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Abstract. In the previous paper, we constructed two kinds of edge contractions for the
affine super Yangian and a homomorphism from the affine super Yangian to the universal
enveloping algebra of a W -superalgebra of type A. In this article, we show that these two
edge contractions commute with each other. As an application, we give a homomorphism
from the affine super Yangian to some centralizer algebras of the universal enveloping algebra
ofW -superalgebras of type A. Using the edge contraction, we also show the compatibility of
the coproduct for the affine super Yangian with the parabolic induction for aW -superalgebra
of type A in some special cases.
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1 Introduction

The Yangian Yℏ(g) associated with a finite dimensional simple Lie algebra g was introduced by
Drinfeld [5, 6]. The Yangian Yℏ(g) is a quantum group which is a deformation of the current
algebra g ⊗ C[z]. The Yangian of type A has several presentations: the RTT presentation, the
current presentation, the parabolic presentation and so on. By using the current presentation,
we can extend the definition of the Yangian Yℏ(g) to a symmetrizable Kac–Moody Lie algebra g.
Especially, in the case that g is of affine type, Guay–Nakajima–Wendlandt [13] defined the
coproduct for the affine Yangian.

One of the difference between finite Yangians of type A and affine Yangians of type A is
the existence of the RTT presentation and the parabolic presentation (see [3]). By using these
presentations, two embeddings were constructed for the finite Yangian:

Ψf
1 : Y (gl(n)) → Y (gl(m+ n)), Ψf

2 : Y (gl(m)) → Y (gl(m+ n)),

where Y (gl(n)) is the Yangian associated with gl(n). By using Ψf
1 and Ψf

2 , Olshanskii [22] gave
a homomorphism from the finite Yangian Y (gl(m)) to the centralizer algebra of U(gl(m + n))
and U(gl(n)). Moreover, Y (gl(m)) can be embedded into the projective limit of this centralizer
algebra. In [29], we gave the affine version of Ψf

1 and Ψf
2 and constructed a homomorphism from

the affine Yangian associated with ŝl(m) to the centralizer algebra of U
(
ĝl(m+ n)

)
and U

(
ĝl(n)

)
.

In super setting, Nazarov [21] introduced the Yangian associated with gl(m|n) by using
the RTT presentation and Stukopin [24] defined the Yangian of sl(m|n) by using the cur-
rent presentation. Peng [23] gave a parabolic presentation of the super Yangian associated
with gl(m|n). The author [28] defined the affine super Yangian associated with ŝl(m|n) as
a quantum group.
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In [31], we gave two homomorphisms called the edge contractions for the affine super Yangian:

Ψ1 : Yℏ,ε
(
ŝl(m1|n1)

)
→ Ỹℏ,ε

(
ŝl(m1 +m2|n1 + n2)

)
,

Ψ2 : Yℏ,ε+(m1−n1)ℏ
(
ŝl(m2|n2)

)
→ Ỹℏ,ε

(
ŝl(m1 +m2|n1 + n2)

)
,

where Ỹℏ,ε
(
ŝl(m1 +m2|n1 + n2)

)
is the standard degreewise completion of Yℏ,ε

(
ŝl(m1 +m2|n1

+ n2)
)
.

The main theorem of this article is the following.

Theorem 1.1. The images of Ψ1 and Ψ2 commute with each other.

By Theorem 1.1, we obtain a homomorphism

Ψ1 ⊗Ψ2 : Yℏ,ε
(
ŝl(m1|n1)

)
⊗ Yℏ,ε+(m1−n1)ℏ

(
ŝl(m2|n2)

)
→ Ỹℏ,ε

(
ŝl(m1 +m2|n1 + n2)

)
.

The quantum toroidal algebra often has the same result as the affine Yangian. For example, the
evaluation map for the quantum toroidal algebra was given by Miki [19] in the non-super setting
and by Bezzera–Muhkin [2] in the super setting. The non-super version of Theorem 1.1 was
given for the quantum toroidal algebra by Feigin–Jimbo–Miwa–Muhkin [8], which corresponds
to the author’s work [29]. In the quantum toroidal setting, the proof was given by using the
relations of the current presentation. Unfortunately, the corresponding relations are not given
in the affine Yangian setting. Thus, we prove Theorem 1.1 by using the finite presentation.

As an application of Theorem 1.1, we can give a relationship between the affine super Yangian
and a centralizer algebra of U

(
ĝl(m|n)

)
. For an associative superalgebra A and its subalgebra B,

we set

C(A,B) = {x ∈ A | [x, y] = 0for y ∈ B}.

The affine super Yangian has a surjective homomorphism called the evaluation map [27, 28]:

ev
m|n
ℏ,ε : Yℏ,ε

(
ŝl(m|n)

)
→ U

(
ĝl(m|n)

)
.

By combining ev
m1+m2|n1+n2

ℏ,ε and Ψ2, we obtain a homomorphism

ev
m1+m2|n1+n2

ℏ,ε ◦Ψ2 :

Yℏ,ε+(m1−n1)ℏ
(
ŝl(m2|n2)

)
→ C

(
U
(
ĝl(m1 +m2|n1 + n2)

)
, U
(
ĝl(m1|n1)

))
.

Similarly to finite setting, we expect that the affine super Yangian can be embedded into the
projective limit of the centralizer algebra C

(
U
(
ĝl(m1 +m2|n1 + n2)

)
, U
(
ĝl(m1|n1)

))
through

this homomorphism. We also conjecture that C
(
U
(
ĝl(m1 +m2|n1 + n2)

)
, U
(
ĝl(m1|n1)

))
is iso-

morphic to the tensor product of the center of U
(
ĝl(m1|n1)

)
and the image of ev

m1+m2|n1+n2

ℏ,ε ◦Ψ2.

The similar result holds for W -superalgebras of type A. A W -superalgebra Wk(g, f) is
a vertex superalgebra associated with a finite dimensional reductive Lie superalgebra g, an even
nilpotent element f and a complex number k. Let us set

M =
l∑

i=1

ui, u1 ≥ u2 ≥ · · · ≥ ul ≥ ul+1 = 0,

N =

l∑
i=1

qi, q1 ≥ q2 ≥ · · · ≥ ql ≥ ql+1 = 0
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and assume that ul + ql ̸= 0 and M ̸= N . Let us take f ∈ gl(M |N) =
⊕

i,j∈IM|N
CEi,j as

a nilpotent element of type
(
1u1−u2|q1−q2 , 2u2−u3|q2−q3 , . . . , lul−ul+1|ql−ql+1

)
. In [31], the author

has given a homomorphism

Φs : Yℏ,ε
(
ŝl(us − us+1|qs − qs+1)

)
→ U

(
Wk(gl(M |N), f)

)
,

where U
(
Wk(gl(M |N), f)

)
is the universal enveloping algebra of Wk(gl(M |N), f). By Theo-

rem 1.1, we find that {Ψs} commute with each other. In the case that u1 = u2 = · · · = ul = m
and q1 = q2 = · · · = ql = n, we call Wk(gl(M |N), f) the rectangular W -superalgebra of type A
and denote it by Wk

(
gl(ml|nl),

(
lm|n)). In the rectangular case, we [26] showed that Φ1 is sur-

jective. In rectangular setting, there exists a natural embedding from Wk+m2−n2
(
gl(2m1|2n1),(

2m1|n1
))

to Wk
(
gl(2m1 + 2m2|2n1 + 2n2),

(
2m1+m2|n1+n2

))
. By Theorem 1.1, we obtain a ho-

momorphism

Φ1 ◦Ψ2 : Yℏ,ε+(m1−n1)ℏ
(
ŝl(m2|n2)

)
→ C(U(W1),U(W2)).

where

W1 = Wk
(
gl(2m1 + 2m2|2n1 + 2n2),

(
2m1+m2|n1+n2

))
,

W2 = Wk+m2−n2
(
gl(2m1|2n1),

(
2m1|n1

))
.

As for non-rectangular cases, if u1 > u2, q1 > q2 (resp. u1 = u2 > u3, q1 = q2 > q3), the
image of Φ1 ◦Ψ1 (resp. Φ1 ◦Ψ2) coincides with U

(
ĝl(u1 − u2|q1 − q2)

) (
resp. the rectangular W -

algebra associated with gl(2u1 − 2u3|2q1 − 2q3) and a nilpotent element of type
(
2u1−u3|q1−q3

))
.

Then, Ψs induces a homomorphism from the affine super Yangian to the centralizer alge-
bra of U

(
Wk(gl(M |N)), f

)
and U

(
ĝl(u1 − u2|q1 − q2)

) (
resp. U

(
Wk(gl(2(u1 − u3)|2(q1 − q3)),

(2u1−u3|q1−q3))
))
.

We expect that this result can be applicable to the generalization of the Gaiotto–Rapcak’s
triality. Gaiotto and Rapcak [11] introduced a kind of vertex algebras called Y -algebras and
conjectured a triality of the isomorphism of Y -algebras. Let fn,m ∈ sl(m + n) be a nilpotent
element of type

(
n1, 1m

)
. It is known that some kinds of Y -algebras can be realized as a coset

of the pair of Wk(sl(m+ n), fn,m) and V k−m−1(gl(m)) up to Heisenberg algebras. In this case,
Creutzig–Linshaw [4] have proved the triality conjecture. This result is the generalization of
the Feigin–Frenkel duality [7] and the coset realization of principal W -algebra. The Y -algebras
can be interpreted as a truncation of W1+∞-algebra [10], whose universal enveloping algebra is
isomorphic to the affine Yangian of ĝl(1) up to suitable completions (see [1, 18, 25]).

For a vertex algebra A and its vertex subalgebra B, let us set the coset vertex algebra of
the pair A and B Com(A,B) = {a ∈ A | b(r)a = 0 for r ≥ 0, b ∈ B}. The homomorphism
Φ1 ◦Ψ2 induces the one from the affine super Yangian Yℏ,ε+(m1−n1)ℏ

(
ŝl(m2|n2)

)
to the universal

enveloping algebra of Com
(
W1,Wk

(
sl(2m1|2n1),

(
2m1|n1

)))
. We expect that this homomor-

phism becomes surjective and induces the isomorphism

Com(W3,W4) ≃ Com(W5,W6),

where

W3 = Wk
(
gl(2m1 + 2m3|2n1 + 2n3),

(
2m1+m3|n1+n3

))
,

W4 = Wk+m3−n3
(
sl(2m1|2n1),

(
2m1|n1

))
,

W5 = Wk
(
gl(2m2 + 2m3|2n2 + 2n3),

(
2m2+m3|n2+n3

))
,

W6 = Wk+m3−n3
(
sl(2m2|2n2),

(
2m2|n2

))
.

These are the generalizations of the Gaiotto–Rapcak’s triality.



4 M. Ueda

For non-rectangular cases, we also expect that similar isomorphisms will hold. In order to
consider the non-rectangular setting, we need to construct a relationship between the shifted
affine super Yangian and a W -superalgebra of type A. In the finite setting, Peng [23] wrote
down a finite W -superalgebra of type A as a quotient algebra of the shifted super Yangian by
using the parabolic presentation. Similarly to [23], it is conjectured that there exists a surjective
homomorphism from the shifted affine super Yangian to the universal enveloping algebra of
a W -superalgebra of type A if we change the definition of the shifted affine super Yangian
properly. The image of Ψ1 ⊗Ψ2 corresponds to the Levi subalgebra of the finite super Yangian
of type A, which is defined by the parabolic presentation. We expect that Ψ1 ⊗Ψ2 will lead to
a new definition of the shifted affine super Yangian.

In Sections 7 and 8, we construct the parabolic induction for a W -superalgebra in the case
that u1 > u2 > · · · > ul, q1 > q2 > · · · > ql and show that the coproduct for the affine super
Yangian is compatible with the parabolic induction via Φl in this case. In order to show the
compatibility, by using the edge contraction Φ2, we need to extend the affine super Yangian.
We expect that this extended affine super Yangian will be connected the new definition of the
shifted affine super Yangian.

2 Affine super Yangian

Let us take integers m,n ≥ 2 and m+ n ≥ 5. We set

Im|n = {1, 2, . . . ,m,−1,−2, . . . ,−n}

and define the parity on Im|n by

p(i) =

{
0 if i > 0,

1 if i < 0.

Sometimes, we identify Im|n with Z/(m+n)Z by corresponding −i ∈ Im|n to m+i ∈ Z/(m+n)Z
for 1 ≤ i ≤ n. We set two matrices (ai,j)i,j∈Z/(m+n)Z and (bi,j)i,j∈Z/(m+n)Z as

ai,j =


(−1)p(i) + (−1)p(i+1) if i = j,

−(−1)p(i+1) if j = i+ 1,

−(−1)p(i) if j = i− 1,

0 otherwise,

bi,j =


ai,j if j = i− 1,

−ai,j if j = i+ 1,

0 otherwise.

Definition 2.1 ([28, Definition 3.1]). Let ε1, ε2 ∈ C. The affine super Yangian Yε1,ε2
(
ŝl(m|n)

)
is the associative superalgebra over C generated by{

X±
i,r, Hi,r | i ∈ Im|n = Z/(m+ n)Z, r = 0, 1

}
subject to the following defining relations:

[Hi,r, Hj,s] = 0,[
X+

i,0, X
−
j,0

]
= δi,jHi,0,[

X+
i,1, X

−
j,0

]
= δi,jHi,1 =

[
X+

i,0, X
−
j,1

]
,[

Hi,0, X
±
j,r

]
= ±ai,jX±

j,r,[
Hi,r+1, X

±
j,s

]
−
[
Hi,r, X

±
j,s+1

]
= ±ai,j ε1+ε2

2

{
Hi,r, X

±
j,s

}
− bi,j

ε1−ε2
2

[
Hi,r, X

±
j,s

]
,[

X±
i,r+1, X

±
j,s

]
−
[
X±

i,r, X
±
j,s+1

]
= ±ai,j ε1+ε2

2

{
X±

i,r, X
±
j,s

}
− bi,j

ε1−ε2
2

[
X±

i,r, X
±
j,s

]
,
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∑
σ∈S1−ai,j

1−ai,j∏
j=1

ad
(
X±

i,rσ(j)

)(
X±

j,s

)
= 0 if i ̸= j,

[
X±

i,r, X
±
i,s

]
= 0 if p(i) ̸= p(i+ 1),[[

X±
i−1,r, X

±
i,0

]
,
[
X±

i,0, X
±
i+1,s

]]
= 0 if p(i) ̸= p(i+ 1),

where the generators X±
i,r are odd if p(i) ̸= p(i + 1), all other generators are even, Sl is the

symmetric group of order l and {X,Y } = XY + Y X.

In this article, we use the finite presentation of the affine super Yangian given in [26, Propo-
sition 2.23].

Theorem 2.2 ([26, Proposition 2.23]). Let us set ℏ = ε1 + ε2, ε = −(m − n)ε1. The affine
super Yangian Yℏ,ε

(
ŝl(m|n)

)
is the associative superalgebra over C generated by{

X±
i,r, Hi,r | i ∈ Im|n = Z/(m+ n)Z, r = 0, 1

}
subject to the following defining relations:

[Hi,r, Hj,s] = 0, (2.1)[
X+

i,0, X
−
j,0

]
= δi,jHi,0, (2.2)[

X+
i,1, X

−
j,0

]
= δi,jHi,1 =

[
X+

i,0, X
−
j,1

]
, (2.3)[

Hi,0, X
±
j,r

]
= ±ai,jX±

j,r, (2.4)[
H̃i,1, X

±
j,0

]
= ±ai,jX±

j,1 if (i, j) ̸= (0,m+ n− 1), (m+ n− 1, 0), (2.5)[
H̃0,1, X

±
m+n−1,0

]
= ±

(
X±

m+n−1,1 +

(
ε+

ℏ
2
(m− n)ℏ

)
X±

m+n−1,0

)
, (2.6)

[
H̃m+n−1,1, X

±
0,0

]
= ±

(
X±

0,1 −
(
ε+

ℏ
2
(m− n)ℏ

)
X±

0,0

)
, (2.7)

[
X±

i,1, X
±
j,0

]
−
[
X±

i,0, X
±
j,1

]
= ±ai,j

ℏ
2

{
X±

i,0, X
±
j,0

}
if (i, j) ̸= (0,m+ n− 1), (m+ n− 1, 0), (2.8)[

X±
0,1, X

±
m+n−1,0

]
−
[
X±

0,0, X
±
m+n−1,1

]
= ±ℏ

2

{
X±

0,0, X
±
m+n−1,0

}
+

(
ε+

ℏ
2
(m− n)ℏ

)[
X±

0,0, X
±
m+n−1,0

]
, (2.9)(

adX±
i,0

)1+|ai,j |(X±
j,0

)
= 0 if i ̸= j, (2.10)[

X±
i,0, X

±
i,0

]
= 0 if p(i) ̸= p(i+ 1), (2.11)[[

X±
i−1,0, X

±
i,0

]
,
[
X±

i,0, X
±
i+1,0

]]
= 0 if p(i) ̸= p(i+ 1), (2.12)

where the generators X±
i,r are odd if p(i) ̸= p(i + 1), all other generators are even and we set

H̃i,1 = Hi,1 − ℏ
2H

2
i,0 and {X,Y } = XY + Y X.

We note that we set ε = −(m− n)ε2 in [26].
Let us set an anti-automorphism

ω : Yℏ,ε
(
ŝl(m|n)

)
→ Yℏ,ε

(
ŝl(m|n)

)
given by

ω(Hi,r) = Hi,r, ω
(
X+

i,r

)
= (−1)p(i)X−

i,r, ω
(
X−

i,r

)
= (−1)p(i+1)

(
X+

i,r

)
.
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Let us set a Lie superalgebra

ĝl(m|n) = gl(m|n)⊗ C
[
t±1
]
⊕ Cc⊕ Cz

with the commutator relations:

[Ei,jt
r, Ex,yt

s] = δj,xEi,yt
r+s − (−1)p(Ei,j)p(Ex,y)δi,yEx,jt

r+s

+ δr+s,0r(−1)p(i)δi,yδj,xc+ δr+s,0r(−1)p(i)+p(x)δi,jδx,yz,[
c, ĝl(m|n)

]
=
[
z, ĝl(m|n)

]
= 0,

where Ei,j is a matrix unit of gl(m|n) whose (u, v) component is δi,uδj,v and the parity p(Ei,j) =
p(i)+p(j). We also take a subalgebra ŝl(m|n) = sl(m|n)⊗ C

[
t±1
]
⊕ Cc. Let us set the Chevalley

generators of ŝl(m|n) as

hi =

{
(−1)p(m+n)Em+n,m+n − E1,1 + c if i = 0,

(−1)p(i)Ei,i − (−1)p(i+1)Ei+1,i+1 if 1 ≤ i ≤ m+ n− 1,

x+i =

{
Em+n,1t if i = 0,

Ei,i+1 if 1 ≤ i ≤ m+ n− 1,

x−i =

{
(−1)p(m+n)E1,m+nt

−1 if i = 0,

(−1)p(i)Ei+1,i if 1 ≤ i ≤ m+ n− 1.

According to Definition 2.2, there exists a homomorphism from the universal enveloping al-
gebra U

(
ŝl(m|n)

)
to Yℏ,ε

(
ŝl(m|n)

)
given by hi 7→ Hi,0 and x±i 7→ X±

i,0. We denote the image
of x ∈ U

(
ŝl(m|n)

)
via this homomorphism by x. Since

[
x±i , x

±
j

]
= 0 holds for |i − j| > 1, we

obtain
[
X±

i,0, X
±
j,0

]
= 0. By (2.5)–(2.7) and the assumption that m+ n ≥ 5, we have[

X±
i,r, X

±
j,s

]
= 0 if |i− j| > 1. (2.13)

Let us set a degree on Yℏ,ε
(
ŝl(m|n)

)
by

deg(Hi,r) = 0, deg
(
X±

i,r

)
=

{
±1 if i = 0,

0 if i ̸= 0.

In order to define the edge contraction for the affine super Yangian, we need to use the stan-
dard degreewise completion defined in [17]. For a Z-graded algebra A =

⊕
d∈ZAd, we can set

a topology on A as the linear topology defined by the sequence of
{⊕

d∈Z
( ∑
r>N

Ad−rAr

)}
N
. This

makes A a compatible degreewise topological algebra. We take the corresponding degreewise
completion of A and call it the standard degreewise completion of A.

We denote the standard degreewise completion of Yℏ,ε
(
ŝl(m|n)

)
by Ỹℏ,ε

(
ŝl(m|n)

)
. Using the

same degree as Ỹℏ,ε
(
ŝl(m|n)

)
, we define the standard degreewise completion of ⊗2Yℏ,ε

(
ŝl(m|n)

)
and denote it by Yℏ,ε

(
ŝl(m|n)

)
⊗̂Yℏ,ε

(
ŝl(m|n)

)
.

Theorem 2.3 ([28, Theorem 4.3]). There exists an algebra homomorphism

∆: Yℏ,ε
(
ŝl(m|n)

)
→ Yℏ,ε

(
ŝl(m|n)

)
⊗̂Yℏ,ε

(
ŝl(m|n)

)
determined by

∆
(
X±

j,0

)
= X±

j,0 ⊗ 1 + 1⊗X±
j,0 for 0 ≤ j ≤ m+ n− 1,

∆
(
X+

i,1

)
= X+

i,1 ⊗ 1 + 1⊗X+
i,1 +Bi for 1 ≤ i ≤ m+ n− 1,
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where we set Bi as

Bi = ℏ
∑
s≥0

i∑
u=1

(
(−1)p(u)Ei,ut

−s ⊗ Eu,i+1t
s

− (−1)p(u)+p(Ei,u)p(Ei+1,u)Eu,i+1t
−s−1 ⊗ Ei,ut

s+1
)

+ ℏ
∑
s≥0

m+n∑
u=i+1

(
(−1)p(u)Ei,ut

−s−1 ⊗ Eu,i+1t
s+1

− (−1)p(u)+p(Ei,u)p(Ei+1,u)Eu,i+1t
−s ⊗ Ei,ut

s
)
.

Since ∆ satisfies the coassociativity, ∆ can be considered as the coproduct for the affine super
Yangian.

3 Edge contractions for the affine super Yangian

In [31], we gave two edge contractions for the affine super Yangian. In the following theorem,
we do not identify Im|n with Z/(m+ n)Z.

Theorem 3.1 ([31, Sections 6–9 and Theorem 11.1]).

1. For m2, n2 ≥ 0, m1, n1 ≥ 2 and m1 + n1 ≥ 5, there exists a homomorphism

Ψ
m1|n1,m1+m2|n1+n2

1 : Yℏ,ε
(
ŝl(m1|n1)

)
→ Ỹℏ,ε

(
ŝl(m1 +m2|n1 + n2)

)
given by

Ψ
m1|n1,m1+m2|n1+n2

1

(
X+

i,0

)
=


E−n1,1t if i = −n1,
Ei,i+1 if 1 ≤ i ≤ m1 − 1,

Em1,−1 if i = m1,

Ei,i−1 if − n1 + 1 ≤ i ≤ −1,

Ψ
m1|n1,m1+m2|n1+n2

1

(
X−

i,0

)
=


−E1,−n1t

−1 if i = n1,

Ei+1,i if 1 ≤ i ≤ m1 − 1,

E−1,m1 if i = m1,

−Ei−1,i if − n1 + 1 ≤ i ≤ −1

and

Ψ
m1|n1,m1+m2|n1+n2

1

(
H̃1,1

)
= H̃1,1 − P1 + P2 +Q1 −Q2,

Ψ
m1|n1,m1+m2|n1+n2

1

(
X+

1,1

)
= X+

1,1 − P+
1 +Q+

1 ,

where

Pi = ℏ
∑
v≥0

m1+m2∑
z=m1+1

Ei,zt
−v−1Ez,it

v+1,

Qi = ℏ
∑
v≥0

−n1−1∑
z=−n1−n2

Ei,zt
−v−1Ez,it

v+1,

P+
i = ℏ

∑
v≥0

m1+m2∑
z=m1+1

Ei,zt
−v−1Ez,i+1t

v+1,
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Q+
i = ℏ

∑
v≥0

−n1−1∑
z=−n1−n2

Ei,zt
−v−1Ez,i+1t

v+1,

Ỹℏ,ε
(
ŝl(m1 +m2|n1 + n2)

)
is the standard degreewise completion of Yℏ,ε

(
ŝl(m1 +m2|n1 +

n2)
)
.

2. For m1, n1 ≥ 0, m2, n2 ≥ 2 and m2 + n2 ≥ 5, there exists a homomorphism

Ψ
m2|n2,m1+m2|n1+n2

2 : Yℏ,ε+(m1−n1)ℏ
(
ŝl(m2|n2)

)
→ Ỹℏ,ε

(
ŝl(m1 +m2|n1 + n2)

)
determined by

Ψ
m2|n2,m1+m2|n1+n2

2

(
X+

i,0

)
=


E−n1−n2,m1+1t if i = −n2,
Em1+i,m1+i+1 if 1 ≤ i ≤ m2 − 1,

Em1+m2,−n1−1 if i = m2,

E−n1+i,−n1+i−1 if − n2 + 1 ≤ i ≤ −1,

Ψ
m2|n2,m1+m2|n1+n2

2

(
X−

i,0

)
=


−Em1+1,−n1−n2t

−1 if i = −n2,
Em1+i+1,m1+i if 1 ≤ i ≤ m2 − 1,

E−n1−1,m1+m2 if i = m2,

−E−n1+i−1,−n1+i if − n2 + 1 ≤ i ≤ −1,

and

Ψ
m2|n2,m1+m2|n1+n2

2

(
H̃1,1

)
= H̃1+m1,1 +R1 −R2 + S1 − S2,

Ψ
m2|n2,m1+m2|n1+n2

2

(
X+

1,1

)
= X+

1+m1,1
+R+

1 + S+
1 ,

where

Ri = ℏ
∑
v≥0

−1∑
z=−n1

Ez,i+m1t
−vEi+m1,zt

v,

Si = ℏ
∑
v≥0

m1∑
z=1

Ez,i+m1t
−v−1Ei+m1,zt

v+1,

R+
i = ℏ

∑
v≥0

−1∑
z=−n1

Ez,i+1+m1t
−vEi+m1,zt

v,

S+
i = ℏ

∑
v≥0

m1∑
z=1

Ez,i+1+m1t
−v−1Ei+m1,zt

v+1.

Similarly to [29, Theorem 4.2], we obtain the following theorem.

Theorem 3.2. The images of Ψ
m1|n1,m1+m2|n1+n2

1 and Ψ
m2|n2,m1+m2|n1+n2

2 commute with each
other.

4 Affine super Yangians and centralizer algebras of U
(
ĝl(n)

)
Following [17], we consider a completion of U

(
ĝl(m|n)

)
/U
(
ĝl(m|n)

)
(z − 1), which is a quotient

algebra of U
(
ĝl(m|n)

)
divided by the relation z − 1. We take the grading of

U
(
ĝl(m|n)

)
/U
(
ĝl(m|n)

)
(z − 1)

as deg(Xts) = s and deg(c) = 0. We denote by U
(
ĝl(m|n)

)
the standard degreewise completion

of U
(
ĝl(m|n)

)
/U
(
ĝl(m|n)

)
(z − 1).
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Theorem 4.1 ([28, Theorem 5.1] and [27, Theorem 3.29]).

(1) Let î be
i∑

u=1
(−1)p(u) for 1 ≤ i ≤ m+ n− 1. Suppose that ℏ ̸= 0 and c = ε

ℏ . For a complex

number a, there exists an algebra homomorphism

ev
m|n,a
ℏ,ε : Yℏ,ε

(
ŝl(m|n)

)
→ U

(
ĝl(m|n)

)
uniquely determined by

ev
m|n,a
ℏ,ε

(
X+

i,0

)
=

{
Em+n,1t if i = 0,

Ei,i+1 if 1 ≤ i ≤ m+ n− 1,

ev
m|n,a
ℏ,ε

(
X−

i,0

)
=

{
(−1)p(m+n)E1,m+nt

−1 if i = 0,

(−1)p(i)Ei+1,i if 1 ≤ i ≤ m+ n− 1,

and

ev
m|n,a
ℏ,ε

(
X+

i,1

)
=

(
a− î

2
ℏ
)
Ei,i+1 + ℏ

∑
s≥0

i∑
u=1

(−1)p(u)Ei,ut
−sEu,i+1t

s

+ ℏ
∑
s≥0

m+n∑
u=i+1

(−1)p(u)Ei,ut
−s−1Eu,i+1t

s+1 for i ̸= 0.

(2) In the case that ε ̸= 0, the image of the evaluation map is dense in U
(
ĝl(m|n)

)
.

Let us set ι1 as an embedding from U
(
ĝl(m1|n1)

)
to U

(
ĝl(m1 +m2|n1 + n2)

)
by

Ei,jt
s 7→ Ei,jt

s, c 7→ c

for i, j ∈ I. For an associative superalgebra A and its subalgebra B, we also define the central-
izer algebra

C(A,B) = {x ∈ A | [x,B] = 0}.

Theorem 4.2.

(1) Let us assume that c = ε
ℏ . The following relation holds:

ι1 ◦ evm1|n1,a
ℏ,ε = ev

m1+m2|n1+n2,a
ℏ,ε ◦Ψm1|n1,m1+m2|n1+n2

1

(2) In the case that c = ε
ℏ and c ̸= 0, the image of ev

m1+m2|n1+n2,a
ℏ,ε ◦Ψm2|n2,m1+m2|n1+n2

2

is contained in C
(
U
(
ĝl(m1 +m2|n1 + n2)

)
,U
(
ĝl(m1|n1)

))
.

Proof. (1) Since the affine super Yangian Yℏ,ε
(
ŝl(m1|n1)

)
is generated by

{
X±

i,0

}
i∈Im1|n1

and
X+

1,1, it is enough to show the following relations:

ι1 ◦ evm1|n1,a
ℏ,ε

(
X±

i,0

)
= ev

m1+m2|n1+n2,a
ℏ,ε ◦Ψm1|n1,m1+m2|n1+n2

1

(
X±

i,0

)
,

ι1 ◦ evm1|n1,a
ℏ,ε

(
X+

1,1

)
= ev

m1+m2|n1+n2,a
ℏ,ε ◦Ψm1|n1,m1+m2|n1+n2

1

(
X+

1,1

)
.

These relations follow from the definition of ev
m1|n1,a
ℏ,ε and Ψ

m1|n1,m1+m2|n1+n2

1 .
(2) By Theorem 3.2, the image of

ev
m1+m2|n1+n2,a
ℏ,ε ◦Ψm2|n2,m1+m2|n1+n2

2
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is commutative with the one of

ev
m1+m2|n1+n2,a
ℏ,ε ◦Ψm1|n1,m1+m2|n1+n2

1 .

By item (1) and Theorem 4.1 (2), the completion of the image of

ev
m1+m2|n1+n2,a
ℏ,ε ◦Ψm1|n1,m1+m2|n1+n2

1

coincides with ι1
(
U
(
ĝl(m1|n1)

))
. Thus, the image of

ev
m1+m2|n1+n2,a
ℏ,ε ◦Ψm2|n2,m1+m2|n1+n2

2

is contained in the centralizer algebra C
(
U
(
ĝl(m1 +m2|n1 + n2)

)
,U
(
ĝl(m1|n1)

))
. ■

5 W -superalgebras of type A

Let us set some notations of a vertex superalgebra. For a vertex superalgebra V , we denote
the generating field associated with v ∈ V by v(z) =

∑
s∈Z

v(s)z
−s−1. We also denote the operator

product expansion (OPE) of V by

u(z)v(w) ∼
∑
s≥0

(u(s)v)(w)

(z − w)s+1

for all u, v ∈ V . We denote the vacuum vector (resp. the translation operator) by |0⟩ (resp. ∂).
We denote the universal affine vertex superalgebra associated with a finite dimensional Lie

superalgebra g and its inner product κ by V κ(g). By the PBW theorem, we can identify V κ(g)
with U

(
t−1g

[
t−1
])
. In order to simplify the notation, here after, we denote the generating

field
(
ut−1

)
(z) as u(z) for u ∈ g. By the definition of V κ(g), the generating fields u(z) and v(z)

satisfy the OPE

u(z)v(w) ∼ [u, v](w)

z − w
+

κ(u, v)

(z − w)2

for all u, v ∈ g.

We take two positive integers and their partitions:

M =

l∑
i=1

ui, u1 ≥ u2 ≥ · · · ≥ ul ≥ 0,

N =
l∑

i=1

qi, q1 ≥ q2 ≥ · · · ≥ ql ≥ 0, (5.1)

satisfying that M ̸= N and ul + ql ̸= 0. For 1 ≤ i ≤ M and −N ≤ j ≤ −1, we set
1 ≤ col(i), col(j) ≤ l, u1 − ucol(i) < row(i) ≤ u1 and −q1 ≤ row(j) < −q1 + qcol(j) satisfying

col(i)−1∑
b=1

ub < i ≤
col(i)∑
b=1

ub, row(i) = i−
col(i)−1∑

b=1

ub + u1 − ucol(i),

col(j)−1∑
b=1

qb < −j ≤
col(j)∑
b=1

qb, row(j) = j +

col(j)−1∑
b=1

qb − q1 + qcol(j).
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The definition of col and row can be interpreted by using the Young diagram. For the partition
(u1, u2, . . . , ul) (resp. (q1, q2, . . . , ql)), we define DM (resp. DN ) as the Young diagram in French
style corresponding to this partition. We enumerate boxes in DM (resp. DN ) by 1, 2, . . . ,M
(resp. −1,−2, . . . ,−N) down columns from left to right. Then, col(i) denotes the column in
which the number i is located, while row(i) denotes the column number of the number i from
the top.

Let us set a Lie superalgebra gl(M |N) =
⊕

i,j∈IM|N
Cei,j whose commutator relations are

determined by

[ei,j , ex,y] = δj,xei,y − (−1)p(ei,j)p(ex,y)δi,yex,j ,

where p(ei,j) = p(i) + p(j). We take a nilpotent element f ∈ gl(M |N) as

f =
∑

i∈IM|N

eî,i,

where the integer î ∈ IM |N are determined by col(̂i) = col(i) + 1, row(̂i) = row(i).

Remark 5.1. Actually, if the nilpotent element has a good grading (see [14, Theorem 7.2]),
the discussion after here works well (see [30] and [31]). For the simplicity, we assume the
condition (5.1).

Similarly to î, we set ĩ ∈ IM |N as col(̃i) = col(i) − 1, row(̃i) = row(i). We also fix an inner
product of the Lie superalgebra gl(M |N) determined by

(ei,j |ex,y) = kδi,yδx,j(−1)p(i) + δi,jδx,y(−1)p(i)+p(x).

We set two Lie superalgebra

b =
⊕

i,j∈IM|N ,

col(i)≥col(j)

Cei,j , a = b⊕
⊕

i,j∈IM|N ,

col(i)>col(j)

Cψi,j ,

whose commutator relations are defined by

[ei,j , ψx,y] = δj,xψi,y − δi,y(−1)p(ei,j)(p(ex,y)+1)ψx,j ,

[ψi,j , ψx,y] = δj,xψi,y − δi,y(−1)(p(ei,j)+1)(p(ex,y)+1)ψx,j ,

where the parity of ei,j is p(i) + p(j) and the parity of ψi,j is p(i) + p(j) + 1. We also set an
inner product on b and a by

κ(ei,j , ep,q) = (ei,j |ep,q), κ(ei,j , ψp,q) = κ(ψi,j , ψp,q) = 0.

We denote the universal affine vertex superalgebras associated with b and a by V κ(b) and V κ(a).
We also sometimes denote the elements ei,jt

−s ∈ V κ(b) ⊂ V κ(a) and ψi,jt
−s ∈ V κ(a) by ei,j [−s]

and ψi,j [−s] respectively and a(−1)b by ab. Let us define an odd differential d0 : V
κ(b) → V κ(a)

determined by

d01 = 0,

[d0, ∂] = 0,

d0(ei,j [−1]]) =
∑

col(i)>col(r)≥col(j)

(−1)p(ei,j)+p(ei,r)p(er,j)er,j [−1]ψi,r[−1]

−
∑

col(j)<col(r)≤col(i)

(−1)p(ei,r)p(er,j)ψr,j [−1]ei,r[−1] + δ(col(i)

> col(j))(−1)p(i)αcol(i)ψi,j [−2] + (−1)p(i)ψî,j [−1]− (−1)p(i)ψi,j̃ [−1].

By using [15, Theorem 2.4], we can define the W -algebra Wk(gl(M |N), f) as follows.
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Definition 5.2. The W -algebra Wk(gl(M |N), f) is the vertex subalgebra of V κ(b) defined by

Wk(gl(M |N), f) = {y ∈ V κ(b) | d0(y) = 0}.

In the case that u1 = u2 = · · · = ul, q1 = q2 = · · · = ql, we call Wk(gl(M |N), f) the rectangular
W -superalgebra of type A and denote it by Wk

(
gl(ml|nl),

(
lm|n)).

We give one example. In the case l = 2, we can write f and d0 as

f =
∑

1≤z≤u2

ez+u1,z+u1−u2 +
∑

1≤z≤q2

e−z−q1,−z−q1+q2

and

d0(ei,j [−1]) = δ(col(i) = 1)eî,j [−1]− δ(col(i) = 2)ei,j̃ [−1] if col(i) = col(j),

d0(ei,j [−1]) =

u1∑
r=1

(−1)p(ei,j)+p(i)p(j)er,j [−1]ψi,r[−1]−
−1∑

r=−q1

(−1)p(i)p(j)er,j [−1]ψi,r[−1]

−
u1+u2∑
r=u1+1

(−1)p(i)p(j)ψr,j [−1]ei,r[−1]

−
−q1−1∑

r=−q1−q2

(−1)(p(i)+1)(p(j)+1)ψr,j [−1]ei,r[−1]

+ (−1)p(i)α2ψi,j [−2] if col(i) = 2, col(j) = 1,

where

î =

{
i+ u2 if u1 − u2 + 1 ≤ i ≤ u1,

i− q2 if − q1 ≤ i ≤ −q1 + q2 − 1,
and

ĩ =

{
i− u2 if u1 + 1 ≤ i ≤ u1 + u2,

i+ q2 if − q1 − q2 ≤ i ≤ −q1 − 1.

We define the set

Is = {1, . . . , us,−1, . . . ,−qs}.

We constructed two kinds of elements W
(1)
a,b ,W

(2)
a,b ∈ Wk(gl(M |N), f) for a, b ∈ Is \ Is+1. Let

us set

αs = k +M −N − us + qs, γa =
l∑

s=a+1

αs.

and denote ei,j by e
(r)
a,b if col(i) = col(j) = r, row(i) = a, row(j) = b.

Theorem 5.3 ([31, Theorem 10.22]). The following elements of
⊗

1≤s≤l V
κs(gl(qs)){

W
(1)
a,b ,W

(2)
a,b | a, b ∈ Is \ Is−1

}
are contained in µ

(
Wk(gl(M |N), f)

)
:

W
(1)
a,b =

∑
1≤r≤s

e
(r)
a,b[−1],
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W
(2)
a,b =

∑
col(i)=col(j)+1

row(i)=a,row(j)=b

ei,j −
∑

1≤r≤s

γre
(r)
a,b[−2]

+
∑

1≤r1<r2≤s
x>u1−us

(−1)p(x)+p(ei,v)p(ex,j)e
(r1)
x,b [−1]e(r2)a,x [−1]

+
∑

1≤r1<r2≤s
x<−q1+qs

(−1)p(x)+p(ea,x)p(eb,x)e
(r1)
x,b [−1]e(r2)a,x [−1]

−
∑
r1≥r2

qs−q1≤x≤qr1−q1
row(i)=a,row(j)=b

(−1)p(x)+p(ea,x)p(ex,b)e
(r1)
x,b [−1]e(r2)a,x [−1]

−
∑
r1≥r2

u1−ur1≤x≤u1−us

(−1)p(x)+p(ea,x)p(ex,b)e
(r1)
x,b [−1]e(r2)a,x [−1].

In the rectangular case, we have computed the OPEs in [26, Section 4].

Corollary 5.4.

(1) Assume that u1 < u2, q1 < q2. Then, we have an embedding

ι2 : W k̂
(
gl(2u1|2q1),

(
2u1|q1))→ Wk

(
gl(2u2|2q2),

(
2u2|q2)), W

(r)
i,j 7→W

(r)
i,j ,

where k̂ = k + u2 − q2 − u1 + q1.

(2) Assume that u1 − u2, q1 − q2 > 0 and

κ1(Ei,j , Ex,y) = δi,yδj,x(−1)p(i)α1 + (−1)p(i)+p(x)δi,jδx,y.

Then, we can define an embedding

ι3 : V κ1(gl(u1 − u2|q1 − q2)) → Wk(gl(M |N), f), Ei,j [−s] 7→W
(1)
i,j [−s].

(3) Assume that u1 = u2 > u3, q1 − q2 > 0. Then, we have an embedding

ι4 : W k̃
(
gl(2(u1 − u3)|2(q1 − q3)),

(
2u1−u3|q1−q3

))
→ Wk(gl(M |N), f),

W
(r)
i,j 7→W

(r)
i,j ,

where k̃ = k +M −N − 2(u1 − q1) + (u3 − q3).

Proof. (1) follows directly from [26, Section 4]. (2) follows from [26, Section 4] and the
definition of W

(1)
i,j . Since the form of W

(r)
i,j ∈ W k̃

(
gl(2(u1 − u3)|2(q1 − q3)),

(
2u1−u3|q1−q3

))
and

W
(r)
i,j ∈ Wk(gl(M |N), f) are same, we obtain (3). ■

6 Affine super Yangians and W -superalgebras of type A

Let us recall the definition of the universal enveloping algebras of vertex superalgebras. For any
vertex superalgebra V , let L(V ) be the Bouchard’s Lie algebra, that is,

L(V ) = V⊗C
[
t, t−1

]
/Im

(
∂ ⊗ id+ id⊗ d

dt

)
,
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where the commutation relation is given by[
uta, vtb

]
=
∑
r≥0

(
a
r

)(
u(r)v

)
ta+b−r

for all u, v ∈ V and a, b ∈ Z.

Definition 6.1 (Frenkel–Zhu [9], Matsuo–Nagatomo–Tsuchiya [17]). We set U(V ) as the quo-
tient algebra of the standard degreewise completion of the universal enveloping algebra of L(V )
by the completion of the two-sided ideal generated by(

u(a)v
)
tb −

∑
i≥0

(
a
i

)
(−1)i

(
uta−ivtb+i − (−1)p(u)p(v)(−1)avta+b−iuti

)
,

|0⟩t−1 − 1,

where |0⟩ is the identity vector of V . We call U(V ) the universal enveloping algebra of V .

By the definition of the universal affine vertex algebra V κ(g) associated with a finite dimen-
sional reductive Lie superalgebra g and the inner product κ on g, U(V κ(g)) is the standard
degreewise completion of the universal enveloping algebra of the affinization of g.

Let us set κs as an inner product on gl(us|qs) given by

κs(ei,j , ex,y) = (−1)p(i)αsδi,yδj,x + (−1)p(i)+p(x)δi,jδx,y.

By [12, Theorem 5.2] and [20, Theorem 14], there exists an embedding

µ : Wk(gl(M |N), f) →
⊗
1≤s≤l

V κs(gl(us|qs)).

This embedding is called the Miura map. Then, induced by the Miura map µ, we obtain the
embedding

µ̃ : U
(
Wk(gl(M |N), f)

)
→
⊗̂

1≤a≤l
U
(
ĝl(ua|qa)

)
,

where
⊗̂

1≤a≤lU
(
ĝl(ua|qa)

)
is the standard degreewise completion of

⊗
1≤a≤l U

(
ĝl(ua|qa)

)
.

For 1 ≤ a ≤ l, we define εa = ℏ(k+M−N−ua+qa). In the case that us−us+1, qs−qs+1 ≥ 2
and us − qs + qs − qs+1 ≥ 5, let us define the homomorphism

∆s : Yℏ,εs
(
ŝl(us − us+1|qs − qs+1)

)
→

⊗
1≤a≤s

Yℏ,εa
(
ŝl(ua|qa)

)
defined by

∆s =

(
s−1∏
a=1

(((
Ψ

qa+1|ua+1,qa|ua

2 ⊗ 1
)
◦∆
)
⊗ id⊗(s−a−1)

)
◦Ψus−us+1|qs−qs+1,us|qs

1

)
⊗ id⊗(l−s) .

Theorem 6.2 ([31, Theorem 11.1]). There exists an algebra homomorphism

Φs : Yℏ,εs
(
ŝl(us − us+1|qs − qs+1)

)
→ U

(
Wk(gl(N), f)

)
determined by⊗

1≤a≤s

ev
ua|qa,−xaℏ
ℏ,εa ◦∆s = µ̃ ◦ Φs, (6.1)

where xa = γa + qa − qs − ua−us
2 .



Commuting Subalgebras of Affine Super Yangians Arising from Edge Contractions 15

By (6.1), we find that

Φs

(
X+

i,0

)
=


W

(1)
u1−us+i,u1−us+i+1 if 1 ≤ i ≤ us − us+1 − 1,

W
(1)
u1−us+i,−q1+qs−1 if i = us − us+1,

W
(1)
u1−us+i,−q1+qs+i−1 if − qs + qs+1 + 1 ≤ i ≤ −1,

W
(1)
−q1+qs+1,u1−us+1t if i = −qs + qs+1,

Φs

(
X−

i,0

)
=


W

(1)
u1−us+i+1,u1−us+i if 1 ≤ i ≤ us − us+1 − 1,

W
(1)
−q1+qs−1,u1−us+i if i = us − us+1,

W
(1)
−q1+qs+i−1,u1−us+i if − qs + qs+1 + 1 ≤ i ≤ −1,

W
(1)
u1−us+1,−q1+qs+1

t−1 if i = −qs + qs+1,

and

Φl

(
H̃i+,1

)
=



−ℏ
(
W

(2)
u1−ul+i+,u1−ul+i+

t−W
(2)
u1−ul+i++1,u1−ul+i++1t

)
− i+

2
ℏ
(
W

(1)
u1−ul+i+,u1−ul+i+

−W
(1)
u1−ul+i++1,i++1

)
+ Ui+ − Ui++1 if 1 ≤ i+ ≤ ul − 1,

−ℏ
(
W

(2)
u1,u1 +W

(2)
−q1+ql−1,−q1+ql−1

)
− ul

2
ℏ
(
W (1)

u1,u1
+W

(1)
−q1+ql−1,−q1+ql−1

)
+ Uul

− U−1 if i+ = ul,

Φl

(
H̃i−,1

)
=



ℏ
(
W

(2)
−q1+ql+i−,−q1+ql+i−

t−W
(2)
−q1+ql+i−−1,−q1+ql+i−−1t

)
+
ul + i−

2
ℏ
(
W

(1)
−q1+ql+i−,−q1+ql+i−

−W
(1)
−q1+ql+i−−1,−q1+ql+i−−1

)
+ Ui− − Ui−−1 if − ql + 1 ≤ i− ≤ −1,

ℏ
(
W

(2)
−ql,−ql

t+W
(2)
u1−ul+1,u1−ul+1t

)
− εlW

(1)
−ql,−ql

+

l∑
u=1

(
− ℏαuxu + εuαu +

ℏ
2
(qu − ql)αu

)
− ℏ

u1−ul∑
u=1

W (1)
u,u − ℏ

q1−ql∑
u=1

W
(1)
−u,−u + U−ql − U1 if i− = −ql,

where

Ui+ = −ℏ
2

(
W

(1)
u1−ul+i+,u1−ul+i+

)2
+ ℏ

∑
s≥0

i+∑
u=1

W
(1)
u1−ul+i+,u1−ul+ut

−sW
(1)
u1−ul+u,u1−ul+i+

ts

+ ℏ
∑
s≥0

ul∑
u=i++1

W
(1)
u1−ul+i+,u1−ul+ut

−s−1W
(1)
u1−ul+u,u1−ul+i+

ts+1

− ℏ
∑
s≥0

−1∑
u=−ql

W
(1)
u1−ul+i+,−q1+ql+ut

−s−1W
(1)
−q1+ql+u,u1−ul+i+

ts+1,

Ui− = −ℏ
2

(
W

(1)
−q1+ql+i−,−q1+ql+i−

)2 − ℏ
∑
s≥0

ul∑
u=1

W
(1)
−q1+ql+i−,u1−ul+ut

−sW
(1)
u1−ul+u,−q1+ql+i−

ts

− ℏ
∑
s≥0

−1∑
u=i−

W
(1)
−q1+ql+i−,−q1+ql+ut

−sW
(1)
−q1+ql+u,−q1+ql+i−

ts

+ ℏ
∑
s≥0

i−−1∑
u=−ql

W
(1)
−q1+ql+i−,−q1+ql+ut

−s−1W
(1)
−q1+ql+u,−q1+ql+i−

ts+1.
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In the rectangular case, Φl coincides with the homomorphism Φ in [26, Theorem 5.1]. Hereafter,
we denote the homomorphism Φl in the rectangular case by Φu1|q1 .

Theorem 6.3.

(1) Assume that m1,m2, n1, n2 ≥ 0, m1 + n1,m2 + n2 ≥ 5 and

εl =
k + (m1 +m2)− (n1 + n2)

ℏ
.

Then, we obtain the relation:

ι2 ◦ Φm1|n1 = Φm1+m2|n1+n2 ◦Ψm1|n1,m1+m2|n1+n2

1 .

(2) We also suppose the condition that εl ̸= 0. Then, we have a homomorphism

Φm1+m2|n1+n2 ◦Ψm2|n2,m1+m2|n1+n2

2 :

Yℏ,ε+(m1−n1)ℏ
(
ŝl(m2|n2)

)
→ C(U(W1),U(W2)),

where

W1 =W k
(
gl(2(m1 +m2), 2(n1 + n2))|

(
2m1+m2|n1+n2

))
,

W2 =W k+m2−n2
(
gl(2(m1 +m2)|2(n1 + n2)),

(
2m1|n1

))
.

Proof. (1) follows from the definition of Φm|n and Ψ
m1|n1,m1+m2|n1+n2

1 . By (1), Corollary 5.4 (1)
and [26, Theorem 5.1], the completion of the image of ι2 ◦ Φm1|n1 coincides with the universal
enveloping algebra U

(
W k+m2−n2

(
gl(2(m1 +m2)|2(n1 + n2)),

(
2m1|n1

)))
. Then, by Theorem 3.2,

we obtain (2). ■

Theorem 6.4.

(1) Assume that u1 − u2, q1 − q2 > 0, u1 − u2 + q1 − q2 ≥ 5 and ε1 ̸= 0. Then, we find that

Φs : Yℏ,εs
(
ŝl(us − us+1|qs − qs+1)

)
→ C

(
U
(
Wk(gl(M |N), f)

)
,U
(
ĝl(u1 − u2|q1 − q2)

))
for s ̸= 1.

(2) Assume that u1 = u2 > u3, q1 = q2 > q3, u1 − u3 + q1 − q3 ≥ 5 and ε2 ̸= 0. Then, for
s ̸= 1, we obtain

Φs : Yℏ,εs
(
ŝl(us − us+1|qs − qs+1)

)
→ C(U(W3),U(W4)),

where

k̃ = k +M −N − 2(u1 − q1) + (u3 − q3),

W3 = Wk(gl(M |N), f)),

W4 = W k̃
(
gl(2(u1 − u3)|2(q1 − q3)),

(
2u1−u3|q1−q3

))
.

where k̂ = k +M −N − 2(u1 − q1) + u3 − q3.
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Proof. (1) By Theorem 6.2, the image of Φs is contained in the completion of the tensor of
ev

u1|q1,−x1ℏ
ℏ,ε1 ◦Ψu2|v2,u1|v1

2 and
⊗̂

2≤a≤lU
(
ĝl(ua|qa)

)
. By Theorem 4.1 (2) and Corollary 5.4 (2),

the completion of the image of Ψ1 coincides with U(ĝl(u1 − u2|q1 − q2)) and is contained in
ev

u1|q1,−x1ℏ
ℏ,ε1 ◦Ψu1−u2|v1−v2,u1|v1

1 . Thus, the image of Ψs is contained in the centralizer algebra.

(2) Similarly to (1), we can prove by using [26, Theorem 5.1] and Corollary 5.4 (3) instead of
Theorem 4.1 (2) and Corollary 5.4 (2). ■

Remark 6.5. In Section 2, we give a definition of the affine super Yangian in the case m,n ≥ 2
and m + n ≥ 5 in order to use the finite presentation given in Theorem 2.2. This is why we
assume the condition m1 + n1,m2 + n2 ≥ 5 in Theorem 6.3 and u1 − u2 + q1 − q2 ≥ 5 or
u1 − u3 + q1 − q3 ≥ 5 in Theorem 6.4.

For a vertex algebra A and its subalgebra B, we set the coset vertex algebra C(A,B) as

C(A,B) =
{
x ∈ A | b(s)x = 0 for b ∈ B, s ≥ 0

}
.

Similarly to [29, Theorem 6.5] and [32, Theorem 7,7], Theorem 6.4 induces the following.

Theorem 6.6.

(1) Assume that m1,m2, n1, n2 ≥ 0, m1 + n1,m2 + n2 ≥ 5 and

εl =
k + (m1 +m2)− (n1 + n2)

ℏ
̸= 0.

Then, we obtain a homomorphism

Φm1+m2|n1+n2 ◦Ψm2|n2,m1+m2|n1+n2

2 : Yℏ,εl+(m1−n1)ℏ
(
ŝl(m2|n2)

)
→ U(C(W1, w2)),

where w2 = Wk+m2−n2
(
sl(2(m1 +m2)|2(n1 + n2)),

(
2m1+m2|n1+n2

))
.

(2) Assume that u1 − u2, q1 − q2 > 0, u1 − u2 + q1 − q2 ≥ 5 and ε1 ̸= 0. Then, we have
a homomorphism

Φs : Yℏ,εs
(
ŝl(us − us+1|qs − qs+1)

)
→ U

(
C
(
Wk(gl(M |N), f

)
, V κ

1 (sl(u1 − u2|q1 − q2)))
)

for s ≥ 1.

(3) Assume that u1 = u2 > u3, q1 = q2 > q3, u1 − u3 + q1 − q3 ≥ 5 and ε2 ̸= 0. Then, the
homomorphism Φs induces

Φs : Yℏ,εs
(
ŝl(us − us+1|qs − qs+1)

)
→ U(C(W3, w4)),

where w4 = W k̃
(
sl(2(u1 − u3)|2(q1 − q3)),

(
2u1−u3|q1−q3

))
.

7 Extended affine super Yangian

We extend the definition of the affine super Yangian to the new associative algebra. Let us set
ŝl(m2|n2)R as a Lie subalgebra of ŝl(m1 +m2|n1 + n2) = sl(m1 +m2|n1 + n2)⊗ C

[
t±1
]
⊕ Cc

generated by
{
Ei,jt

s | s ∈ Z, i ∈ Im1+m2|n1+n2
, j ∈ Im1+m2|n1+n2

\ Im1|n1

}
and c.



18 M. Ueda

Definition 7.1. Let m1, n1 ≥ 0. We define Y
m1+m2|n1+n2

ℏ,ε
(
ŝl(m2|n2)

)
by the associative algebra

whose generators are{
Hi,r, X

±
i,r | 0 ≤ i ≤ n− 1, r ∈ Z≥0

}
and ŝl(m2|n2)R with the relations (2.1)–(2.10) and we identify with Hi,0 and X±

i,0 with

Ψ
m2|n2,m1+m2|n1+n2

2 (Hi,0) and Ψ
m2|n2,m1+m2|n1+n2

2

(
X±

i,0

)
for i ∈ Im2|n2

.

We set the degree on Y
m1+m2|n1+n2

ℏ,ε
(
ŝl(m2|n2)

)
as

deg(Hi,r) = 0, deg
(
X±

i,r

)
= ±δi,0,

deg(xts) = s, deg(cm+n) = 0 for xts ∈ ŝl(m2|n2)R.

Using this degree, we denote the standard degreewise completion of Y
m1+m2|n1+n2

ℏ,ε
(
ŝl(m2|n2)

)
by Ỹ

m1+m2|n1+n2

ℏ,ε
(
ŝl(m2|n2)

)
.

For 1 ≤ v+ ≤ m1, −n1 ≤ v− ≤ −1, 1 ≤ i+, j+ ≤ m2 and −n2 ≤ i−, j− ≤ −1, let us set

a
v+,w
i+,j+

= δ(j+ < i+)ℏ
∑
s≥0

Ev+,i++m1t
w−s−1Ei++m1,j++m1t

s+1

+ δ(j+ > i+)ℏ
∑
s≥0

Ev+,i++m1t
w−sEi++m1,j++m1t

s,

a
v−,w
i+,j+

= δ(j+ < i+)ℏ
∑
s≥0

Ev−,i++m1t
w−1−sEi++m1,j++m1t

s+1

+ δ(j+ > i+)ℏ
∑
s≥0

Ev−,i++m1t
w−sEi++m1,j++m1t

s,

a
v+,w
i+,j−

= ℏ
∑
s≥0

Ev+,i++m1t
w−sEi++m1,−j−−n1t

s,

a
v−,w
i+,j−

= ℏ
∑
s≥0

Ev−,i++m1t
w−sEi++m1,−j−−n1t

s,

a
v+,w
i−,j+

= ℏ
∑
s≥0

Ev+,i−−n1t
w−s−1Ei−−n1,j++m1t

s+1,

a
v−,w
i−,j+

= ℏ
∑
s≥0

Ev−,i−−n1t
w−s−1Ei−−n1,j++m1t

s+1,

a
v+,w
i−,j−

= δ(j− > i−)ℏ
∑
s≥0

Ev+,i−−n1t
w−s−1Ei−−n1,−j−−n1t

s+1

+ δ(j− < i−)ℏ
∑
s≥0

Ev+,i−−n1t
w−sEi−−n1,−j−−n1t

s,

a
v−,w
i−,j−

= δ(j− > i−)ℏ
∑
s≥0

Ev−,i−−n1t
w−s−1Ei−−n1,−j−−n1t

s+1

+ δ(j− < i−)ℏ
∑
s≥0

Ev−,i−−n1t
w−sEi−−n1,−j−−n1t

s.

We set Y
m1+m2|n1+n2,R
ℏ,ε

(
ŝl(m2|n2)

)
as a quotient algebra of Ỹ

m1+m2|n1+n2

ℏ,ε
(
ŝl(m2|n2)

)
divided

by [
H̃i+,1, Ev,m1+j+t

w
]
= av,wi+,j+

− av,wi++1,j+
for j+ ̸= i+, i+ + 1, (7.1)[

H̃i+,1, Ev+,−n1+j−t
w
]
= av,wi+,j−

− av,wi++1,j−
, (7.2)
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H̃i−,1, Ev,−n1+j−t

w
]
= av,wi−,j−

− av,wi−−1,j−
for j− ̸= i−, i− − 1, (7.3)[

H̃i−,1, Ev,m1+j+t
w
]
= av,wi−,j+

− av,wi−−1,j+
, (7.4)[

H̃i+−1,1, Ev,m1+i+t
w
]
+
[
H̃i+,1, Ev,m1+i+t

w
]

= av,wi+−1,i+
− av,wi++1,i+

− ℏ
2
Ev+,m1+i+t

w for i+ ̸= 1,m2, (7.5)[
H̃i−+1,1, Ev,−n1+i−t

w
]
+
[
H̃i−,1, Ev,−n1+i−t

w
]

= av,wi−+1,i−
− a

v+,w
i−−1,i−

− ℏ
2
Ev,−n1+i−t

w for i− ̸= −1,−n2, (7.6)[
H̃m2,1, Ev,m1+j+t

w
]
= av,wm2,j+

− av,w−1,j+
− ℏEv,m1+j+t

w for j+ ̸= m2, (7.7)[
H̃m2,1, Ev,−n1+j−t

w
]
= av,wm2,j−

− av,w−1,j−
for j− ̸= −1, (7.8)[

H̃m2−1,1, Ev,m1+m2t
w
]
+
[
H̃m2,1, Ev,m1+m2t

w
]

(7.9)

= av,wm2−1,m2
− av,w−1,m2

− ℏ
2
Ev,m1+m2t

w, (7.10)[
H̃−1,1, Ev,−1t

w
]
+
[
H̃m2,1, Ev,−1t

w
]
= av,wm2,−1 − av,w−2,−1 − ℏ

2Ev,−1t
w, (7.11)[

H̃0,1, Ev+,m1+j+t
w
]
= av,w−n2,j+

− av,w1,j+
for j+ ̸= 1, (7.12)[

H̃0,1, Ev,−n1+j−t
w
]
= av,w−n2,j−

− av,w1,j−
for j− ̸= −n2, (7.13)[

H̃−n2+1,1, Ev,−n1−n2t
w
]
+
[
H̃0,1, Ev,−n1−n2t

w
]

= av,w−n2+1,−n2
− av,w1,−n2

+ ℏ
2(m2 − n2 + 1)Ev,m1+1t

w + εEv,m1+1t
w, (7.14)[

H̃1,1, Ev,m1+1t
w
]
+
[
H̃0,1, Ev,m1+1t

w
]
= av,w−n2,1

− av,w2,1 − ℏ
2Ev,m1+1t

w (7.15)

for 1 ≤ i+, j+ ≤ m2, −n2 ≤ i−, j− ≤ −1 and w ∈ Z.

Theorem 7.2. There exists a homomorphism

Ψ
m2|n2,m1+m2|n1+n2,R
2 :

Y
m1+m2|n1+n2,R
ℏ,ε

(
ŝl(m2|n2)

)
→ Ỹℏ,ε−(m1−n1)ℏ

(
ŝl(m1 +m2|n1 + n2)

)
given by

Ψ
m2|n2,m1+m2|n1+n2,R
2 (y) = y for y ∈ ŝl(m1 +m2|n1 + n2),

Ψ
m2|n2,m1+m2|n1+n2,R
2 (Zi,r) = Ψ

m2|n2,m1+m2|n1+n2

2 (Zi,r) for Z = H,X± and r = 0, 1.

Proof. It is enough to show the compatibility with (7.1)–(7.15). By (B.1), we find that the
relations replacing H̃i,1 with Ψ

m1+m2|n1+n2

2

(
H̃i,1

)
in (7.1)–(7.15) yields the same result as re-

placing H̃i,1 with

ev
m1+m2|n1+n2,0
ℏ,ε−(m1−n1)ℏ

(
Ψ

m1+m2|n1+n2

2

(
H̃i,1

))
.

Thus, it follows from a direct computation. ■

Theorem 7.3. There exists a homomorphism

∆m2|n2 : Yℏ,ε
(
ŝl(m2|n2)

)
→ Yℏ,ε−(m1−n1)ℏ

(
ŝl(m1 +m2|n1 + n2)

)
⊗̂Y m1+m2|n1+n2,R

ℏ,ε
(
ŝl(m2|n2)

)
determined by

∆m2|n2(y) = 1⊗ y + y ⊗ 1for y ∈ ŝl(m1 +m2|n1 + n2),
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∆m2|n2
(
X+

i,1

)
=



(Ψm2|n2,m1+m2|n1+n2,R ⊗ id) ◦∆
(
X+

i,1

)
+ Y 0

i,i+1

for 1 ≤ i+ ≤ m2 − 1,

(Ψm2|n2,m1+m2|n1+n2,R ⊗ id) ◦∆
(
X+

m2,1

)
+ Y 0

m2,−1

for i = m2,

(Ψm2|n2,m1+m2|n1+n2,R ⊗ id) ◦∆
(
X+

i,1

)
+ Y 0

i,i−1

for − n2 + 1 ≤ i ≤ −1,

(Ψm2|n2,m1+m2|n1+n2,R ⊗ id) ◦∆
(
X+

−n2,1

)
+ Y 1

−n2,1

for i = −n2,

∆m2|n2
(
X−

i,1

)
=



(Ψm2|n2,m1+m2|n1+n2,R ⊗ id) ◦∆
(
X−

i,1

)
+ Y 0

i+1,i

for 1 ≤ i+ ≤ m2 − 1,

(Ψm2|n2,m1+m2|n1+n2,R ⊗ id) ◦∆
(
X−

m2,1

)
+ Y 0

−1,m2

for i = m2,

(Ψm2|n2,m1+m2|n1+n2,R ⊗ id) ◦∆
(
X−

i,1

)
− Y 0

i−1,i

for − n2 + 1 ≤ i ≤ −1,

(Ψm2|n2,m1+m2|n1+n2,R ⊗ id) ◦∆
(
X−

−n2,1

)
− Y −1

1,−n2

for i = −n2,

∆m2|n2
(
X+

i,1

)
=



(Ψm2|n2,m1+m2|n1+n2,R ⊗ id) ◦∆
(
Hi,1

)
+ Y 0

i,i − Y 0
i+1,i+1

for 1 ≤ i+ ≤ m2 − 1,

(Ψm2|n2,m1+m2|n1+n2,R ⊗ id) ◦∆
(
Hm2,1

)
+ Y 0

m2,m2
+ Y 0

1,1

for i = m2,

(Ψm2|n2,m1+m2|n1+n2,R ⊗ id) ◦∆
(
Hi,1

)
− Y 0

i,i + Y 0
i−1,i−1

for − n2 + 1 ≤ i ≤ −1,

(Ψm2|n2,m1+m2|n1+n2,R ⊗ id) ◦∆
(
H−n2,1

)
− Y 0

−n2,−n2
− Y 0

1,1

for i = −n2,

where we set

Y r
i,j = ℏ

∑
s∈Z

u∈Im1|n1

(−1)p(u)Ei,ut
−s ⊗ Eu,jt

s+r.

Proof. The compatibilities with (2.2)–(2.12) follows from a direct computation. It is enough
to show the compatibility with (2.1). Since we obtain(

id⊗Ψm2|n2,m1+m2|n1+n2,R
)
◦∆m2|n2 = ∆ ◦Ψm2|n2,m1+m2|n1+n2

2

by a direct computation, we have

id⊗Ψm2|n2,m1+m2|n1+n2,R
([
∆m2|n2(Hi,1),∆

m2|n2(Hj,1)
])

= ∆
([
Ψ

m2|n2,m1+m2|n1+n2

2 (Hi,1),Ψ
m2|n2,m1+m2|n1+n2(Hj,1)

])
= 0.

Using (7.1)–(7.15), we can write down
[
∆m2|n2(Hi,1),∆

m2|n2(Hj,1)
]
as an element of the com-

pletion of
⊗2 U

(
ŝl(m1 +m2|n1 + n2)

)
since U

(
ŝl(m1 +m2|n1 + n2)

)
can be embedded into⊗2 Yℏ,ε−(m1−n1)ℏ

(
ŝl(m1 +m2|n1 + n2)

)
. ■

Theorem 7.4. Assume that ε = k +M −N − ul + ql. There exists a homomorphism

ΦR : Y
u1|q1,R
ℏ,ε

(
ŝl(ul|ql)

)
→ U

(
Wk(gl(M |N), f)

)
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determined by

ΦR(Ev,it
s) =W

(1)
v,i t

s for v ∈ Iu1|ul|q1−ql , i ∈ Iu1|q1 \ Iu1−ul|q1−ql and

ΦR(Zi,r) = Φ(Zi,r) for i ∈ Iul|ql , r = 0, 1.

Proof. Compatibility with (2.1)–(2.10) follows from Theorem 6.2. By a direct computation,
we obtain(

W
(1)
v.j

)
(0)
W

(2)
i,i = (−1)p(i)

(
W

(1)
v,i

)
(−1)

W
(1)
i,j ,(

W
(1)
v.j

)
(1)
W

(2)
i,i = −(−1)p(i)W

(1)
p,j ,(

W
(1)
v.j

)
(r)
W

(2)
i,i = 0 if r ≥ 2.

for v ∈ Iu1−ul|q1−ql , i, j ̸∈ Iu1−ul|q1−ql , i ̸= j. By a direct computation, we obtain

ℏ
(
W

(1)
v,u1−ul+i+

)
(−1)

W
(1)
u1−ul+i+,u1−ul+j+

tw+1 +
[
Ui+ ,W

(1)
v,u1−ul+j+

tw
]

= ℏδ(j+ < i+)
∑
s≥0

W
(1)
v,u1−ul+i+

tw−s−1W
(1)
u1−ul+i+,u1−ul+j+

ts+1

+ ℏδ(j+ > i+)
∑
s≥0

W
(1)
v,u1−ul+i+

tw−s−1W
(1)
u1−ul+i+,u1−ul+j+

ts+1

− ℏδ(j+ < i+)wW
(1)
v,u1−ul+j+

tw − ℏδ(j+ > i+)(w + 1)W
(1)
v,u1−ul+j+

tw,

ℏ
(
W

(1)
v,u1−ul+i+

)
(−1)

W
(1)
u1−ul+i+,−q1+ql+j−

tw+1 +
[
Ui+ ,W

(1)
v,−q1+ql+j−

tw
]

= ℏ
∑
s≥0

W
(1)
v,u1−ul+i+

tw−sW
(1)
u1−ul+i+,−q1+ql+j−

ts − (w + 1)ℏW (1)
v,−q1+ql+j−

tw,

ℏ
(
W

(1)
v,−q1+ql+i−

)
(−1)

W
(1)
−q1+ql+i−,u1−ul+j+

tw+1 + [Ui− ,W
(1)
v,u1−ul+j+

tw]

= ℏ
∑
s≥0

W
(1)
v,−q1+ql+i−

tw−s−1W
(1)
−q1+ql+i−,u1−ul+j+

ts+1 − wℏW (1)
v,u1−ul+j+

tw

− ℏ(W (1)
v,−q1+ql+i−

)(−1)W
(1)
−q1+ql+i−,−q1+ql+j−

tw+1 +
[
Ui− ,W

(1)
v,−q1+ql+j−

tw
]

= δ(i− < j−)ℏ
∑
s≥0

W
(1)
v,−q1+ql+i−

tw−s−1W
(1)
−q1+ql+i−,−q1+ql+j−

ts+1

+ δ(i− > j−)ℏ
∑
s≥0

W
(1)
v,−q1+ql+i−

tw−sW
(1)
−q1+ql+i−,−q1+ql+j−

ts

− wδ(i− < j−)ℏW
(1)
v,−q1+ql+j−

tw − (w + 1)δ(i− > j−)ℏW
(1)
v,−q1+ql+j−

tw.

By using these relations, we can prove the compatibility with (7.1)–(7.15). ■

8 Compatibility of Φl with the parabolic induction
for a W -superalgebra in the special setting

In this section, we assume that u1 > u2 > · · · > ul > 0, q1 > q2 > · · · > ql > 0, ul, ql ≥ 2
and ul ̸= ql. In this case, we can give generators of the W -algebra Wk(gl(M |N), f).

Theorem 8.1. For a ∈ Iu1−us|q1−qs \ Iu1−us−1|q1−qs−1
and b ∈ Iu1−uv |q1−qv \ Iu1−uv−1|q1−qv−1

, the
following elements are contained in Wk(gl(M |N), f):

W
(1)
a,b =

∑
1≤r≤s

e
(r)
a,bfor s ≤ v,
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W
(2)
a,b =

∑
col(i)=col(j)+1

row(i)=a, row(j)=b

ei,j −
∑

1≤r≤s

Γre
(r)
a,b[−2]

+
∑

1≤r1<r2≤s
x>u1−us

(−1)p(x)+p(ei,v)p(ex,j)e
(r1)
x,b [−1]e(r2)a,x [−1]

+
∑

1≤r1<r2≤s
x<−q1+qs

(−1)p(x)+p(ea,x)p(eb,x)e
(r1)
x,b [−1]e(r2)a,x [−1]

−
∑
r1≥r2

qs−q1≤x≤qr1−q1
row(i)=a, row(j)=b

(−1)p(x)+p(ea,x)p(ex,b)e
(r1)
x,b [−1]e(r2)a,x [−1]

−
∑
r1≥r2

u1−ur1≤x≤u1−us

(−1)p(x)+p(ea,x)p(ex,b)e
(r1)
x,b [−1]e(r2)a,x [−1] if s = v ± 1,

where we set

Γr =

{
γr if s = v, v − 1,

δ(r ≤ s− 1)γr + δr,sαs if s = v + 1.

We can prove Theorem 8.1 by the same way as [31, Theorem 10.22].

Theorem 8.2. Suppose that k+M − n− u1 + q1 ̸= 0 and u1 − u2 + q1 − q2 ≥ 3. The elements
W

(1)
a,b and W

(2)
a,b generate Wk(gl(M |N), f).

The proof of Theorem 8.2 can be proven by the same way as [26, Theorem 3.6]. We will give
the proof in the appendix.

Let us take an integer 1 < x < l and set

M1 =
x∑

v=1

uv, N1 =
x∑

v=1

qv, M2 =
l∑

v=x+1

uv, N2 =
l∑

v=x+1

qv.

We define f1 (resp. f2) as a nilpotent element of type
(
1u1−u2|q1−q2 , 2u2−u3|q2−q3 , . . . , pux−0|qx−0

)(
resp.

(
1ux+1−ux+2|qx+1−qx+2 , 2ux+2−ux+3|qx+2−qx+3 , . . . , pul−0|ql−0

))
in gl(M1|N1) (resp. gl(M2|N2)

by the same way as f ∈ gl(M |N).

We denote the Miura maps as

µ1 : Wk+M2−N2(gl(M1|N1), f1) →
⊗

1≤i≤x

V κ
i (gl(ui|qi)),

µ2 : Wk+M1−N1(gl(M2|N2), f2) →
⊗

x+1≤i≤l

V κ
i (gl(ui|qi)),

where κi is an appropriate inner product on gl(ui|qi).

Theorem 8.3. Suppose that k +M −N − u1 + q1 ̸= 0. There exists a homomorphism

∆W : Wk(gl(M |N), f) → Wk+M2−N2(gl(M1|N1), f1)⊗Wk+M1−N1(gl(M2|N2), f2)

determined by µ = (µ1 ⊗ µ2) ◦∆W .
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Proof. By Theorem 8.2, it is enough to show µ
(
W

(r)
a,b

)
is contained in

Wk+M2−N2(gl(M1|N1), f1)⊗Wk+M1−N1(gl(M2|N2), f2)

for r = 1, 2. For the latter discussion, we only show the case that a, b > u1−ul or a, b < −q1+ql.
By the definition of W

(r)
a,b , we have

µ
(
W

(1)
a,b

)
=W

(1)
a,b ⊗ 1 + 1⊗W

(1)
a,b ,

µ
(
W

(2)
a,b

)
=W

(2)
a,b ⊗ 1 + 1⊗W

(2)
a,b − γp∂W

(1)
a,b ⊗ 1

−
∑

u1−ux<u≤u1−ul,−q1+ql<u≤−q1+qx

(−1)p(ea,u)p(eb,u)+p(u)
(
W

(1)
u,b

)
(−1)

W (1)
a,u ⊗ 1

−
∑

u>u1−ul,u<−q1+ql

(
(−1)p(ea,u)p(eb,u)+p(u)W

(1)
u,b

)
⊗W (1)

a,u

+
∑

u1−ux+1<u≤u1−ul,−q1+ql≤u<−q1+qx+1

(−1)p(u)W (1)
a,u ⊗W

(1)
u,b . ■

By Theorems 6.2 and 7.4, we obtain

Φ1 : Yℏ,ε+(ux−qx−ul+ql)ℏ
(
ŝl(ux|qx)

)
→ U

(
Wk+M2−N2(gl(M1|N1), f1)

)
,

Φ2 : Y
ux+1|qx+1,R
ℏ,ε

(
ŝl(ul|ql)

)
→ U

(
Wk+M1−N1(gl(M2|N2), f2)

)
.

For a complex number a ∈ C, we set a homomorphism called the shift operator of the affine
super Yangian

τa : Yℏ,ε
(
ŝl(m|n)

)
→ Yℏ,ε

(
ŝl(m|n)

)
determined by X±

i,0 7→ X±
i,0 and Hi,1 7→ Hi,1 + aHi,0. Then, by a direct computation, we obtain

the compatibility with the coproduct for the affine super Yangian and the parabolic presentation
for a W -superalgebra.

Corollary 8.4. We obtain the following relations:((
Φ1 ◦ τ(−γw+qw−qw+1)ℏ ◦Ψ

ux+1|qx+1,ux|qx
2

)
⊗ Φ2

)
◦∆m2|n2 = ∆W ◦ Φ.

A Some formulas for Theorem 3.2

In this section, we prepare some formulas for Theorem 3.2. By a direct computation, we obtain
the following formula.

Theorem A.1. For i ̸= j and a, b ≥ 0, the following relations hold:[
Ei,zt

−v−bEz,it
v+b, Eu,jt

−s−aEj,ut
s+a
]

= δu,iEi,zt
−v−bEz,jt

v+b−s−aEj,ut
s+a

− (−1)p(Ez,i)p(Eu,j)δz,jEi,zt
−v−bEu,it

v+b−s−aEj,ut
s+a

+ (−1)p(Ez,i)p(Eu,j)δu,zEi,jt
−v−b−s−aEz,it

v+bEj,ut
s+a

− (−1)p(Ez,i)p(Eu,j)δu,zEu,jt
−s−aEi,zt

−v−bEj,it
v+b+s+a

+ (−1)p(Ez,i)p(Eu,j)δj,zEu,jt
−s−aEi,ut

−v−b+s+aEz,it
v+b

− δi,uEu,jt
−s−aEj,zt

−v−b+s+aEz,it
v+b, (A.1)
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[Ei,zt
−v−bEz,it

v+b, Ej,ut
−s−aEu,jt

s+a]

= −(−1)p(Ez,i)p(Eu,j)δu,zEi,zt
−v−bEj,it

v+b−s−aEu,jt
s+a

+ (−1)p(Ez,i)p(Eu,j)δj,zEi,ut
−v−b−s−aEz,it

v+bEu,jt
s+a

− δi,uEj,zt
−v−b−s−aEz,it

v+bEu,jt
s+a

+ δi,uEj,ut
−s−aEi,zt

−v−bEz,jt
v+b+s+a

− (−1)p(Ez,i)p(Eu,j)δj,zEj,ut
−s−aEi,zt

−v−bEu,it
v+b+s+a

+ (−1)p(Ez,i)p(Eu,j)δu,zEj,ut
−s−aEi,jt

s+a−v−bEz,it
v+b, (A.2)

[Ez,it
−v−bEi,zt

v+b, Eu,jt
−s−aEj,ut

s+a]

= δu,zEz,it
−v−bEi,jt

v+b−s−aEj,ut
s+a

+ (−1)p(Ez,i)p(Eu,j)δi,uEz,jt
−v−b−s−aEi,zt

v+bEj,ut
s+a

− δj,zEu,it
−v−b−s−aEi,zt

v+bEj,ut
s+a

+ δz,jEu,jt
−s−aEz,it

−v−bEi,ut
v+b+s+a

− (−1)p(Ez,i)p(Eu,j)δi,uEu,jt
−s−aEz,it

−v−bEj,zt
v+b+s+a

− δz,uEu,jt
−s−aEj,it

−v−b+s+aEi,zt
v+b. (A.3)

B Proof of Theorem 3.2

In this appendix, we give a proof of Theorem 3.2. Since the affine super Yangian Yℏ,ε
(
ŝl(m|n)

)
is generated by

{
X±

i,0

}
i∈Im|n

and H̃1,1, we need to show that{
Ψ

m1|n1,m1+m2|n1+n2

1

(
X±

i,0

)}
i∈Im1|n1

and Ψ
m1|n1,m1+m2|n1+n2

1

(
H̃1,1

)
commute with

{
Ψ

m2|n2,m1+m2|n1+n2

2

(
X±

i,0

)}
i∈Im2|n2

and Ψ
m2|n2,m1+m2|n1+n2

2

(
H̃1,1

)
. The commu-

tatibility with

Ψ
m1|n1,m1+m2|n1+n2

1

(
X±

i,0

)
and Ψ

m2|n2,m1+m2|n1+n2

2

(
X±

i,0

)
follows from the definitions of two edge contractions. Thus, it is enough to show the following
three relations:[

Ψ
m1|n1,m1+m2|n1+n2

1

(
X±

i,0

)
,Ψ

m2|n2,m1+m2|n1+n2

2

(
H̃1,1

)]
= 0, (B.1)[

Ψ
m1|n1,m1+m2|n1+n2

1

(
H̃1,1

)
,Ψ

m2|n2,m1+m2|n1+n2

2

(
X±

i,0

)]
= 0, (B.2)[

Ψ
m1|n1,m1+m2|n1+n2

1

(
H̃1,1

)
,Ψ

m2|n2,m1+m2|n1+n2

2

(
H̃1,1

)]
= 0. (B.3)

We will prove (B.1)–(B.3) in the following three appendices.

B.1 The proof of (B.1)

This appendix is devoted to the proof of (B.1). We only show the + case. The − case can be
derived from + case by using the anti-automorphism ω. The cases that i ̸= 0,m1 can be proven
by a direct computation. We only show the case that i = 0 and i = m.

First, we show the case that i = m1. By the definition of two edge contractions, we have[
Ψ

m1|n1,m1+m2|n1+n2

1

(
X+

m1,0

)
,Ψ

m2|n2,m1+m2|n1+n2

2

(
H̃1,1

)]
=
[
Em1,−1, H̃1+m1,1

]
+ [Em1,−1, R1 −R2] + [Em1,−1, S1 − S2]. (B.4)
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We will compute each terms of the right-hand side of (B.4). In order to simplify the notation,
here after, we denote the i-th term of the right-hand side of the equation (·) by (·)i. By a direct
computation, we obtain

(B.4)2 = ℏ
∑
v≥0

Em1,1+m1t
−vE1+m1,−1t

v − ℏ
∑
v≥0

Em1,2+m1t
−vE2+m1,−1t

v, (B.5)

(B.4)3 = −ℏ
∑
v≥0

Em1,1+m1t
−v−1E1+m1,−1t

v+1 + ℏ
∑
v≥0

Em1,2+m1t
−v−1E2+m1,−1t

v+1. (B.6)

We can rewrite

(B.4)1 =
[
[Em1,3+m1 , E3+m1,−1], H̃1+m1,1

]
=
[[
Em1,3+m1 , H̃1+m1,1

]
, E3+m1,−1

]
+
[
Em1,3+m1 ,

[
E3+m1,−1, H̃1+m1,1

]]
. (B.7)

Since E3+m1,−1 =
(∏m1+m2−1

i=3+m1
ad
(
X+

i,0

))
X+

m1+m2,0
holds, we obtain

[
E3+m1,−1, H̃1+m1,1

]
= 0

by (2.6). Thus, (B.7)2 is equal to zero. Since Em1,3+m1 =
[
X+

m1,0
,
[
X+

1+m1,0
, X+

2+m1,0

]]
holds,

we have[
Em1,3+m1 , H̃1+m1,1

]
=
[
X+

m1,1
,
[
X+

1+m1,0
, X+

2+m1,0

]]
− 2
[
X+

m1,0
,
[
X+

1+m1,1
, X+

2+m1,0

]]
+
[
X+

m1,0
,
[
X+

1+m1,0
, X+

2+m1,1

]]
.

By (2.8) and (2.13), we have[
X+

m1,1
,
[
X+

1+m1,0
, X+

2+m1,0

]]
−
[
X+

m1,0
,
[
X+

1+m1,1
, X+

2+m1,0

]]
= −ℏ

2

{
X+

m1,0
,
[
X+

1+m1,0
, X+

2+m1,0

]}
= −ℏEm1,m1+1Em1+1,m1+3 +

ℏ
2
Em1,m1+3, (B.8)

−
[
X+

m1,0
,
[
X+

1+m1,1
, X+

2+m1,0

]]
+
[
X+

m1,0
,
[
X+

1+m1,0
, X+

2+m1,1

]]
=

ℏ
2

{[
X+

m1,0
, X+

1+m1,0

]
, X+

2+m1,0

}
= ℏEm1,m1+2Em1+2,m1+3 −

ℏ
2
Em1,m1+3. (B.9)

By (B.8) and (B.9), we have

(B.7)1 = −ℏEm1,m1+1Em1+1,−1 + ℏEm1,m1+2Em1+2,−1. (B.10)

By adding (B.5), (B.6) and (B.10), we find that (B.4) is equal to zero.

Next, we show the case that i = 0. By the definition of two edge contractions, we have[
Ψ

m1|n1,m1+m2|n1+n2

1

(
X+

0,0

)
,Ψ

m2|n2,m1+m2|n1+n2

2

(
H̃1,1

)]
=
[
E−n1,1t, H̃1+m1,1

]
+ [E−n1,1t, R1 −R2] + [E−n1,1t, S1 − S2]. (B.11)

By a direct computation, we obtain

(B.11)2 = −ℏ
∑
v≥0

E−n1,1+m1t
−vE1+m1,1t

v+1 + ℏ
∑
v≥0

E−n1,2+m1t
−vE2+m1,1t

v+1, (B.12)

(B.11)3 = ℏ
∑
v≥0

E−n1,1+m1t
−vE1+m1,1t

v+1 − ℏ
∑
v≥0

E−n1,2+m1t
−vE2+m1,1t

v+1. (B.13)

Since we obtain E−n1,1t =
(∏−n1−n2+1

i=−n1

)
ad
(
X+

i,0

)
X+

−n1−n2,0
, we find that (B.11)1 is equal to

zero by (2.13). By adding (B.12) and (B.13), we obtain (B.11) = 0.
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B.2 The proof of (B.2)

In this appendix, we will show the relation (B.2) in the same way as (B.1). Since the − case
can be derived from + case by using the anti-automorphism ω, we will only show the + case.
Moreover, we only show the case that i = 0. The other cases can be proven in a similar way.
By the definition of Ψ

m1|n1,m1+m2|n1+n2

1 and Ψ
m2|n2,m1+m2|n1+n2

2 , we have[
Ψ

m1|n1,m1+m2|n1+n2

1

(
H̃1,1

)
,Ψ

m2|n2,m1+m2|n1+n2

2

(
X+

0,0

))]
(B.14)

= [H̃1,1, E−n1−n2,m1+1t]− [P1 − P2, E−n1−n2,m1+1t] + [Q1 −Q2, E−n1−n2,m1+1t].

By a direct computation, we obtain

(B.11)2 = ℏ
∑
v≥0

E1,m1+1t
−v−1E−n1−n2,1t

v+2 − ℏ
∑
v≥0

E2,m1+1t
−v−1E−n1−n2,2t

v+2, (B.15)

(B.11)3 = −ℏ
∑
v≥0

E1,m1+1t
−vE−n1−n2,1t

v+1 + ℏ
∑
v≥0

E2,m1+1t
−vE−n1−n2,2t

v+1. (B.16)

Since E−n1−n2,m1+1t = [E−n1−n2,3t, E3,m1+1] holds, we have[
H̃1,1, E−n1−n2,m1+1t

]
=
[
H̃1,1, [E−n1−n2,3t, E3,m1+1]

]
(B.17)

=
[[
H̃1,1, E−n1−n2,3t

]
, E3,m1+1

]
+
[
E−n1−n2,3t, [H̃1,1, E3,m1+1

]]
.

Since E3,m1+1 =
(∏m1−1

i=3 ad
(
X+

i,0

))
X+

m1,0
holds by a direct computation, we obtain

(B.17)2 = [E−n1−n2,3t, 0] = 0

by (2.13). Since we obtain E−n1−n2,3t =
[
X+

0,0,
[
X+

1,0, X
+
2,0

]]
, we have[

H̃1,1,
[
X+

0,0,
[
X+

1,0, X
+
2,0

]]]
= −

[
X+

0,1,
[
X+

1,0, X
+
2,0

]]
+ 2
[
X+

0,0,
[
X+

1,1, X
+
2,0

]]
−
[
X+

0,0,
[
X+

1,0, X
+
2,1

]]
by (2.6). By (2.8) and (2.13), we obtain

−
[
X+

0,1,
[
X+

1,0, X
+
2,0

]]
+
[
X+

0,0,
[
X+

1,1, X
+
2,0

]]
=

ℏ
2

{
X+

0,0,
[
X+

1,0, X
+
2,0

]}
= ℏE1,3E−n1−n2,1t+

ℏ
2
E−n1−n2,3t, (B.18)[

X+
0,0,
[
X+

1,1, X
+
2,0

]]
−
[
X+

0,0,
[
X+

1,0, X
+
2,1

]]
= −ℏ

2

{[
X+

0,0, X
+
1,0

]
, X+

2,0

}
= −ℏE2,3E−n1−n2,2t−

ℏ
2
E−n1−n2,3t. (B.19)

By adding (B.18) and (B.19), we obtain

(B.17)1 = ℏE1,m1+1E−n1−n2,1t− ℏE2,m1+1E−n1−n2,2t. (B.20)

By adding (B.15), (B.16) and (B.20), we find that (B.14) is equal to zero.

B.3 The proof of (B.3)

This appendix is devoted to the proof of (B.3). Similarly to [28, Section 3], we define the
elements of Ỹℏ,ε

(
ŝl(m|n)

)
:

J(hi) = H̃i,1 +Ai −Ai+1, J
(
x±i
)
=

{
∓(−1)p(i)

[
J(hi−1), x

±
i

]
if i ̸= 0,

∓
[
J(h1), x

±
0

]
if i = 0,
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where

Ai =
ℏ
2

∑
s≥0

i<u≤m+n

Eu,it
−sEi,ut

s − ℏ
2
(−1)p(i)

∑
s≥0

1≤u<i

(−1)p(u)Ei,ut
−sEu,it

s

+
ℏ
2

∑
s≥0

1≤u<i

Eu,it
−s−1Ei,ut

s+1 − ℏ
2
(−1)p(i)

∑
s≥0

i<u≤m+n

(−1)p(u)Ei,ut
−s−1Eu,it

s+1.

For the simplicity, we sometimes denote

Ai,1 =
ℏ
2

∑
s≥0

i<u≤m+n

Eu,it
−sEi,ut

s, Ai,2 =
ℏ
2
(−1)p(i)

∑
s≥0

1≤u<i

(−1)p(u)Ei,ut
−sEu,it

s

Ai,3 =
ℏ
2

∑
s≥0

1≤u<i

Eu,it
−s−1Ei,ut

s+1, Ai,4 =
ℏ
2
(−1)p(i)

∑
s≥0

i<u≤m+n

(−1)p(u)Ei,ut
−s−1Eu,it

s+1.

Let α be a positive real root of ŝl(m|n). We take x±α be a non-zero element of the root space
with ±α. We also take simple roots {αi}i∈Im|n of ŝl(m|n).

Lemma B.1 ([28, Proposition 4.26]). There exists a complex number cα,i satisfying that

(αj , α)
[
J(hi), x

±
α

]
− (αi, α)

[
J(hj), x

±
α

]
= ±cα,ix±α ,

where ( , ) is defined by (αi, αj) = ai,j.

By Lemma B.1 and the definition of Pi, Qi, Rj , Sj , it is enough to show the relation

[Pi −Qi, Rj + Sj ] + [Ai, Rj + Sj ]− [Pi −Qi, Am1+j ] = 0 (B.21)

for i, j = 1, 2. By a direct computation, we obtain

[Pi, Rj ] = −ℏ2
∑
s,v≥0

−1∑
u=−n1

Ei,j+m1t
−v−1Eu,it

v+1−sEj+m1,ut
s

+ ℏ2
∑
s,v≥0

−1∑
u=−n1

Eu,j+m1t
−sEi,ut

−v−1+sEj+m1,it
v+1, (B.22)

[Pi, Sj ] = ℏ2
∑
s,v≥0

m1+m2∑
z=m1+1

Ei,zt
−v−1Ez,j+m1t

v−sEj+m1,it
s+1

− ℏ2
∑
s,v≥0

m1∑
u=1

Ei,j+m1t
−v−1Eu,it

v−sEj+m1,ut
s+1

+ ℏ2
∑
s,v≥0

m1∑
u=1

Eu,j+m1t
−s−1Ei,ut

−v+sEj+m1,it
v+1

− ℏ2
∑
s,v≥0

m1+m2∑
z=m1+1

Ei,j+m1t
−s−1Ej+m1,zt

−v+sEz,it
v+1, (B.23)

[Qi, Rj ] = 0,

[Qi, Sj ] = ℏ2
∑
s,v≥0

−n1−1∑
z=−n1−n2

Ei,zt
−v−1Ez,j+m1t

v−sEj+m1,it
s+1
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− ℏ2
∑
s,v≥0

−n1−1∑
z=−n1−n2

Ei,j+m1t
−s−1Ej+m1,zt

−v+sEz,it
v+1 (B.24)

By the definition of Ai and (A.1), we can rewrite [Pi, Aj+m1 ] as

[Pi, Aj+m1,1]− [Pi, Aj+m1,2] + [Pi, Aj+m1,3]− [Pi, Aj+m1,4].

By (A.1), we obtain

[Pi, Aj+m1,1] = −ℏ2

2

∑
s,v≥0

u>j+m1

Ei,j+m1t
−v−1Eu,it

v+1−sEj+m1,ut
s

+
ℏ2

2

∑
s,v≥0

m1+m2∑
z=j+m1+1

Ei,j+m1t
−v−1−sEz,it

v+1Ej+m1,zt
s

− ℏ2

2

∑
s,v≥0

m1+m2∑
z=j+m1+1

Ez,j+m1t
−sEi,zt

−v−1Ej+m1,it
v+1+s

+
ℏ2

2

∑
s,v≥0

u>j+m1

Eu,j+m1t
−sEi,ut

−v−1+sEj+m1,it
v+1. (B.25)

By a direct computation, we obtain

(B.25)1 + (B.25)2 = −ℏ2

2

∑
s,v≥0

−1∑
u=−n1−n2

Ei,j+m1t
−v−1Eu,it

v+1−sEj+m1,ut
s

− ℏ2

2

∑
s,v≥0

m1+m2∑
z=j+m1+1

Ei,j+m1t
−v−1Ez,it

−sEj+m1,zt
s+v+1,

(B.25)3 + (B.25)4 =
ℏ2

2

∑
s,v≥0

m1+m2∑
z=j+m1+1

Ez,j+m1t
−s−v−1Ei,zt

sEj+m1,it
v+1

+
ℏ2

2

∑
s,v≥0

−1∑
u=−n1−n2

Eu,j+m1t
−sEi,ut

−v−1+sEj+m1,it
v+1.

Then, we can rewrite

[Pi, Aj+m1,1] = −ℏ2

2

∑
s,v≥0

−n1−1∑
u=−n1−n2

Ei,j+m1t
−s−v−1Eu,it

v+1Ej+m1,ut
s

− ℏ2

2

∑
s,v≥0

−n1−1∑
u=−n1−n2

Ei,j+m1t
−v−1Eu,it

−sEj+m1,ut
s+v+2

− ℏ2

2

∑
s,v≥0

−1∑
u=−n1

Ei,j+m1t
−v−1Eu,it

v+1−sEj+m1,ut
s

− ℏ2

2

∑
s,v≥0

m1+m2∑
z=j+m1+1

Ei,j+m1t
−v−1Ez,it

−sEj+m1,zt
s+v+1

+
ℏ2

2

∑
s,v≥0

m1+m2∑
z=j+m1+1

Ez,j+m1t
−s−v−1Ei,zt

sEj+m1,it
v+1
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+
ℏ2

2

∑
s,v≥0

−n1−1∑
u=−n1−n2

Eu,j+m1t
−s−v−1Ei,ut

sEj+m1,it
v+1

+
ℏ2

2

∑
s,v≥0

−n1−1∑
u=−n1−n2

Eu,j+m1t
−sEi,ut

−v−1Ej+m1,it
s+v+1

+
ℏ2

2

∑
s,v≥0

−1∑
u=−n1

Eu,j+m1t
−sEi,ut

−v−1+sEj+m1,it
v+1. (B.26)

Similarly, by (A.1) and (A.2), we can rewrite

[Pi, Aj+m1,2] =
ℏ2

2

∑
s,v≥0

m1∑
u=1

Ei,ut
−v−1−sEj+m1,it

v+1Eu,j+m1t
s

− ℏ2

2

∑
s,v≥0

m1+m2∑
z=j+m1

Ej+m1,zt
−v−1−sEi,j+m1t

sEz,it
v+1

+
ℏ2

2

∑
s,v≥0

m1+m2∑
z=j+m1

Ei,zt
−v−1Ej+m1,it

−sEz,j+m1t
v+1+s

− ℏ2

2

∑
s,v≥0

m1∑
u=1

Ej+m1,ut
−sEi,j+m1t

−v−1Eu,it
v+1+s, (B.27)

[Pi, Aj+m1,3] =
ℏ2

2

∑
s,v≥0

m1+m2∑
z=m1+1

Ei,zt
−v−1Ez,j+m1t

v−sEj+m1,it
s+1

− ℏ2

2

∑
s,v≥0

m1∑
u=1

Ei,j+m1t
−v−1Eu,it

v−sEj+m1,ut
s+1

− ℏ2

2

∑
s,v≥0

j+m1−1∑
z=m1+1

Ei,j+m1t
−v−1Eu,it

−sEj+m1,ut
v+s+1

+
ℏ2

2

∑
s,v≥0

j+m1−1∑
z=m1+1

Ez,j+m1t
−s−v−1Ei,zt

sEj+m1,it
v+1

+
ℏ2

2

∑
s,v≥0

m1∑
u=1

Eu,j+m1t
−s−1Ei,ut

−v+sEj+m1,it
v+1

− ℏ2

2

∑
s,v≥0

m1+m2∑
z=m1+1

Ei,j+m1t
−s−1Ej+m1,zt

−v+sEz,it
v+1, (B.28)

[Pi, Aj+m1,4] = −ℏ2

2

∑
s,v≥0

m1+m2∑
z=j+m1+1

Ei,zt
−v−1Ej+m1,it

−sEz,j+m1t
s+v+1

− ℏ2

2

∑
s,v≥0

−n1−1∑
u=−n1−n2

Ei,ut
−v−s−2Ej+m1,it

v+1Eu,j+m1t
s+1

− ℏ2

2

∑
s,v≥0

−1∑
u=−n1

Ei,ut
−v−s−2Ej+m1,it

v+1Eu,j+m1t
s+1

+
ℏ2

2

∑
s,v≥0

−n1−1∑
u=−n1−n2

Ej+m1,ut
−s−1Ei,j+m1t

−v−1Eu,it
v+s+2
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+
ℏ2

2

∑
s,v≥0

−1∑
u=−n1

Ej+m1,ut
−s−1Ei,j+m1t

−v−1Eu,it
v+s+2

+
ℏ2

2

∑
s,v≥0

m1+m2∑
z=j+m1+1

Ej+m1,zt
−s−v−1Ei,j+m1t

sEz,it
v+1. (B.29)

By a direct computation, we have

(B.26)2 + (B.28)3 = −ℏ2

2

∑
s,v≥0

m1+m2∑
u=m1+1
u̸=j+m1

Eu,it
−sEi,j+m1t

−v−1Ej+m1,ut
v+s+1,

(B.26)3 + (B.28)4 =
ℏ2

2

∑
s,v≥0

m1+m2∑
z=m1+1
z ̸=j+m1

Ez,j+m1t
−s−v−1Ej+m1,it

v+1Ei,zt
s,

− (B.27)2 − (B.29)6 =
ℏ2

2

∑
s,v≥0

Ej+m1,j+m1t
−v−1−sEi,j+m1t

sEj+m1,it
v+1,

− (B.27)3 − (B.29)1 = −ℏ2

2

∑
s,v≥0

Ei,j+m1t
−v−1Ei,it

−sEj+m1,it
s+v+1.

Then, we find that

(B.26)2 + (B.28)3 + (B.26)3 + (B.28)4 − (B.27)2 − (B.29)6 − (B.27)3 − (B.29)1

= −ℏ2

2

∑
s,v≥0

m1+m2∑
u=m1+1

Eu,it
−sEi,j+m1t

−v−1Ej+m1,ut
v+s+1

+
ℏ2

2

∑
s,v≥0

m1+m2∑
z=m1+1
z ̸=j+m1

Ez,j+m1t
−s−v−1Ej+m1,it

v+1Ei,zt
s. (B.30)

Similarly, by the definition of Ai, we can rewrite [Qi, Aj+m1 ] as

[Qi, Aj+m1,1]− [Qi, Aj+m1,2] + [Qi, Aj+m1,3]− [Qi, Aj+m1,4].

By (A.1) and (A.2), we obtain

[Qi, Aj+m1,1] =
ℏ2

2

∑
s,v≥0

−n1−1∑
z=−n1−n2

Ei,j+m1t
−v−1−sEz,it

v+1Ej+m1,zt
s

− ℏ2

2

∑
s,v≥0

−n1−1∑
z=−n1−n2

Ez,j+m1t
−sEi,zt

−v−1Ej+m1,it
v+1+s, (B.31)

[Qi, Aj+m1,2] = −ℏ2

2

∑
s,v≥0

−n1−1∑
z=−n1−n2

Ej+m1,zt
−v−s−1Ei,j+m1t

sEz,it
v+1

+
ℏ2

2

∑
s,v≥0

−n1−1∑
z=−n1−n2

Ei,zt
−v−1Ej+m1,it

−sEz,j+m1t
v+1+s, (B.32)

[Qi, Aj+m1,3] =
ℏ2

2

∑
s,v≥0

−n1−1∑
z=−n1−n2

Ei,zt
−v−1Ez,j+m1t

v−sEj+m1,it
s+1
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− ℏ2

2

∑
s,v≥0

−n1−1∑
z=−n1−n2

Ei,j+m1t
−s−1Ej+m1,zt

s−vEz,it
v+1, (B.33)

[Qi, Aj+m1,4] = −ℏ2

2

∑
s,v≥0

−n1−1∑
z=−n1−n2

Ei,zt
−v−1Ej+m1,it

v−sEz,j+m1t
s+1

+
ℏ2

2

∑
s,v≥0

−n1−1∑
z=−n1−n2

Ej+m1,zt
−s−1Ei,j+m1t

s−vEz,it
v+1. (B.34)

By a direct computation, we obtain

− (B.32)1 − (B.34)2 = −ℏ2

2

∑
s,v≥0

−n1−1∑
z=−n1−n2

Ej+m1,zt
−s−1Ei,j+m1t

−v−1Ez,it
s+v+2, (B.35)

− (B.32)2 − (B.34)1 =
ℏ2

2

∑
s,v≥0

−n1−1∑
z=−n1−n2

Ei,zt
−s−v−2Ej+m1,it

v+1Ez,j+m1t
s+1. (B.36)

By the definition of Ai, we can rewrite [Ai, Rj+m1 ] as

[Ai,1, Rj+m1 ]− [Ai,2, Rj+m1 ] + [Ai,3, Rj+m1 ]− [Ai,4, Rj+m1 ].

By (A.1) and (A.3), we obtain

[Ai,1, Rj+m1 ] =
ℏ2

2

∑
s,v≥0

−1∑
u=−n1

Eu,it
−sEi,j+m1t

−v−1Ej+m1,ut
s+v+1

− ℏ2

2

∑
s,v≥0

−1∑
u=−n1

Eu,j+m1t
−s−v−1Ej+m1,it

s+1Ei,ut
v, (B.37)

[Ai,2, Rj+m1 ] = 0, (B.38)

[Ai,3, Rj+m1 ] = 0, (B.39)

[Ai,4, Rj+m1 ] = −ℏ2

2

∑
s,v≥0

−1∑
u=−n1

Ei,j+m1t
−s−1Eu,it

s+1−vEj+m1,ut
v

− ℏ2

2

∑
s,v≥0

−1∑
u=−n1

Ei,j+m1t
−s−v−1Ej+m1,ut

sEu,it
v+1

+
ℏ2

2

∑
s,v≥0

−1∑
u=−n1

Ei,ut
−v−1Eu,j+m1t

−sEj+m1,it
v+s+1

+
ℏ2

2

∑
s,v≥0

−1∑
u=−n1

Eu,j+m1t
−sEi,ut

s−v−1Ej+m1,it
v+1. (B.40)

By the definition of Ai, we can rewrite [Ai, Sj+m1 ] as

[Ai,1, Sj+m1 ]− [Ai,2, Sj+m1 ] + [Ai,3, Sj+m1 ]− [Ai,4, Sj+m1 ].

By a direct computation, we obtain

[Ai,1, Sj+m1 ] = −ℏ2

2

∑
s,v≥0

i∑
u=1

Eu,it
−v−s−1Ei,j+m1t

vEj+m1,ut
s+1
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+
ℏ2

2

∑
s,v≥0

m1+m2∑
z=m1+1

Ez,j+m1t
−v−s−1Ei,zt

vEj+m1,it
s+1

+
ℏ2

2

∑
s,v≥0

−1∑
z=−n1

Ez,j+m1t
−v−s−1Ei,zt

vEj+m1,it
s+1

+
ℏ2

2

∑
s,v≥0

−n1−1∑
z=−n1−n2

Ez,j+m1t
−v−s−1Ei,zt

vEj+m1,it
s+1

+
ℏ2

2

∑
s,v≥0

i∑
u=1

Eu,j+m1t
−s−1Ej+m1,it

−vEi,ut
v+s+1

− ℏ2

2

∑
s,v≥0

m1+m2∑
z=m1+1

Ei,j+m1t
−s−1Ez,it

−vEj+m1,zt
v+s+1

− ℏ2

2

∑
s,v≥0

−1∑
z=−n1

Ei,j+m1t
−s−1Ez,it

−vEj+m1,zt
v+s+1

− ℏ2

2

∑
s,v≥0

−n1−1∑
z=−n1−n2

Ei,j+m1t
−s−1Ez,it

−vEj+m1,zt
v+s+1, (B.41)

[Ai,2, Sj+m1 ] =
ℏ2

2

∑
s,v≥0
i>z

Ei,zt
−s−v−1Ej+m1,it

s+1Ez,j+m1t
v

− ℏ2

2

∑
s,v≥0
i>z

Ej+m1,zt
−vEi,j+m1t

−s−1Ez,it
s+v+1, (B.42)

[Ai,3, Sj+m1 ] =
ℏ2

2

∑
s,v≥0

i−1∑
u=1

Ez,it
−s−v−1Ei,j+m1t

vEj+m1,ut
s+1

− ℏ2

2

∑
s,v≥0

i−1∑
u=1

Eu,j+m1t
−s−1Ej+m1,it

−vEi,ut
v+s+1, (B.43)

[Ai,4, Sj+m1 ] =
ℏ2

2

∑
s,v≥0
i<z

(−1)p(z)Ei,zt
−v−s−1Ez,j+m1t

vEj+m1,it
s+1

+
ℏ2

2

∑
s,v≥0

m1+m2∑
z=m1+1

(−1)p(z)Ei,zt
−v−1Ez,j+m1t

−s−1Ej+m1,it
s+v+2

+
ℏ2

2

∑
s,v≥0

−1∑
z=−n1

(−1)p(z)Ei,zt
−v−1Ez,j+m1t

−s−1Ej+m1,it
s+v+2

+
ℏ2

2

∑
s,v≥0

m1∑
z=1

(−1)p(z)Ei,zt
−v−1Ez,j+m1t

−s−1Ej+m1,it
s+v+2

+
ℏ2

2

∑
s,v≥0

−n1−1∑
z=−n1−n2

(−1)p(z)Ei,zt
−v−1Ez,j+m1t

−s−1Ej+m1,it
s+v+2

− ℏ2

2

∑
s,v≥0

m1∑
u=1

Ei,j+m1t
−v−1Eu,it

−sEj+m1,ut
s+v+1
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+
ℏ2

2

∑
s,v≥0

m1∑
u=1

Eu,j+m1t
−s−v−1Ei,ut

sEj+m1,it
v+1

− ℏ2

2

∑
s,v≥0

−1∑
z=−n1

(−1)p(z)Ei,j+m1t
−s−v−2Ej+m1,zt

s+1Ez,it
v+1

− ℏ2

2

∑
s,v≥0

m1+m2∑
z=m1+1

(−1)p(z)Ei,j+m1t
−s−v−2Ej+m1,zt

s+1Ez,it
v+1

− ℏ2

2

∑
s,v≥0

m1∑
z=1

(−1)p(z)Ei,j+m1t
−s−v−2Ej+m1,zt

s+1Ez,it
v+1

− ℏ2

2

∑
s,v≥0

−n1−1∑
z=−n1−n2

(−1)p(z)Ei,j+m1t
−s−v−2Ej+m1,zt

s+1Ez,it
v+1

− ℏ2

2

∑
s,v≥0
i<z

(−1)p(z)Ei,j+m1t
−s−1Ej+m1,zt

−vEz,it
s+v+1. (B.44)

Since

(B.41)1 + (B.43)1 = −ℏ2

2

∑
s,v≥0

Ei,it
−s−v−1Ei,j+m1t

vEj+m1,it
s+1,

(B.41)4 + (B.43)2 =
ℏ2

2

∑
s,v≥0

Ei,j+m1t
−s−1Ej+m1,it

−vEi,it
s+v+1,

− (B.42)1 − (B.44)1 = −ℏ2

2

∑
s,v≥0
z ̸=i

(−1)p(z)Ei,zt
−v−s−1Ez,j+m1t

vEj+m1,it
s+1,

− (B.42)2 − (B.44)12 =
ℏ2

2

∑
s,v≥0
z ̸=i

(−1)p(z)Ei,j+m1t
−s−1Ej+m1,zt

−vEz,it
s+v+1,

we obtain

(B.41)1 + (B.43)1 + (B.41)4 + (B.43)2 − (B.42)1 − (B.44)1 − (B.42)2 − (B.44)12

= −ℏ2

2

∑
s,v≥0

m1+m2∑
z=m1+1

(−1)p(z)Ei,zt
−v−s−1Ez,j+m1t

vEj+m1,it
s+1

−ℏ2

2

∑
s,v≥0

−n1−1∑
z=−n1−n2

(−1)p(z)Ei,zt
−v−s−1Ez,j+m1t

vEj+m1,it
s+1

−ℏ2

2

∑
s,v≥0

−1∑
z=−n1

(−1)p(z)Ei,zt
−v−s−1Ez,j+m1t

vEj+m1,it
s+1

−ℏ2

2

∑
s,v≥0

m1∑
z=1

(−1)p(z)Ei,zt
−v−s−1Ez,j+m1t

vEj+m1,it
s+1

+
ℏ2

2

∑
s,v≥0

m1+m2∑
z=m1+1

(−1)p(z)Ei,j+m1t
−s−1Ej+m1,zt

−vEz,it
s+v+1

+
ℏ2

2

∑
s,v≥0

−n1−1∑
z=−n1−n2

(−1)p(z)Ei,j+m1t
−s−1Ej+m1,zt

−vEz,it
s+v+1
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+
ℏ2

2

∑
s,v≥0

−1∑
z=−n1

(−1)p(z)Ei,j+m1t
−s−1Ej+m1,zt

−vEz,it
s+v+1

+
ℏ2

2

∑
s,v≥0

m1∑
z=1

(−1)p(z)Ei,j+m1t
−s−1Ej+m1,zt

−vEz,it
s+v+1. (B.45)

By a direct computation, we obtain

(B.22)1 − (B.26)3 + (B.37)1 − (B.40)1 − (B.40)2 + (B.41)7 − (B.44)8

=
ℏ2

2

∑
v≥0

−1∑
u=−n1

Ei,j+m1t
−v−1Ej+m1,uEu,it

v+1,

(B.22)2 − (B.26)8 + (B.37)2 − (B.40)3 − (B.40)4 + (B.41)3 − (B.44)3

= −ℏ2

2

∑
v≥0

−1∑
u=−n1

Ei,ut
−v−1Eu,j+m1Ej+m1,it

v+1,

(B.23)2 − (B.28)2 − (B.44)6 − (B.44)9

= m1
ℏ2

2

∑
s,v≥0

m1∑
z=1

Ei,j+m1t
−s−v−2Ej+m1,it

s+v+2,

(B.23)3 − (B.28)5 − (B.44)4 − (B.44)7

= −m1
ℏ2

2

∑
s,v≥0

m1∑
z=1

Ei,j+m1t
−s−v−2Ej+m1,it

s+v+2,

(B.23)1 − (B.28)1 − (B.44)2 + (B.45)1 = 0,

(B.23)1 − (B.28)6 − (B.44)10 + (B.45)5 = 0,

−(B.24)1 − (B.26)7 + (B.29)2 + (B.31)2 + (B.34)1 + (B.36)−−(B.44)5 + (B.45)2 = 0,

−(B.24)2 − (B.26)1 + (B.29)4 + (B.31)1 + (B.34)2 + (B.35)−−(B.44)11 + (B.45)6 = 0,

(B.27)1 + (B.45)4 = 0, (B.27)2 + (B.45)8 = 0,

−(B.26)2 + (B.41)8 = 0, −(B.26)6 + (B.41)4 = 0,

−(B.30)1 + (B.41)6 =
ℏ2

2

∑
s,v≥0

m1+m2∑
u=m1+1

Eu,j+m1t
−s−v−1Ej+m1,ut

v+s+1,

−(B.30)2 + (B.41)2 = −ℏ2

2

∑
s,v≥0

m1+m2∑
z=m1+1

Ez,j+m1t
−s−v−1Ej+m1,zt

s+v+1,

(B.29)3 + (B.45)3 = −ℏ2

2

∑
s≥0

−1∑
z=−n1

(s+ 1)(−1)p(z)Ei,zt
−s−1Ez,it

s+1

+
ℏ2

2

∑
v≥0

−1∑
u=−n1

Ei,ut
−v−1Eu,j+m1Ej+m1,it

v+1,

−(B.29)5 + (B.45)7 =
ℏ2

2

∑
s≥0

−1∑
z=−n1

(s+ 1)(−1)p(z)Ei,zt
−s−1Ez,it

s+1

− ℏ2

2

∑
v≥0

−1∑
u=−n1

Ei,j+m1t
−v−1Ej+m1,uEu,it

v+1.

By adding (B.3)–(B.3), we obtain (B.21). This completes the proof of Theorem 3.2.
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C Proof of Theorem 8.2

This aapendix is devoted to the proof of Theorem 8.2. We define a grading on b by setting
deg(ei,j) = col(j)− col(i). Let us set

f ra,b =
∑

col(i)=col(j)+r
row(i)=a, row(j)=b

ei,j .

For a ∈ Iu1|q1 , we set 1 ≤ sa ≤ l as a ∈ Iu1−usa |q1−qsa
\ Iu1−usa−1|q1−qsa−1

. Since

A =
{
f ra,b | 0 ≤ r ≤ l − 1, sa ≤ sb

}
∪
{
f ra,b | sa − sb ≤ r ≤ l − 1, sa > sb

}
forms a basis of gl(M |N)f = {g ∈ gl(M |N)|[f, g] = 0}, it is enough to show that W

(1)
a,b and W

(2)
a,b

generate all terms of A by [16, Theorem 4.1]. Here after, we set f ra,b = 0 if r ≥ l or sa > sb,
r < sa − sb

We show thatW
(1)
a,b andW

(2)
a,b generate these terms by two claims, that is, Claims C.1 and C.2.

In Claim C.1 below, we show that W
(1)
a,b and W

(2)
a,b generate the term whose form is

f ri,j [−1] + higher terms for i ̸= j.

In Claim C.2 below, we prove that W
(1)
a,b and W

(2)
a,b generate the term whose form is

f ri,i[−1] + higher terms.

Claim C.1.

(1) The elements W
(1)
a,b and W

(2)
a,b generate the term whose form is

f ri,j [−1] + higher terms if i ̸= j.

(2) The elements W
(1)
a,b and W

(2)
a,b generate the term whose form is

(−1)p(i)f ri,i[−1]− (−1)p(i+1)f ri+1,i+1[−1] + higher terms.

Proof. By a direct computation, the following equation holds:(
fxj,i[−1]

)
(0)
fwu,v[−1] = δi,uf

w+x
j,v [−1]− δj,v(−1)p(ei,j)p(eu,v)fw+x

u,i [−1] (C.1)

if fxj,i ̸= 0 and fwu,v ̸= 0. Items (1) and (2) follow from (C.1). We only show item (1). Item (2)
can be proven by the same way as [26, Claim A.1.4]. The element W

(2)
a,b has the form such that

f1a,b[−1] + degree 0 terms. In the case that sa ≤ sb, by (C.1), we obtain((
W (2)

a,a

)
(0)

)r
W

(1)
a,b =

(
f1a,a[−1])(0)

)r
W

(1)
a,b + higher terms = f ra,b + higher terms.

In the case that sa = sb + 1, by (C.1), we obtain((
W (2)

a,a

)
(0)

)r
W

(2)
a,b =

(
f1a,a[−1])(0)

)r
f2a,b + higher terms = f r+1

a,b + higher terms.

Thus, it is enough to show the case that sa > sb + 1.
In the case sa > sb + 1, we set w0 as a and take wu satisfying that swu = sa − u for

1 ≤ u ≤ sa − sb − 1. Then, by (C.1), we have

sa−sb−1∏
u=1

((
f1wu−1,wu

[−1]
)
(0)

)
f r−sa+sb+1
wsa−sb−1,b

= f ra,b.

Thus, we have proved (1). ■
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Claim C.2. The elementsW
(1)
i,j andW

(2)
i,j generate the term whose form is f ri,i[−1]+higher terms

for all 1 ≤ r ≤ l − 1.

Proof. Suppose that f rj,j [−1] + higher terms has been generated if aj ≤ x− 1. If ai = x, let us
take y satisfying ay = x− 1. Then, by (C.1), we have(

f ri,k[−1]
)
(0)
f0k,i[−1] = f ri,i[−1]− (−1)p(ei,k)f rk,k[−1]

for 1 ≤ r ≤ x − 1. By the induction hypothesis, (−1)p(ei,k)f rk,k[−1] + higher terms is gener-
ated. Thus, W

(1)
a,b and W

(2)
a,b generate the term whose form is f ri,i[−1] + higher terms. ■

Since we complete the proof of Claims C.1 and C.2, we have proved Theorem 8.2.
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