∈ P(X,L) as g + χ,
with g ∈ OX , χ ∈ ΘX and eσ(η) = (gf + χ(f))ψ; in particular, both β(eσ(η)) and γ(χ) are the
morphism IZ → OZ that sends f to χ(f).

By the snake lemma, we have the following commutative diagram of exact sequence:

0

��

0

��
ker eσ

��

ΘX(− logZ)

��
0 // OX

// P(X,L) //

eσ

��

ΘX

γ

��

// 0

0 // OX
σ // L //

��

NZ|X

��

// 0

coker eσ

��

T 1
Z

��
0 0.
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Note that es and γ are morphisms of OX -modules and the two complexes of sheaves P(X,L) eσ−→
L, ΘX

γ−→ NZ|X , are quasi-isomorphic.

Remark 6.1. It is well known, at least to experts, that the tangent space to the deformations of
the pair (X,Z) is H1(ΘX → NZ|X) and the obstructions lie in H2(ΘX → NZ|X) (see, e.g., [5]).
According to the diagram above, the same holds when we replace the complex γ : ΘX → NZ|X
by the complex eσ : P(X,L)→ L. Note that the mapping cocone of es carries a natural structure
of DG-Lie algebras, controlling deformations of the triple (X,L = OX(Z), σ), while the mapping
cocone of γ does not have a DG-Lie algebras structure compatible with the Lie bracket on ΘX

(see next example).

Example 6.2. We want to prove that the complex D =
[
ΘX

γ−→ NZ|X
]
does not carry any

bracket making the projection map D → ΘX a DG-Lie morphism.
We consider for simplicity the case X = C, with linear coordinate t, and Z = {t = 0}, keeping

in mind that the same argument works for every reduced divisor in a smooth manifold.
At the level of global sections, the complex of sheaves ΘX

γ−→ NZ|X becomes

C[t]∂t
γ−→ C, ∂t =

d

dt
, γ(p(t)∂t) = p(0).

Assume, by contradiction, that the bracket on vector fields [tn∂t, t
m∂t] = (m− n)tn+m−1∂t

extends to a DG-Lie structure on the whole complex and denote ξ = γ(∂t). It follows that

[ξ, tn∂t] =

{
0 for n ̸= 1,

ξ for n = 1.
(6.1)

In fact, if n ≥ 2, Leibniz rule implies 0 = γ([∂t, t
n∂t]) = [ξ, tn∂t] + [∂t, 0], while for n = 1 we

have ξ = γ[∂t, t∂t] = [ξ, t∂t] + [∂t, 0]. If n = 0, let a ∈ C be such that [ξ, ∂t] = aξ; then we deduce

[ξ, ∂t] = [ξ, [∂t, t∂t]] = [[ξ, ∂t], t∂t] + [∂t, [ξ, t∂t]] = aξ − aξ = 0.

In conclusion, the equalities (6.1) contradict Jacobi identity, since

0 =
[
ξ,
[
∂t, t

2∂t
]]

= 2[ξ, t∂t] = 2ξ.

Finally, consider the DG-Lie algebroid C∗(X,L, σ) associated to eσ : P(X,L) → L, that
has eσ as differential and it is concentrated in degree zero and one. As in the previous section,
for any affine open cover U of X, we can consider the semicosimplicial DG-Lie algebra C∗(U) =
C∗(X,L, σ)(U).

Corollary 6.3. Let X be a smooth variety over K and Z ⊂ X a closed subscheme defined
as the zero locus of the section σ of the line bundle L = OX(Z). Let U be an affine open
cover of X and Tot(U , C∗) the Thom–Whitney totalization of the semicosimplicial DG-Lie alge-
bra C∗(X,L, σ)(U). Then, there exist two isomorphisms of deformation functors

DefTot(U ,C∗)
∼= Def(X,L,σ) ∼= Def(X,Z) .

Proof. By general facts in deformation theory [18, Section 3.4.4], the isomorphism classes of
the deformations of the triple (X,L = OX(Z), σ) are the same as the isomorphism classes of the
deformations of the pair (X,Z = {σ = 0}). Then, it is enough to apply Theorem 5.6. ■

Remark 6.4. It is well known that the sheaf of DG-Lie algebras ΘX(− logZ) controls the locally
trivial deformations of the pair (X,Z). In particular, it controls all infinitesimal deformations
whenever Z is smooth. The previous corollary generalises this result to the case of Z any divisor
in a smooth variety X [17, Section 8.1].
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Remark 6.5. If L is a line bundle on a smooth Calabi–Yau variety X, then it is known that
the infinitesimal deformations of the pair (X,L) are unobstructed (see, for example, [11, 15]).
Then, applying Corollary 5.8, we recover the fact that if H1(X,L) = 0 then the infinitesimal
deformations of the triples (X,L, σ) are also unobstructed. This is equivalent to the deformations
of the pair (X,Z) being unobstructed and generalises [9, Corollary 5.8], where the same result
is proved only for smooth divisor (see also [14]).
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