|
SIGMA 22 (2026), 008, 43 pages arXiv:2102.10853
https://doi.org/10.3842/SIGMA.2026.008
Geometry of the Space of Sections of Twistor Spaces with Circle Action
Florian Beck a, Indranil Biswas b, Sebastian Heller c and Markus Röser a
a) Fachbereich Mathematik, Universität Hamburg, 20146 Hamburg, Germany
b) School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
c) Beijing Institute of Mathematical Sciences and Applications, No. 544, Hefangkou Village Huaibei Town, Beijing 101408, P.R. China
Received March 25, 2025, in final form January 13, 2026; Published online February 02, 2026
Abstract
We study the holomorphic symplectic geometry of (the smooth locus of) the space of holomorphic sections of a twistor space with rotating circle action. The twistor space carries a line bundle with meromorphic connection constructed by Hitchin. We give an interpretation of Hitchin's meromorphic connection in the context of the Atiyah-Ward transform of the corresponding hyperholomorphic line bundle. It is shown that the residue of the meromorphic connection serves as a moment map for the induced circle action, and furthermore the critical points of this moment map are studied. Particular emphasis is given to the example of Deligne-Hitchin moduli spaces.
Key words: Deligne-Hitchin twistor space; self-duality equation; connection; circle action; hyperholomorphic bundle.
pdf (749 kb)
tex (59 kb)
References
- Alekseevsky D.V., Cortés V., Mohaupt T., Conification of Kähler and hyper-Kähler manifolds, Comm. Math. Phys. 324 (2013), 637-655, arXiv:1205.2964.
- Atiyah M.F., Ward R.S., Instantons and algebraic geometry, Comm. Math. Phys. 55 (1977), 117-124.
- Baston R.J., Eastwood M.G., The Penrose transform: Its interaction with representation theory, Oxford Math. Monogr., The Clarendon Press, Oxford University Press, New York, 1989.
- Beck F., Heller S., Röser M., Energy of sections of the Deligne-Hitchin twistor space, Math. Ann. 380 (2021), 1169-1214, arXiv:1903.02497.
- Biswas I., Heller S., On the automorphisms of a rank one Deligne-Hitchin moduli space, SIGMA 13 (2017), 072, 19 pages, arXiv:1704.04924.
- Biswas I., Heller S., Dumitrescu S., Irreducible flat $\mathrm{SL}(2,\mathbb{R})$-connections on the trivial holomorphic bundle, J. Math. Pures Appl. 149 (2021), 28-46, arXiv:2003.06997.
- Biswas I., Heller S., Röser M., Real holomorphic sections of the Deligne-Hitchin twistor space, Comm. Math. Phys. 366 (2019), 1099-1133, arXiv:1802.06587.
- Biswas I., Muñoz V., The Torelli theorem for the moduli spaces of connections on a Riemann surface, Topology 46 (2007), 295-317, arXiv:math.AG/0512236.
- Biswas I., Muñoz V., Torelli theorem for moduli spaces of ${\rm SL}(r,\mathbb C)$-connections on a compact Riemann surface, Commun. Contemp. Math. 11 (2009), 1-26, arXiv:math.AG/0702579.
- Biswas I., Raghavendra N., Line bundles over a moduli space of logarithmic connections on a Riemann surface, Geom. Funct. Anal. 15 (2005), 780-808.
- Buchdahl N., On the relative de Rham sequence, Proc. Amer. Math. Soc. 87 (1983), 363-366.
- Collier B., Wentworth R., Conformal limits and the Białynicki-Birula stratification of the space of $\lambda$-connections, Adv. Math. 350 (2019), 1193-1225, arXiv:1808.01622.
- Corlette K., Flat $G$-bundles with canonical metrics, J. Differential Geom. 28 (1988), 361-382.
- Donaldson S.K., Twisted harmonic maps and the self-duality equations, Proc. London Math. Soc. 55 (1987), 127-131.
- Dorfmeister J., Pedit F., Wu H., Weierstrass type representation of harmonic maps into symmetric spaces, Comm. Anal. Geom. 6 (1998), 633-668.
- Drezet J.M., Narasimhan M.S., Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques, Invent. Math. 97 (1989), 53-94.
- Dumitrescu O., Fredrickson L., Kydonakis G., Mazzeo R., Mulase M., Neitzke A., From the Hitchin section to opers through nonabelian Hodge, J. Differential Geom. 117 (2021), 223-253, arXiv:1607.02172.
- Dumitrescu O., Mulase M., Interplay between opers, quantum curves, WKB analysis, and Higgs bundles, SIGMA 17 (2021), 036, 53 pages, arXiv:1702.00511.
- Faltings G., Stable $G$-bundles and projective connections, J. Algebraic Geom. 2 (1993), 507-568.
- Feix B., Hyperkähler metrics on cotangent bundles, J. Reine Angew. Math. 532 (2001), 33-46.
- Feix B., Hypercomplex manifolds and hyperholomorphic bundles, Math. Proc. Cambridge Philos. Soc. 133 (2002), 443-457.
- Feix B., Twistor spaces of hyperkähler manifolds with $S^1$-actions, Differential Geom. Appl. 19 (2003), 15-28.
- Grauert H., Remmert R., Coherent analytic sheaves, Grundlehren Math. Wiss., Vol. 265, Springer, Berlin, 1984.
- Hartshorne R., Algebraic geometry, Grad. Texts in Math., Vol. 52, Springer, New York, 1977.
- Haydys A., HyperKähler and quaternionic Kähler manifolds with $S^1$-symmetries, J. Geom. Phys. 58 (2008), 293-306, arXiv:0706.4473.
- Heller L., Heller S., Higher solutions of Hitchin's self-duality equations, J. Integrable Syst. 5 (2020), xyaa006, 48 pages, arXiv:1801.02402.
- Heller S., Real projective structures on Riemann surfaces and new hyper-Kähler manifolds, Manuscripta Math. 171 (2023), 241-262, arXiv:1906.10350.
- Hitchin N.J., The self-duality equations on a Riemann surface, Proc. London Math. Soc. 55 (1987), 59-126.
- Hitchin N.J., Harmonic maps from a $2$-torus to the $3$-sphere, J. Differential Geom. 31 (1990), 627-710.
- Hitchin N.J., Lie groups and Teichmüller space, Topology 31 (1992), 449-473.
- Hitchin N.J., On the hyperkähler/quaternion Kähler correspondence, Comm. Math. Phys. 324 (2013), 77-106, arXiv:1210.0424.
- Hitchin N.J., The hyperholomorphic line bundle, in Algebraic and Complex Geometry, Springer Proc. Math. Stat., Vol. 71, Springer, Cham, 2014, 209-223, arXiv:1306.4241.
- Hitchin N.J., Karlhede A., Lindström U., Roček M., Hyper-Kähler metrics and supersymmetry, Comm. Math. Phys. 108 (1987), 535-589.
- Hu Z., Huang P., Simpson-Mochizuki correspondence for $\lambda$-flat bundles, J. Math. Pures Appl. 164 (2022), 57-92, arXiv:1905.10765.
- Huang P., Non-Abelian Hodge theory and related topics, SIGMA 16 (2020), 029, 34 pages, arXiv:1908.08348.
- Huggett S.A., Merkulov S.A., Twistor transform of vector bundles, Math. Scand. 85 (1999), 219-244.
- Jardim M., Verbitsky M., Moduli spaces of framed instanton bundles on $\mathbb{CP}^3$ and twistor sections of moduli spaces of instantons on $\mathbb C^2$, Adv. Math. 227 (2011), 1526-1538, arXiv:1006.0440.
- Jardim M., Verbitsky M., Trihyperkähler reduction and instanton bundles on $\mathbb{CP}^3$, Compos. Math. 150 (2014), 1836-1868, arXiv:1103.4431.
- Kaledin D., A canonical hyperkähler metric on the total space of a cotangent bundle, in Quaternionic Structures in Mathematics and Physics (Rome, 1999), Universitä Studi Roma ''La Sapienza'', Rome, 1999, 195-230, arXiv:math.AG/0011256.
- LeBrun C., Quaternionic-Kähler manifolds and conformal geometry, Math. Ann. 284 (1989), 353-376.
- Maruyama M., Openness of a family of torsion free sheaves, J. Math. Kyoto Univ. 16 (1976), 627-637.
- Mayrand M., Hyperkähler metrics near Lagrangian submanifolds and symplectic groupoids, J. Reine Angew. Math. 782 (2022), 197-218, arXiv:2011.09282.
- Namba M., On maximal families of compact complex submanifolds of complex fiber spaces, Tohoku Math. J. 25 (1973), 237-262.
- Narasimhan M.S., Seshadri C.S., Stable and unitary vector bundles on a compact Riemann surface, Ann. of Math. 82 (1965), 540-567.
- Pohlmeyer K., Integrable Hamiltonian systems and interactions through quadratic constraints, Comm. Math. Phys. 46 (1976), 207-221.
- Quillen D., Determinants of Cauchy-Riemann operators over a Riemann surface, Funct. Anal. Appl. 19 (1985), 31-34.
- Simpson C., Higgs bundles and local systems, Inst. Hautes Études Sci. Publ. Math. 75 (1992), 5-95.
- Simpson C., The Hodge filtration on nonabelian cohomology, in Algebraic Geometry -- Santa Cruz 1995, Proc. Sympos. Pure Math., Vol. 62, American Mathematical Society, Providence, RI, 1997, 217-281, arXiv:alg-geom/9604005.
- Simpson C., Iterated destabilizing modifications for vector bundles with connection, in Vector Bundles and Complex Geometry, Contemp. Math., Vol. 522, American Mathematical Society, Providence, RI, 2010, 183-206, arXiv:0812.3472.
- Uhlenbeck K., Harmonic maps into Lie groups: classical solutions of the chiral model, J. Differential Geom. 30 (1989), 1-50.
- Alekseevsky D.V., Cortés V., Mohaupt T., Conification of Kähler and hyper-Kähler manifolds, Comm. Math. Phys. 324 (2013), 637-655, arXiv:1205.2964.
|
|