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Abstract. In the previous paper, we constructed two kinds of edge contractions for the
affine super Yangian and a homomorphism from the affine super Yangian to the universal
enveloping algebra of a W-superalgebra of type A. In this article, we show that these two
edge contractions commute with each other. As an application, we give a homomorphism
from the affine super Yangian to some centralizer algebras of the universal enveloping algebra
of W-superalgebras of type A. Using the edge contraction, we also show the compatibility of
the coproduct for the affine super Yangian with the parabolic induction for a W-superalgebra
of type A in some special cases.
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1 Introduction

The Yangian Y;(g) associated with a finite dimensional simple Lie algebra g was introduced by
Drinfeld [5, 6]. The Yangian Y;(g) is a quantum group which is a deformation of the current
algebra g ® C[z]. The Yangian of type A has several presentations: the RTT presentation, the
current presentation, the parabolic presentation and so on. By using the current presentation,
we can extend the definition of the Yangian Y;(g) to a symmetrizable Kac-Moody Lie algebra g.
Especially, in the case that g is of affine type, Guay—Nakajima—Wendlandt [13] defined the
coproduct for the affine Yangian.

One of the difference between finite Yangians of type A and affine Yangians of type A is
the existence of the RTT presentation and the parabolic presentation (see [3]). By using these
presentations, two embeddings were constructed for the finite Yangian:

Ul Y(gin) = Y(glm+n)),  Wi: ¥(gl(m)) - Y(gl(m +n)),

where Y (gl(n)) is the Yangian associated with gl(n). By using \IJ{ and \I’%c, Olshanskii [22] gave
a homomorphism from the finite Yangian Y (gl(m)) to the centralizer algebra of U(gl(m + n))
and U(gl(n)). Moreover, Y (gl(m)) can be embedded into the projective limit of this centralizer
algebra. In [29], we gave the affine version of \I/{ and \Ifg and constructed a homomorphism from
the affine Yangian associated with faA[(m) to the centralizer algebra of U(gA[(m +n)) and U(gA[(n))

In super setting, Nazarov [21] introduced the Yangian associated with gl(m|n) by using
the RTT presentation and Stukopin [24] defined the Yangian of sl(m|n) by using the cur-
rent presentation. Peng [23] gave a parabolic presentation of the super Yangian associated
with gl(m|n). The author [28] defined the affine super Yangian associated with sl(m|n) as
a quantum group.
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In [31], we gave two homomorphisms called the edge contractions for the affine super Yangian:

o~

Uy th(ﬁ[(mﬂ?h ) — th( [(my + ma|nq +n2))

S5
Uy Yﬁ,a-i-(ml—nl (; m2|n2 ) — Yha(sl m1 + mQ\nl + TLQ))

where 17;175 (;[(ml + ma|ni + ng)) is the standard degreewise completion of Y}, . (;[(ml + ma|ny

+ 712)) .
The main theorem of this article is the following.

Theorem 1.1. The images of V1 and Vo commute with each other.

By Theorem 1.1, we obtain a homomorphism
U ® Uy }/h,e (ﬁA[(m1|n1)) X Yh75+(m1_n1)ﬁ,(f/x\[(m2|n2)) — }7&75 (E;A[(ml + m2|n1 + n2))

The quantum toroidal algebra often has the same result as the affine Yangian. For example, the
evaluation map for the quantum toroidal algebra was given by Miki [19] in the non-super setting
and by Bezzera—Muhkin [2] in the super setting. The non-super version of Theorem 1.1 was
given for the quantum toroidal algebra by Feigin-Jimbo-Miwa—Muhkin [8], which corresponds
to the author’s work [29]. In the quantum toroidal setting, the proof was given by using the
relations of the current presentation. Unfortunately, the corresponding relations are not given
in the affine Yangian setting. Thus, we prove Theorem 1.1 by using the finite presentation.

As an application of Theorem 1.1, we can give a relationship between the affine super Yangian
and a centralizer algebra of U (é\[(m[n)) For an associative superalgebra A and its subalgebra B,
we set

C(A,B) ={x € A|[z,y] = Ofor y € B}.
The affine super Yangian has a surjective homomorphism called the evaluation map [27, 28]:

evil": Yy (sl(mln)) — U (gl(m|n)).

m1+m2|n1+n2 and Uy,

By combining ev, we obtain a homomorphism

m1+m2|n1+n2 .
ev fie O\IJQ :

Yh,s+(m17n1)h(~;‘\[(m2|n2)) — C(U(é\[(ml + m2|711 + nQ)), U(é\[(mﬂm)))

Similarly to finite setting, we expect that the affine super Yangian can be embedded into the
projective limit of the centralizer algebra C(U(gA[(/T\nl + malni + ng)), U(gA[(Qz1|n1))) through
this homomorphism. We also conjecture that C (U (gl(m1 + ma|n1 + n2)), U (gl(ma|n1))) is iso-
morphic to the tensor product of the center of U (gl(m1|n1)) and the image of evh matmamitng oy,

The similar result holds for WW-superalgebras of type A. A W-superalgebra W¥(g, f) is
a vertex superalgebra associated with a finite dimensional reductive Lie superalgebra g, an even
nilpotent element f and a complex number k. Let us set

!
M:Zui, up > up > -0 2> up 2> upq =0,

N=> g @>@> >2q>qq1=0

=1
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and assume that u; + ¢ # 0 and M # N. Let us take f € gl(M|N) = @iijIM\N CL;j as
a nilpotent element of type (1“1_“2|q1_‘12, Qu2—usla2—qs ,l“l_“l+1|ql_ql+1). In [31], the author
has given a homomorphism

Dy }/%,,e(g[(us - uS+1‘Q8 - QS+1)) - U(Wk(g[(M|N)v f))’

where U (WF¥(gl(M|N), f)) is the universal enveloping algebra of W¥(gl(M|N), f). By Theo-
rem 1.1, we find that {Us} commute with each other. In the case that uy =ug =---=u;=m
and q; = qo = --- = q; = n, we call WF(gl(M|N), f) the rectangular W-superalgebra of type A
and denote it by WF(gl(ml|nl), (lm‘”)). In the rectangular case, we [26] showed that ®; is sur-
jective. In rectangular setting, there exists a natural embedding from WHk+m2—n2 (g[(2m1\2n1),
(2m1|"1)) to Wk (g[(2m1 + 2ms|2ny + 2ns), (2m1+m2|"1+”2)). By Theorem 1.1, we obtain a ho-
momorphism

By 0Wa: Vi (mynoyn(sl(malna)) — CUWL),UW2)).
where

Wi = WF(gl(2my + 2ma|2n1 + 2ny), (2m1+m2|m+n2))’
Wy = WHEm2=12 (g1(2m |2m), (2717

As for non-rectangular cases, if u1 > ug, ¢1 > g2 (resp. u; = ug > us, q1 = q2 > q3), the
image of ®1 0 W (resp. 10 W¥y) coincides with U(g[(u1 — ug|q1 — q2)) (resp. the rectangular W-
algebra associated with gl(2u; — 2us|2g1 — 2¢3) and a nilpotent element of type (2“1*“3“’1*‘13)).
Then, V¥, induces a homomorphism from the affine super Yangian to the centralizer alge-
bra of Z/I(Wk(g[(M|N)), f) and U(g[(u1 — ualqr — qg)) (resp. Z/I(Wk(g[(Q(ul —u3)|2(q1 — q3)),
(2m—u3|q1—qs)))>'

We expect that this result can be applicable to the generalization of the Gaiotto—Rapcak’s
triality. Gaiotto and Rapcak [11] introduced a kind of vertex algebras called Y-algebras and
conjectured a triality of the isomorphism of Y-algebras. Let fy,,, € sl(m + n) be a nilpotent
element of type (nl, 1m). It is known that some kinds of Y-algebras can be realized as a coset
of the pair of W¥(sl(m + n), fu.m) and VF~™=1(gl(m)) up to Heisenberg algebras. In this case,
Creutzig-Linshaw [4] have proved the triality conjecture. This result is the generalization of
the Feigin—Frenkel duality [7] and the coset realization of principal W-algebra. The Y-algebras
can be interpreted as a truncation of Wi .c-algebra [10], whose universal enveloping algebra is
isomorphic to the affine Yangian of gl(1) up to suitable completions (see [1, 18, 25]).

For a vertex algebra A and its vertex subalgebra B, let us set the coset vertex algebra of
the pair A and B Com(4,B) = {a € A | bya = 0 forr > 0,b € B}. The homomorphism
®; 0 ¥y induces the one from the affine super Yangian tha+(m1_nl)ﬁ(sl(m2|n2)) to the universal
enveloping algebra of Com(I/Vl,l/V’C (5[(2m1|2n1), (2m1|”1))). We expect that this homomor-
phism becomes surjective and induces the isomorphism

Com (W3, Ws) = Com(Ws, W),
where

W3 = WF (gl(2my + 2ms|2n1 + 2n3), (2m1+m3|”1+”3))’

Wy = WEHma=n3 (s[(2m |20y ), (2171)),

W5 = Wk (g[(2m2 + 2mgs|2n2 + 2n3), (2m2+m3|nz+n3))’

We = WHETM3=n3 (5[(2my|2n,), (2m2I2)).

These are the generalizations of the Gaiotto—Rapcak’s triality.
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For non-rectangular cases, we also expect that similar isomorphisms will hold. In order to
consider the non-rectangular setting, we need to construct a relationship between the shifted
affine super Yangian and a W-superalgebra of type A. In the finite setting, Peng [23] wrote
down a finite W-superalgebra of type A as a quotient algebra of the shifted super Yangian by
using the parabolic presentation. Similarly to [23], it is conjectured that there exists a surjective
homomorphism from the shifted affine super Yangian to the universal enveloping algebra of
a W-superalgebra of type A if we change the definition of the shifted affine super Yangian
properly. The image of W1 ® WUy corresponds to the Levi subalgebra of the finite super Yangian
of type A, which is defined by the parabolic presentation. We expect that W1 ® Wy will lead to
a new definition of the shifted affine super Yangian.

In Sections 7 and 8, we construct the parabolic induction for a W-superalgebra in the case
that uy > ug > -+ >y, q1 > g2 > --- > ¢ and show that the coproduct for the affine super
Yangian is compatible with the parabolic induction via ®; in this case. In order to show the
compatibility, by using the edge contraction ®,, we need to extend the affine super Yangian.
We expect that this extended affine super Yangian will be connected the new definition of the
shifted affine super Yangian.

2 Affine super Yangian
Let us take integers m,n > 2 and m +n > 5. We set
Lp ={1,2,...,m,—1,-2,...,—n}
and define the parity on I,,,, by
. 0 ifi>0,
pli) = {1 if i < 0.

Sometimes, we identify I,,,, with Z/(m+n)Z by corresponding —i € I,;,),, to m+i € Z/(m+n)Z
for 1 <i < n. We set two matrices (a;;); jcz/(m+n)z a0d (i ;)i jez/(mn)z 8

(DO + (- if i =, e
ai j ifj=14i-—1,

(=1 if j=i+1, B o
az,j B _<_1)p(l) Ifj = — 17 bz’] - _aivj lf] =1+ 17
. 0 otherwise.
0 otherwise,

Definition 2.1 ([28, Definition 3.1]). Let £1,e2 € C. The affine super Yangian Y, ., (;[(m]n))
is the associative superalgebra over C generated by

{ o iyr\iEIm‘n:Z/(ern)Z,r:O,l}
subject to the following defining relations:
[HiraHj s] = 07
[Xz O’XJ,O] 57]Hl 05
[X117 ]0]_513H11_[X107X ]
[ 2’07 ] :l:azvj X_]:tf"
[ 27"+17 ] [HzryX;ts_A,_l] :iaij€1+€2{Hzr7Xi}_b' L 52 [HzraXi]
(X0 X5] = [X0 X5 ] = s =152 { X XG5} — by =52 X0, XL,

2, <1 j,s+1 @7

zr—l—l’
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1—a; ;
Z H ad ZTU() X]:l,:s) :0 lfl#.ﬁ
o510, =1 ’
(X5, XL =0 if p(i) # p(i + 1),
[X5y,, X0), (X X )] =0 if p(i) # p(i + 1),

where the generators X; i

are odd if p(i) # p(i + 1), all other generators are even, S; is the

symmetric group of order land {X,Y} = XY +YX.

In this article, we use the finite presentation of the affine super Yangian given in [26, Propo-

sition 2.23].

Theorem 2.2 (|26, Proposition 2.23]). Let us set h = €1 + €2, € = —(m — n)e;y.

The affine

super Yangian Yy ¢ (a(m\n)) is the associative superalgebra over C generated by

{ i i,r\ie]m‘n:Z/(m—Fn)Z,r:O,l}

subject to the following defining relations:

[Hw“a Hjﬁ] =0, (2-1)
[Xi,Ong o] = diiHio, (2.2)
[X;,Fl’Xj 0] 6 H [Xz 07X ] (23)
[Hio, X5,] = +a; X]ir, (2.4)
[Hin, X)) = +ai; X if (i,5) # (0,m +n — 1), (m +n — 1,0), (2.5)
~ h
[Ho,1s Xy n10) = (Xi+n 11+ <5 + §(m - n)h) an;+n—1,o>a (2.6)
~ h
[Hmn-1,1,X50) = i(X&l - (e +5(m - n)h> X§0>, (2.7)
h
[Xz‘j,tlejj,Eo] [Xzi()in] iaing{XvaXfo}
if(i,j);é(O,m+n—1),(m+n—1,0), (28)
[X()il’ X$+n 1 0] [X(fm Xi‘i’n 1 1]
h
=+5 {XSEOv min_10) T <5 + 5(m )h) [ngo’ X1 ol (2.9)
( dXzio)H‘ai’j' (Xj,O) =0 if i # 7, (2.10)
(X0, X =0 if p(i) # p(i + 1), (2.11)
[[Xzivai] [Xz:tO’XzﬂfHO” =0 if p(i) # p(i + 1), (2.12)

where the genemtors X”

are odd if p(i) # p(i + 1), all other generators are even and we set

Hiy = H;y — BHZ) and {X,Y} = XY +YX.

We note that we set € = —(m — n)ey in [26].
Let us set an anti-automorphism

w: Yhs(;[(m]n)) — Y. (;[(m]n))
given by

(1)XZ—T7

W(Hz r) = Hi,rv

)

w(X;,) = (=17
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Let us set a Lie superalgebra
é\[(m|n) = gl(m|n) ® C[til] & CcahpCz
with the commutator relations:

[Eijt", By yt] = 00 Bt — (—1)PEPEen); B gt
+ (5r+s,o7“(—1)p(i)5i,y5j,xc + 5r+s,o7“(—1)p(i)+p(z)5i,j5x,y27
e, gl(m|n)] = [z, gl(m|n)] =0,

where Ej j is a matrix unit of gl(m|n) whose (u,v) component is ;,,d;, and the parity p(E; ;) =
p(i)+p(j). We also take a subalgebra sl(m|n) = sl(m|n) ® C [t£1] @ Cc. Let us set the Chevalley
generators of 5[(m|n) as

b JED T B — Bry e if =0,
(—)POE;; — (~1)PUHVE 0y if1<i<m+n—1,

N Epynat ifi=0,
r, = .
Ei,i+1 if1§z§m+n—1,

_ ety it i i =0,
C (=1)PO B if1<i<m+n-—1.

According,A to Definition 2.2, there exists a homomorphism from the universal enveloping al-
gebra U(sA[(m|n)) to Yy - (sl(m|n)) given by h; — H;o and zE Xio. We denote the image
of z € U(sl(m|n)) via this homomorphism by z. Since [xzi, Ji] = 0 holds for |i — j| > 1, we
obtain [XZ.iO,X;EO] = 0. By (2.5)—(2.7) and the assumption that m +n > 5, we have

(X5, X5 =0 iffi—j|> 1 (2.13)

1,17

Let us set a degree on Y}, . (;[(m\n)) by

N +1 ifi=0,

deg(Hir) =0, deg(X;) = {0 if i 0.
In order to define the edge contraction for the affine super Yangian, we need to use the stan-
dard degreewise completion defined in [17]. For a Z-graded algebra A = @, ., A4, we can set
a topology on A as the linear topology defined by the sequence of {®dez ( > Ad,rA,,) }N. This
makes A a compatible degreewise topological algebra. We take the corfésffonding degreewise
completion of A and call it the standard degreewise completion of A.

We denote the standard degreewise completion of Yj 8(5[(m\n)) by ?he(g[(mm)) Using the
same degree as Yy E(5[(m|n)) we define the standard degreewise completion of ®2Y 6(5((m|n))
and denote it by Y7, . (5[(m]n))®Yh c (5[(m|n))

Theorem 2.3 (|28, Theorem 4.3]). There exists an algebra homomorphism
A Yh,e (;((m|n)) — Yh,s (g[(m’n))éyh,s (;[(m|n))
determined by

AX) =X®14+10X;,  for0<j<m+n—1,
AX) =XH0l+10X+B;  for1<i<m+n-—1,
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where we set B; as

Bi=hY > (-)P™E;t° @ Eyit’

s>0 u=1
_ (i1)p(u)+p(Ei,u)p(Ei+1,u)Eu7i+1t—s—1 Q Ei,uts+1)
m—4n
R 3 ()P Bt @ Byt
s>0 u=1+1

_ (_1)p(u)+p(Ei,u)p(Ei+l,u)Eu,i+1t_5 ® Ei,uts)~
Since A satisfies the coassociativity, A can be considered as the coproduct for the affine super
Yangian.
3 Edge contractions for the affine super Yangian

In [31], we gave two edge contractions for the affine super Yangian. In the following theorem,
we do not identify I,,,, with Z/(m + n)Z.

Theorem 3.1 ([31, Sections 6-9 and Theorem 11.1}).

1. For mo,ny > 0, my,n1 > 2 and my +ny > 5, there exists a homomorphism

\1171711|n1,m1+m2|n1+n2: Yh,e(;[(mllnl)) N %’76(;[(7”1 +m2|n1 +n2))

given by
E_m’lt ifi = —Nni,
\I]m1|n1,m1+m2|n1+n2 (X+) o E@',i+1 Zf 1<i<mg — 17
1 ,0) — p .
! En—1 ifi=m,
Eiiov if —m+1<i< -1,
—E17_n1t_1 if i = nq,
\I,m1|n1,m1+m2|n1+n2 (X-_ ) _ Ei—f—l,i Z'f 1<i<m;—1,
! "0 E_im, if i =my,
—FEi 1, if —mp+1<i<-1
and

\Ijgn1|m,m1+m2|n1+n2 (IN{Ll) _ ﬁl,l P+ Pt Qr— Qo

mi|ni,mi+malni+ne v+ \ _ v+ + +
Uy (X1,1) =X, - P +Q7,

where

mi1+ma

Pz:hz Z Bt B,

v>0 z=m1+1

Qi = hz Z Ei,zt_v_lEz,itv+17

m1+m2

Pf=h), > Bt " 'Beint",

v>0 z=m1+1
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—n1—1

Qf=h)_ Y, Bt "Bttt

v>0 z=—n1—"n2
ffhﬁ (;[(ml + malny + ng)) is the standard degreewise completion of Yy, ¢ (;K(ml + ma|ny +
TLQ)) .

2. For mi,n1 > 0, mag,ne > 2 and mo + no > 5, there exists a homomorphism

\Ijgi2ln2,m1+m2|n1+n2 . Yh,e+(m1—n1)h(f/’\[(m2|n2)) — ?h,a (;[(ml + m2]n1 + nz))

determined by

E—nl—ng,m1+1t ZfZ = —ng,
\Ijm2|n2,m1+m2|n1+n2 (X+) o Em1+i,m1+i+1 Zf 1<i<mg— 17
2 i0) = .
Em1+m2,—n1—1 Zfl = ma,

E—n1+i,—n1+i—1 Zf —ng+1<i< _17

1 g
_Eml—i—l,—nl—nzt ZfZ = —na,
\Ijm2|n2,m1+m2|n1+n2 (Xf ) _ Em1+i+1,m1+i if 1 <i<mg—1,
2 i0) = .
Efnlfl,m1+m2 ZfZ = ma,

—E it ngri if —ne+1 <0< -1,
and
geinzmtmalmt e (g f 4+ Ry — Ry + Sy — S,
\Ijgn2|n2,m1+m2|n1+n2 (Xil) _ Xf_—l—ml,l + Ri‘r 4 Sf_a
where

—1
Rl:hz Z Ez,i+m1t_v 'ierl,ztv,

v>0z=—n1

mi

—v—1 1

Si =h E E Ez,i+m1t v Ei—&-ml,zty—l— )
v>0 z=1

-1
Rf=h> " > E.iyirmt "Eipm, 2t

v>0z=—n1

mi
+ _ E § —v—1 +1
Si =h Ez,i+1+m1t v Ei+m1,ztv .
v>0 z=1

Similarly to [29, Theorem 4.2], we obtain the following theorem.

Theorem 3.2. The images of \Ilgnllm’mﬁmﬂnﬁm and \1172712‘712’ml+mz|nl+n2 commute with each

other.

4 Affine super Yangians and centralizer algebras of U(gA[(n))

Following [17], we consider a completion of U(g[(m\n))/U(gf;\[(m]n))(z — 1), which is a quotient
algebra of U (g[(m\n)) divided by the relation z — 1. We take the grading of

U(gl(m|n)) /U (gl(m|n))(z — 1)
as deg(Xt*) = s and deg(c) = 0. We denote by Z/l(é\[(mm)) the standard degreewise completion
of U(gl(m|n))/U(gl(m|n))(z — 1).
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Theorem 4.1 ([28, Theorem 5.1] and [27, Theorem 3.29])

(1) Leti be 3. (—1)P™ for1 <i<m+n—1. Suppose that i # 0 and c = 7. For a complex

u=1
number a, there exists an algebra homomorphism

vy : Vi (si(mln)) — U(gl(m|n))

uniquely determined by

| + . Em-i—n,lt ’Lf’L - 0,
evie (Xi) =4 L
E;i ifl<i<m+n-—1,

- {(—1)P<m+n>E1,m+nt—1 ifi =0,

min,a -
ev, . (X, )
he (Ko (~1)PD By ifl1<i<m+n-—1,

and

2 %

p (Xh) = (a - ;h> Eiit1+ hz Z(—l)p(")Ei,ufs witr1t’

evy .
s>0 u=1
m+n
+RY N (CD)PUE T T Byt fori £ 0.
5>0 u=i+1

(2) In the case that £ # 0, the image of the evaluation map is dense in U (gl(m|n))

Let us set ¢; as an embedding from U(gA[(m1|n1)) to U(gA[(ml + malny + ng)) by

Ei’jts — E@jts, cH—C
for i, j € I. For an associative superalgebra A and its subalgebra B, we also define the central-

izer algebra

C(A,B)={z € A|[z,B] = 0}.

Theorem 4.2.
£, The following relation holds:

(1) Let us assume that c = §.

mi|ni,a 77”01+m2|nl+7127 O\I,mllnl,m1+m2\n1+n2

110 th =evy ]
mi1+ma|ni+nz,a O\nglng,m1+m2|n1+n2

(2) In the case that ¢ = § and ¢ # 0, the image of ev,
is contained in C(Z/{( [(m1 + ma|ny + ng)) U(g[(mﬂnﬁ))

Proof. (1) Since the affine super Yangian Y}, . (5[(m1|n1)) is generated by {X; 0}

mi ‘TL] ,M1 +mg|n] “+no +

E‘Y‘\m

and
lG[ml Iny

—~

milni,a + m1+mg|n1+n2,
L1 9€vy ¢ (Xi,O) = Ve ©
mi+ma|ni+nz,a o

milni,a (4
L1 06Vy o (Xl,l) Vi

mi|ni,mi+ma|ni+ng +
U (X )
These relations follow from the definition of evh minsa g @mﬂnhmﬁm?lnﬁm

(2) By Theorem 3.2, the image of

mi+ma|ni+nz,a O\Ilm2|n2,m1+m2|n1+n2

evhs
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is commutative with the one of

mi+ma|ni+n mi|ni,mi+ma|ni+n
eﬁ; 2|n1 2,04 O\Ifll| 1,Mm1 2|n1 2'

By item (1) and Theorem 4.1 (2), the completion of the image of

evgl;+m2|n1+n2, 0\1171711 [n1,mi+ma|ni+na

coincides with ¢q (U(gA[(ml\nl))) Thus, the image of

mi+ma|ni+nz,a g malne,mi+malny+ns
ev h,e O\Il2

is contained in the centralizer algebra C(U (é\[(ml + malng + ng)),l/{(gl(mllnl))). [ |

5 W-superalgebras of type A

Let us set some notations of a vertex superalgebra. For a vertex superalgebra V', we denote
the generating field associated with v € V by v(z) = > v(s)z_s_l. We also denote the operator
product expansion (OPE) of V' by s€Z

) ~ 3 IO

s>0 (Z

for all u,v € V. We denote the vacuum vector (resp. the translation operator) by |0) (resp. 0).

We denote the universal affine vertex superalgebra associated with a finite dimensional Lie
superalgebra g and its inner product £ by V*(g). By the PBW theorem, we can identify V" (g)
with U(t_lg[t_l]). In order to simplify the notation, here after, we denote the generating
field (ut™')(z) as u(z) for u € g. By the definition of V*(g), the generating fields u(z) and v(z)
satisfy the OPE

for all u,v € g.
We take two positive integers and their partitions:

l

N=> a4 @>¢@>->q>0, (5.1)
=1

satisfying that M # N and vy + ¢ # 0. For 1 < i < M and —N < j < —1, we set
1 < col(i), col(j) <1, ur — Ueeisy < 1ow(i) < ug and —q1 < 1ow(j) < —q1 + qeol(j) satisfying

col(4 col(4) col(4
Z up <1< Zub, row (i Z Up + UL — Ucol(4)
Col(] col(j) col(])—l

Z @< —j < Z% row(§) =j+ Y. & — @+ deol(y)-

b=1
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The definition of col and row can be interpreted by using the Young diagram. For the partition
(uq,ug,...,u;) (resp. (q1,q2,-..,q)), we define Dy (resp. D) as the Young diagram in French
style corresponding to this partition. We enumerate boxes in Dy (resp. Dy) by 1,2,..., M
(resp. —1,—2,...,—N) down columns from left to right. Then, col(i) denotes the column in
which the number ¢ is located, while row(i) denotes the column number of the number i from
the top.
Let us set a Lie superalgebra gl(M|N) = €D, ;¢ Iniin Ce;; whose commutator relations are

determined by

[€i,js €a) = Bjaeiy — (DPIC0)g e,
where p(e; ;) = p(i) + p(j). We take a nilpotent element f € gl(M|N) as

f= 2 e

€Iy N

where the integer i € I are determined by col(z) = col(i) 4 1, row(z) = row(i).

Remark 5.1. Actually, if the nilpotent element has a good grading (see [14, Theorem 7.2)),
the discussion after here works well (see [30] and [31]). For the simplicity, we assume the
condition (5.1).

Similarly to 7, we set 1 € Inn as col(i) = col(i) — 1, row(i) = row(i). We also fix an inner
product of the Lie superalgebra gl(M|N) determined by

(ei,j|€x,y) = k(si,yéx’j(—l)p(i) + 5i’j5m’y(_1)p(i)+p(x)'
We set two Lie superalgebra

b= @ Ce; j, a=bd @ Ctbi g,

LIl M|N, i€l N,
col(i)>col(y) col(@)>col(y)

whose commutator relations are defined by

[ei,ja wx,y] = 5j,x¢i,y - 5i,y(_1)p(ei’j)(p(ew’y)+1)wx,]
[Wijs Y] = 050y — Oiy(—1) PN D@y )y,

where the parity of e; ; is p(i) + p(j) and the parity of v ; is p(i) + p(j) + 1. We also set an
inner product on b and a by

k(€ epq) = (€ijlepq), k(€igs Ypg) = K (i, Ppg) =0
We denote the universal affine vertex superalgebras associated with b and a by V*(b) and V" (a).
We also sometimes denote the elements e; ;7% € V*(b) C V*(a) and ¢; jt~° € V"(a) by e; j|—s]
and 1; j[—s] respectively and a(_1)b by ab. Let us define an odd differential dy: V"(b) — V"(a)
determined by

dol =0,

[do,0] =0,

do(ei5[-1]]) = Z (—nyrleealpenene, 1]y, (1]

7)>col(j)
- > (—1)PlenIPeridyy, ([ —1)e; [—1] + &(col (i)
col(j)<col(r)<col(t)
> col()(=1)"acoi(sy i [~2] + (1P [-1] = (=1)P D, 5[-1].

By using [15, Theorem 2.4], we can define the W-algebra W¥(gl(M|N), f) as follows.
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Definition 5.2. The W-algebra W¥(gl(M|N), f) is the vertex subalgebra of V*(b) defined by
WH(gU(MIN), f) = {y € V"(b) | do(y) = 0}.

In the case that w1 =ug = --- = uy, q1 = q2 = - - - = q, we call W¥(gl(M|N), f) the rectangular
W-superalgebra of type A and denote it by WF (g[(ml|nl), (lm|")).

We give one example. In the case | = 2, we can write f and dy as

Z Cxtur,ztur—uz T 2: €—z—q1,—2—q1+q2

1<z<ug 1<2<q2
and
do(ei5[—1]) = d(col(i) = 1)e; ;[—1] — d(col(i) = 2)e, [—1] if col(i) = col(j),
Ul —1
do(eiy[—1]) =Y (=1l OPO)e, S1-1)y,[—1] = Y (=1)POPDe, [~ 1] o [~1]
r=1 r=—q
u1tu2 !
= D (PO 1es, (1]
r=ui+1
—q1—1
=Y (N)COED Iy ey, (1]
r=—q1—q2
+ (=1)PDagyy j[-2] if col(d) = 2, col(j) =1,
where

N {i—l—uZ ifug —ue +1<i <y,

i—q if —q<i<-q+q¢-1,

 (i—uy Ffur+1<i<ui+u,
itq f —q—q@<i<-—-q-1

We define the set
Is={1,...,us,—1,...,—qs}.
We constructed two kinds of elements Wé}b),Wfb) € WF(gl(M|N), f) for a,b € I\ Isy1. Let

us set

as=k+ M — N —us + qs, Vo = Zas.
s=a-+1

and denote e; ; by egl)) if col(i) = col(j) = r, row(i) = a, row(j) = b.

Theorem 5.3 ([31, Theorem 10.22]). The following elements of @ ,<; V" (gl(gs))
(WO W abe I\ L1}
a, b » "WVab a, s s—1
are contained in pu(W*(gl(M|N), f)):

wi =3 e,

1<r<s
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2 r
Wy = > eij— D enyl=2
col(#)=col(j)+1 1<r<s

row(i)=a,row(j)=b

+ Z (_1)p(x)+p(ei,v)p(ez,j)e(fll)) [—1]elr2)[-1]

T, a,x
1<ri<re<s
T>U]—Us
+ Z (—1)P@)+pleas)ples) EcTzly)[ 1)er2)[—1]
1<r1<res<s 7
r<—q1+gs
_ Z (_1)p(x)+p(ea,z)p(ex,b)e(x”;lly)[_l]ea":%)[_1]
r12>T2

gs—q1<z<gr; —q1
row(i)=a,row(j)=b

_ Z (_1)p(r)+p(ea,z)p(ez,b)6(;11)) [—1]elr

b
r12>T2
Ul —ur; <zx<ul—us

In the rectangular case, we have computed the OPEs in [26, Section 4].
Corollary 5.4.

(1) Assume that uy < uz, q1 < q2. Then, we have an embedding

L2: WE(9[(2U1\2Q1>7 (21191)) — W* (gl(2u2]2g2), (27192)), Wi(,;-) > Wf?,

where/k\::k+uz—q2—u1+q1.
(2) Assume that up — ug,q1 — q2 > 0 and
w1(Eijs Ery) = 8iybj0(—1)" Doy + (=170 705,55,
Then, we can define an embedding
i Vgl — ualar — @2)) > WHOUMIN), ), Bigles] o Wi [-].
(3) Assume that uy = ua > us, q1 — q2 > 0. Then, we have an embedding

La: Wg(g[( 2(uy — U3)12(Q1 - q3)), (2u17u3|qliq3)) — Wk(QI(M|N)7 1),

zy’
where%:k:—l—M—N—Q(ul—Q1)+(U3—QS)~

Proof. (1) follows directly from [26, Section 4]. (2) follows from [26, Section 4] and the
definition of W(J) Since the form of W( ") e Wk (gl(2(u1 — us)|2(q1 — g3)), (2“1_“3|‘11_‘13)) and
W( ") e Wk(g[(M]N) f) are same, we obtaln (3). [

6 Affine super Yangians and W-superalgebras of type A

Let us recall the definition of the universal enveloping algebras of vertex superalgebras. For any
vertex superalgebra V', let L(V') be the Bouchard’s Lie algebra, that is,

L(V) =V&C[t,t~ ]/Im(@@ld—i—ld@i)
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where the commutation relation is given by

fut® o] = 3 (jf) O

r>0
for all u,v € V and a,b € Z.

Definition 6.1 (Frenkel-Zhu [9], Matsuo—Nagatomo—Tsuchiya [17]). We set U(V') as the quo-
tient algebra of the standard degreewise completion of the universal enveloping algebra of L(V)
by the completion of the two-sided ideal generated by

(u(a)v)tb _ Z <a> (_1)i(uta7ivtb+i _ (_1)10(U)p(v)(_1)avta+bfiuti)7
0yt~ —1,

where |0) is the identity vector of V. We call U (V') the universal enveloping algebra of V.

By the definition of the universal affine vertex algebra V*(g) associated with a finite dimen-
sional reductive Lie superalgebra g and the inner product x on g, U(V"(g)) is the standard
degreewise completion of the universal enveloping algebra of the affinization of g.

Let us set ks as an inner product on gl(us|gs) given by

Rs(€igs Cay) = (=1)/Dasdiydje + (~1)PIHPD6; 55,

By [12, Theorem 5.2] and [20, Theorem 14], there exists an embedding

e WHGUMIN), f) = @) V"™ (al(uslgs))-

1<s<1

This embedding is called the Miura map. Then, induced by the Miura map u, we obtain the
embedding

—

s UWHGUMINY, 1) = ). U(al(ualaa)).

1<a<li

where ®1SQSZU(9A[(ua]qQ)) is the standard degreewise completion of &), U(gA[(ua|qa)).
For 1 <a <1, we define e, = h(k+ M — N —u,+qg). In the case that us—usi1,qs — qs41 > 2
and ugs — s + ¢s — gs+1 > D, let us define the homomorphism

A*: Yvh,es (;[(Us - Us+1|Qs - QSJrl)) — ® Y;‘L,ea (;[(uaMa))
1<a<s

defined by

AS — <81:[1 (((\Pgaﬂ\uaﬂ,qa\ua ® 1) o A) ® id®(s—a—1)) o \I,?S—usﬂlqs—qsﬂ,uslqs) ® id®0—9) .

a=1

Theorem 6.2 ([31, Theorem 11.1]). There exists an algebra homomorphism

~

D Yh,es (5[(us - us+1|qs - q$+1)) — U(Wk(g((N)v f))

determined by
® evidi ot = fio @, (6.1)
1<a<s

Ug —Us

where T4 = Yo + Ga — qs —
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By (6.1), we find that

(1-(1) . .
VVM_us_s_z-ﬂ“_uﬁ_i_s_1 ifl1<i<ug—ugy —1,
if i = ug — Ugy1,

if _QS+QS+1+1 SZS_L

if i = —qs + qs+1,

+\ _ U1 —us+1,—q1+qs—1
(I)S(Xi,l)) = 1 °
U1 —us+i,—q1+qs+i—1
! t
—q1+qs+1,u1—us+1

(1-(1) . .
Wu1—us+i+1,u1—u5+i ifl1<i<ug—usy —1,

CI)S (X‘_O) = W({l)lJrqs*l,mfueri iti = Us — Ust1,
7, . .
—q1+qs+i—1u1 —us+i it —qs+ gs+1+1 <3< -1,

(1) —1 e
Wu1—us+1,—Q1+qs+1t if i = —qs + gs+1,

and
(2) (2)
_h(Wul —U+i4, u1—u1+i+t - Wul—ul+i++1,u1—ul+i++1t)
Z+ 1) 1)
2 h(WU1 ul+7,+ Ul — ul—i-u_ - ul—ul+i++1,i++1)
- YU, — Ui iy if1<ip <wu—1,
@l (Hi+,1) = 5 WE;) ZIJ;[:’:( 2) +
- ( uifl’ul + —q1+q— a 1)*Q1+Ql 1)
- Eh(Wt(n)m + W —ata—1,—q+q— 1)
+Uul —-U_4 ifi+:ul,
(2) (2)
h(W—mTzﬁ-iﬂ—qﬁqﬁLt - W—q1+qz+i7—17—q1+qz+i7—1t)
Uyt 1) 1)
+ 2 h(W—q1+qz+i—,—q1+qz+i_ B W—q1+qz+i_—17—q1+qz+i_—l)
+U;_ —Ui_ if —q+1<i_ <1,
- (2) (2) (1)
P, (Hi,,l) = h(W—qlh—qzt + W w1 —up+1ug —u+1 ) B 8lW—Ql,—qz
h
+ Z (— hayzy + eyon + §(qu —q)ow)
U1 —up —q
-y wil) - h w4 U_ — UL ifis = —q,
u=1
where
[e) (1)
Ui-&- = §(Wu1 —Up+ig,ul— ul+z+ +hzz u1 U +ig,u1— uH—u SWul —uptu,ul — ul+z+ts

s>0 u=1

§ : § : —s—1177(1) s+1
+h u1 Ui ,u1— uH—ut Wu1 —u+u,u1— ul—i-z_._t

520 u= z++1
_ 1 s—11r7(1) s+1
hz Z W ul— U1+2+,—f11+¢n+ut W—Q1+¢]z+uu1 ul+2+t ’
s>0u=—q
u
v, =" - rd j§l w tsw t°
i 2 —qataqti-,—qatqti- —Q1+QL+L,U1—U1+U ul—utu,—q1+q+i—
s>0u=1
—h Sw( ) ts
E : § : —q1+qz+zf —q1+qz+u —q1+qtu,—q+q+i—
s>0 u=i_
i——1

(1) s—1157(1) s+1
+hz Z W—q1+qz+i7,—q1+qz+ut W—q1+qz+u —qtqti- ¢ :
s>0 u=—q
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In the rectangular case, ®; coincides with the homomorphism ® in [26, Theorem 5.1]. Hereafter,
we denote the homomorphism ®; in the rectangular case by &%l

Theorem 6.3.
(1) Assume that my,ma,n1,ne > 0, mi +ny,mg +ng > 5 and

_ k+(m1+m2) — (n1 + n2)
N h

€l

Then, we obtain the relation:

mi|ni,mi+mz|ni+n
L9 0 (I)m1|n1 — (I)m1+m2|n1+n2 O\II]_ 1| 1,M1 2| 1 2'

(2) We also suppose the condition that ey # 0. Then, we have a homomorphism
;m1+ +ng |
(I)m1+m2\n1+ng o \Ilgl2|n2 m1+ma|ny nz.
Vi et (my—nyn (8U(maln2)) — CUWL),U(W2)),
where

Wy =Ww* (g1(2(m1 + m2),2(ny + ng))|(2m1+m2|nl+”2)),
W2 = Wk+m2_n2 (g[(Q(ml + m2)]2(n1 + ng)), (2m1\n1))_

Proof. (1) follows from the definition of ®™" and \I/T1|m’ml+m2‘n1+n2. By (1), Corollary 5.4 (1)
and [26, Theorem 5.1], the completion of the image of ¢3 o d™1In1 coincides with the universal
enveloping algebra U (Wk+m2=n2 (g((2(my + m2)|2(ny + n2)), (2™11™))). Then, by Theorem 3.2,
we obtain (2). [

Theorem 6.4.

(1) Assume that uy —ug,q1 —q2 >0, ug —u2 +q1 — q2 > 5 and 1 # 0. Then, we find that

Dy Yh,es (g\[(us - Us+1|‘]s - QS+1))
— C(UWH(UMIN), £)),U (gl(ur — uzlq1 — 2)))
for s # 1.

(2) Assume that uy = ug > u3,q1 = q2 > q3, ug —u3 +q1 —q3 > 5 and €3 # 0. Then, for
s # 1, we obtain

Dy Ve, (s1(us — usi1]gs — gsi1)) — CUW3),UWY)),
where

7%:k+M—N—2(U1—q1)+(u3—Q3),
Ws = WH@I(M|N), 1)),
Wi = WF(gl(2(ur — u3)|2(q1 — g3)), (207wl —a3))

where/k\::k—l—M—N—Q(ul—q1)+U3—Q3.
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Proof. (1) By Theorem 6.2, the image of ®; is contained in the completion of the tensor of
evgla‘q“ wilg u2|v2,u1|v1 and ®2<a<lU(g[(ua|qa)) By Theorem 4.1(2) and Corollary 5.4 (2),
the completlon of the 1ma%e of ¥y coincides with U (g[(u1 — uz|g1 — ¢2)) and is contained in
ev Zla‘ql’ b oWy uzlor—va,u1e . Thus, the image of ¥, is contained in the centralizer algebra.

( ) Similarly to (1), we can prove by using [26, Theorem 5.1] and Corollary 5.4 (3) instead of

Theorem 4.1 (2) and Corollary 5.4 (2). [

Remark 6.5. In Section 2, we give a definition of the affine super Yangian in the case m,n > 2
and m +n > 5 in order to use the finite presentation given in Theorem 2.2. This is why we
assume the condition mi + ni,mg + ng > 5 in Theorem 6.3 and u; — us + g1 — g2 > 5 or
u1 —u3 + q1 —q3 > 5 in Theorem 6.4.

For a vertex algebra A and its subalgebra B, we set the coset vertex algebra C'(A, B) as
C(A,B)={zeA| bsyzr =0 for b € B, s> 0}.
Similarly to [29, Theorem 6.5] and [32, Theorem 7,7], Theorem 6.4 induces the following.
Theorem 6.6.
(1) Assume that my,ma,n1,ne > 0, mi +ny,mg +ng > 5 and

k+ (m1 +m2) — (n1 -I—n2)
h

£0.

gl =
Then, we obtain a homomorphism
(I)m1+m2\n1+n2 o q]gn2|n2,m1+m2|n1+n2 . Yh,€l+(m1—n1)h(g[(m2|n2)) N Z/[(C(Wl, w2))’

where wy = WFTmM2712 (51(2(my +m2)|2(ny + na)), (2mtmzlritnz)),

(2) Assume that up — u2,q1 —q2 > 0, u1 —ugs +q1 —q2 > 5 and 1 # 0. Then, we have
a homomorphism

D, Yh755 (;[(us - us—i—l’Qs - QS—H))
— U(C(WH(GI(MIN), ), VF(sl(ur — ualgr — g2))))

for s > 1.

(3) Assume that uy = us > ug, q1 = q2 > q3, u1 —u3 +q1 —q3 > 5 and €2 # 0. Then, the
homomorphism ® induces

Dy Yie, (f/’\[(us — Ust1|gs — gs11)) = U(C(W3,wy4)),

where wy = WE(E[(2(U1 —u3)|2(q1 — q3)), (2“1—U3|111—<13))‘

7 Extended affine super Yangian

We extend the definition of the affine super Yangian to the new associative algebra. Let us set
sl(ma|n2)f as a Lie subalgebra of sl(mg + ma|ni + na) = sl(my + malng +n9) ® (C[til] @ Ce
generated by {Emts | 8 € Zyi € Ly tmolni4nar J € Tmy+molni+ns \Iml\nl} and c.
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Definition 7.1. Let m1,n; > 0. We define Yh";ﬁmﬂnﬁnz (;[(mz\ng)) by the associative algebra
whose generators are

{Hi,raXi:f:r|0§i§n—1,T€ZZo}

and sl(mo|n2)® with the relations (2.1)~(2.10) and we identify with H; and Xfo with

ma|n2,mi+ma|ni+na ma|na,mi+ma|ni+no + .
v, (Hyo) and 24 (X;5) for i € Iy, -
We set the degree on Y{Zﬁmﬂnﬁm (sl(mzln2)) as

deg(H;,) =0, deg(Xij;) = +0; 0,
deg(xt®) = s, deg(cman) =0 for zt* € sl(mgy|ng) ™.
Using this degree, we denote the standard degreewise completion of Yhnzl+m2|m+n2 (sA[(
by Yhnz1+m2|n1+nz (5[(m2|n2)).
For1 <oy <mp, n; <ov_<—-1,1<i4,j+ <mgand —no <i_,j_ < —1, let us set

m2|n2))

v, w . . w—s—1 s+1
iy gy = 0(j+ < Z+)h§ :EU+7i++m1t Ei, +myjy+mit

s>0
+6(j+ > i+)hz By ig+mit"  Ei g 4m
s>0
07, gy = 00+ < iR Boiptmit ™ By gt £
s>0
+(j+ > i+)hz By ii+mit  Eiy tmy gy +ma s
s>0
afi,’gui = hz EU+»i++m1tw_sEi++m17—j——n1tsv
s>0
af;]“i = FLZ Ey_iyamit "By ymy,—j_—m
s>0
a;}i’;’i - hz Ev+,z‘7—n1tw_s—1Eif—n17j++m1ts+1’
s>0
a;):,;‘vi = hz Ev,7z;—n1twisilEif—n1,j++m1ts+17
s>0
a;‘)j:jui = 5(]'7 > if)hz Ev-s—,i_fmtw_s_lEi—*m,*j—*nlts—H
s>0
+6(j- < L)hz Ev+,i—*n1tw_sEi—*mﬁj—*nlts’
s>0
a; =3 = 8(= > iR Y Bo i gt T By
s>0
+ (5(]_ < Z_)hz Ev77i7_nltwfsEii_nl,_ji_nlts.
s>0

We set Y}:ZlerQ'erm’R (EA[(m2|n2)) as a quotient algebra of ffrﬁﬁmﬂ"ﬁm (s?[(m2|n2)) divided
by

7 v7w 9 . . .

[Hi 1, Byt t"] = a;";, — a?ﬁrl’ﬂ for j4 #iq,i4 + 1, (7.1)
7 VW VW

[Hi+,17 E’U+,—’I’Ll+jf tw} = ai#»ajf - a’i++1,j,7 (72)
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[Hi 1, By t°] = al™, —al™ . for j_ #i_,i_ —1, (7.3)
[ﬁi—J’ E'Uvml‘i’j-!—tw] = al J+ a;}_ui].,]+’ (74)
[Hi+—1,17 E’U,m1+i+tw:| + [Hi+,17 E’U,ml-f—ithw]

h .
=a; 1, a?ﬁl,i+ - §Ev+,m1+i+tw for o4 # 1, ma, (7.5)

[H; 11, Bonyi t°] + [Hi_ 1, By —py i t"]

= af u—)i-l i~ a?j’_%ﬂ; — ng,nlJri_tw for i_ 75 —1,—no
[ﬁmg,l, Ev,m1+j+tw] = CL:;’LZ},H - agﬂlljﬂ - hEv,m1+j+tw for ji # ma,
[ﬁm%l,Ev,_mHJW] =a, i a” qu]_ for j_ # —1,
[ﬁm2—1,17 Ev,ml—i—mgtw} + [ﬁmz,lu Ev,ml—i-mgtw]

— v v,w h

w
mo—1ma — @—1,my — §Ev,m1+m2t )

H_11,Ey 1t"] + [Hmy1, By —1t"] = a,), 1~ ATy — BBy 1t®,

[HO,lv Ev+,m1+j+tw] = QT;LUQ,LL - ai;‘i for J+ 7é 1,
[Ho 1, By —nitj_ t“’] = ali’;”%j_ — al’]_ for j_ # —nyg,
[H no+1,1, E’U ,—Nn1— nQ ] [HO 1 Ev,—nl—nztw]

_ LW h
a—n2+1 —no al,—nz + §(m2 —n2+ 1)Ev,m1+1tw + 5Ev,m1+1tw’

7 7 VW VW h
[Hl,ly Ev,ml—l—lt ] [HO,L Ev,m1+1tw] a_n2 1 CL2 1 jEv,ml-l—ltw

for 1 <ii,jr <mo, —no <i_,j— <—1land weZ.
Theorem 7.2. There exists a homomorphism
\I,mz\ng,m1+m2|m+n2,R .

2

Yh21+m2‘n1+n27R(;[(mg‘ng)) — 17575,(m1,n1)h(£?[(m1 + mg\m + ng))

given by

\I,mz\ng,m1+m2|n1+n2,R

5 (y)=y  fory € sl(my +maln; + ny),

R
\Ijgnz\ng,m1+m2|n1+n2, (Zi,r> _ \I,;n2|n2,m1+m2|n1+n2 (Ziﬂ“) for 7 = H,Xi and r =0, 1.

Proof. It is enough to show the compatibility with (7.1)~(7.15). By (B.1), we find that the
relations replacing H;; with \IlmﬁmQ‘ern2 (Hl ) in (7.1)~(7.15) yields the same result as re-

placing H; 1 with

m1+maz|ni+na,0 (\1172711+MQ|711+712 (ﬁz,l)) )

evh,s—(ml —n1)h

Thus, it follows from a direct computation.
Theorem 7.3. There exists a homomorphism

Am2|n2 . Yﬁ,e (;[(mQ ’ng))

~ - R~
— Yh,sf(mlfnl)h(ﬂ(ml + mg\nl + ng))®yh71:";1+m2|n1+n2, (5[(m2’n2))

determined by

A () =1 @y +y@ 1fory € saA[(m1 + ma|ni + na),
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(Wmalnzmitmalmtnzi ¢ id) o A(X;7) + Y0,
for1<z+<m2—1,
(\I,m2|n2,m1+m2|n1+n2,R ®id) o A( i 1) + Y02 .
for i =my,
(WmalnzmitmalmtnzR o id) o A(X;7) + Y,
for —nag+1<i< -1,
(pmalnzmitmalmtnzR ¢ id) o A(XT, 1)+ V2, |

for i = —no,

Az (X)) =

\
(\Ijm2|n2,m1+m2|n1+n2vR ® id) o A(X;l) Yz-o+1 i

for1<iy <mg—1,
(qjm2|n2,ml+m2|n1+n2’R X ld) o A( ma, 1) + Ygl,mZ

for i = ma,
(\I/m2|n2,m1+m2|n1+n2vR ® id) o A(X;l) — Y;O,Li

fOT’ —n2+1§1§_1’
(\I,m2|n2,m1+m2|”1+”27R ® 1d) o A( —na, 1) - YleHQ

for i = —no,

N (Xijl) =

(pmzlnzmitmelnitna i @ id) o A(H; ) + Y —Yiiin
for1§z+<TrL2—1,
(\I,mglnz,m1+m2|n1+”2vR ®1id) o A(Hm%l) + Y,QLQ me T Yl?l
for i =my,
(@malnzmitmainitng, B @ id) o A(H;q) — YO +Y2, ji—1
for —ng+1<i< —1,
(\I;m2|n2,m1+m2|n1+N2,R ®id) o A(H_n271) —-Y9 - Ylol

—n2,—n2 5

Al (X7 =

for i = —no,
where we set

_h Z p(uE s ®Eujts+r
SEZL
ue[ml\"l

Proof. The compatibilities with (2.2)—(2.12) follows from a direct computation. It is enough
to show the compatibility with (2.1). Since we obtain

. R ma|n2,mi1+ma|ni+n
(1d®\ym2\n2,m1+m2\n1+n2, )OAm2|n2 — AO \1/2 2| 2,11 2‘ 1 2

by a direct computation, we have
id ®\I,m2|n2,m1+m2\n1+n2, ([Am2|n2(H ) AlenQ(HjJ)])
_ A([ m2\n2,m1+m2\n1+n2 (Hz, )’ \I;m2|n2,m1+m2\n1+n2 (Hj,l)]) —0.

Using (7.1)— (7 15), we can write down [Am2|”2( 1), Am2ln2 (| ;1)] as an element of the com-
pletlon of ® U(s[(m1 + ma|ni + ng)) since U(s[(m1 + ma|ni + ng)) can be embedded into
® Yhe (m1—n1)h (5[(1711 + m2|n1 + 712)) |

Theorem 7.4. Assume thate =k + M — N —u; + q;. There exists a homomorphism

o VR (Si(w ) — U(WF(a(MIN), £))
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determined by

1 .
1B, %) =Wt for v e Lyjuig—an 1 € Lujgr \ uy—ugr—qy a0

v,1
(7)) = ®(Z;,) fori€ I, =01

ta
Proof. Compatibility with (2.1)—(2.10) follows from Theorem 6.2. By a direct computation,
we obtain
(1 2 _ i) (py (D) (1)
(Wv.j )(O)W'L i (_1)17( )(Wv,i )(—1)Wi,j )
(1 @) _ )11
(Wv.j )(1)VVi,i = (- )Wp,j ’
W)W =0 ifr>2

v.J %

for v € Ly, _wjqi—q» 8 J & Lui—u|qi—q» ¢ # J- By a direct computation, we obtain

h(W(l) W(l)

VU1 — uz+i+)( 1) ui— uz+i+,U1*uz+j+

w—s—1y77(1) s+1
_h(s(]Jr <Z+ Z vu1 ul+z+t Wu1 —u+iq,ur— ul+j+t

tw+l [U W( )

0 Tour—u g4

]

5>0
+ hé(j4+ > i) Z vu1 cutin T Iqul) witiv g
5>0
—ho(jy < i+)va( 121 ul+]+ —ho(jy >iy)(w+ 1)W1571131—ul+j+tw7
h(W151u)1 ul+i+)( 1)Wqﬁ)—ul+i+,—q1+ql+j7tw+1 [Ulw Wzg —)q1+qz+37tw]
= h;) v u1 ul+z+tw SW?E1) w+it,—q1+q+j— —(w+ 1)hW1§ ZqH—qz-H te,
s
LLSEPRS [ VAR LSS G R
- h;)W(}—)m-i-qz—H e 1W£q)1+qz+z u1— UH-J+ts+1 whWé u)l uz+J+tw
s
h<W7§12Q1+Ql+l )(—1)W£1q)1+tn+i—, q1+qz+j—tw+1 Ui 7W(1)Q1+Ql+.7—tw]
=0 <jhY_ W 2q1+qz+z e 1W£q)1+qz+z_, arats t
$>0
01> Gy W i W i g
5>0
—wo(i- < )ﬁWv( lql-&-qz—w Y — (w4 1)6(i- > j- )hWQS Zt11-irqz+ﬂ £,
By using these relations, we can prove the compatibility with (7.1)—(7.15). |

8 Compatibility of ®; with the parabolic induction
for a W-superalgebra in the special setting

In this section, we assume that vy > uo > -+ > u; >0, g1 > q2 > - > q >0, u,q > 2
and u; # ;. In this case, we can give generators of the W-algebra WF(gl(M|N), f).

Theorem 8.1. Fora € I,y jq—qs \ Lus—us_1]qi—qo—r @b € Ly o jg1—g0 \ Tus—uy_1|q1—qo_1» the
following elements are contained in W*(gl(M|N), f):

Wélb) = Z e((:l))for s <,

1<r<s
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2 T
W(E,b) == E €i,j — E FTGELJ))[*Q
col(#)=col(j)+1 1<r<s

row(i)=a, row(j)=b

+ Z (_1)p(x)+p(ei,v)p(ez,j)6(7”(1)) [—1]elr2)[-1]

x, a,x
1<r1<re<s
Tr>Uul—Uus
+ Z (—1)P@)+pleas)ples) EcTzly)[ 1)er2)[—1]
1<r1<res<s 7
r<—q1+gs
_ Z (_1)p(r)+p(ea,z)p(ex,b)eg;))[_1]%7:926)[_1}
r12>T2

gs—q1<z<gr; —q1
row(i)=a, row(j)=b

_ Z (_1)p(r)+p(ea,m)p(ez,b)e(xrll))[_1]6 r2)[_1] ifs=v+1,

b
r12>T2
Ul —ur; <zx<ul—us

where we set

T. = Tr ifS:U,U—l,
" (r<s—1)y+60s ifs=v+1.

We can prove Theorem 8.1 by the same way as [31, Theorem 10.22].

Theorem 8.2. Suppose that k+ M —n —uy +q # 0 and u; —uz + q1 — g2 > 3. The elements
WCElb) and Wfb) generate WF(gl(M|N), f).

The proof of Theorem 8.2 can be proven by the same way as [26, Theorem 3.6]. We will give
the proof in the appendix.
Let us take an integer 1 < x <[ and set

l l

x x
Mlzzuva lez%m My = Z Uy, Ny = Z Qu-
v=1 v=1

v=x+1 v=x+1

We define f; (resp. f2) as a nilpotent element of type (1“1_“2“1_‘12, Quz—usla2—gs ,p“w_()'qw_o)
(resp. (1um+1_um+2|q1+1_q1+2’ Quat2 U tslqut2—Gats 7puz—olql—ﬁ)) in gl(M1|Ny) (resp. gl(Ma|N3)
by the same way as f € gl(M|N).

We denote the Miura maps as

pr: WHHETN (gI(M V), f1) = Q) Vi (ol (uilgr)),

1<i<z

po: WEEMITNU(GI(M|Ny), fo) = Q) Vi (gl(uilgi)),
r+1<i<]

where £; is an appropriate inner product on gl(u;|g;).
Theorem 8.3. Suppose that k+ M — N — uy + q1 # 0. There exists a homomorphism

Aw: WFGUMIN), f) — WEHM=N2 (g1(M [Ny, f1) @ WRTM =N (gI(M|N), f)

determined by = (p1 ® p2) o Aw.
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Proof. By Theorem 8.2, it is enough to show M(Wérb) ) is contained in
WML (gU(My [ NY), fr) @ WEHMIN(gI(My|Ny), f2)

for r = 1, 2. For the latter discussion, we only show the case that a,b > u; —u; or a,b < —q1 +q;.
By the definition of Wyb) , we have

pwWl)y=wlhler+1ewl),
n(W) = Wfb) R1+1® Wéy,} — oW @1

_ Z (71)P(€a,u)P(6b,u)+P(u) (Wé,lb))(il)wé}g ®1
u1—ug <uSul—up,p—q1+q<usS—q1+qs
_ 3 ((_1)p(€a,u)p(eb,u)+p(u)Wu(}b)) © WY
u>ul —u,u<—q1+q
+ 3 (—)POwY e wl). ]

Ul —Ugp41<uLu1 —up,—q1+q <u<—q1+qz+1

By Theorems 6.2 and 7.4, we obtain

P Yh,a-&—(ux—qx—uz+qz)h(f:\[(uwa)) — M(Wk+M2_N2 (g[(M1|N1), fl))a
P2 Yhuz+1|qz+1’R(~”A[(Ul|Ql)) = UWFM=N (gI(My|N2), f2)).

€
For a complex number a € C, we set a homomorphism called the shift operator of the affine
super Yangian

Ta: Yie(s(m|n)) = Vi (sl(m|n))

determined by Xij:0 —> Xij:0 and H; 1+ H;1 + aH;p. Then, by a direct computation, we obtain
the compatibility with the coproduct for the affine super Yangian and the parabolic presentation
for a W-superalgebra.

Corollary 8.4. We obtain the following relations:

(80 Tt © BE 710200 @ 92) 0 ATz = Ay 0 0,

A Some formulas for Theorem 3.2

In this section, we prepare some formulas for Theorem 3.2. By a direct computation, we obtain
the following formula.

Theorem A.1. Fori# j and a,b > 0, the following relations hold:

(it VB, V0 By jt 5 B 5T
Y o ) R ey S
_ (_1)p(EZ7¢)p(Eu7j)5z GEi TV B, vt gt
4 (—1P B PBuy)§, py mvbsmap otb . gsta
(— 1)p(E DP(Eug) s LBt SO, U, gt ta
+ (—1)P BBy s, B = AR, 10 b+s+aE P
Gy Byt OB, s tv+b (A1)
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[E; otV E, 170, B, ot~ E, 5]
_ 7(71)p(Ez,i)P(Eu7j)5u’zEi7zt—v—bEj7itv+b—s—aEuJts—i—a
b (P E B s, By b, g, gt
— 8Byt TSR, T, et
+ OBt OBt R, T et
— (1) BB s B 45T, VTR, s Ta
+ (1P EeEus)s, Bt TR T TR, 0, (A.2)
[E.it " E; .t Byt B 5]
B o e A e DA
+ (_l)p(Ez,i)P(Eu,j)(5Z.7UEZJ,t—v—b—s—aEi’Ztv+bEj7uts+a
— 0j 2Byt TS O, B 0T
+ 8, Byt S TOE, it B, g0 et
— (_1)p(Ez7i)P(Eu,j)5i7uEu’jt_5_a z,it_”_bEj,zt”+b+5+“

— (SZMEUJ'tiSian7it7vib+s+aEZ‘7ztv+b. (A3)

B Proof of Theorem 3.2

In this appendix, we give a proof of Theorem 3.2. Since the affine super Yangian Y} . (;[(m|n))

is generated by {Xi:to}iel | and Hp 1, we need to show that
mi|ni,mi+ma|ni+no + mi|ni,mi+ma|ni+nz /17
{w] (Xi,O)}ieImllnl and vy (Hia)

commute with {\112 5 and \Ifgnﬂm’mﬁmﬂnﬁnz (Hl,l)- The commu-

m2|n2,m1+m2\n1+n2( + ) }
icl,,
tatibility with

2|n2

mi|ni,mi+ma|ni+ng [+ ma|ng,mi+ma|ni+ng +
vy (Xi 0) and v, (Xi 0)

follows from the definitions of two edge contractions. Thus, it is enough to show the following
three relations:

[\Ilgn1\n17m1+m2|m+n2 (Xio) \I/gb2|n2,m1+m2\n1+n2 (ﬁl 1)] -0 (B 1)
i,0/> s ) .

[\Ilgn1\n17m1+m2|n1+n2 (E[l 1) lI/;nz\nzm"u-i-mzlm+nz (ijo)] -0 (B 2)
) ) 7, I .

[\Ilgn1\n17m1+m2|m+n2 (I:’l 1), ng2\n2,m1+m2|n1+n2 (ﬁl,l)} = 0. (B.3)

)

We will prove (B.1)-(B.3) in the following three appendices.

B.1 The proof of (B.1)

This appendix is devoted to the proof of (B.1). We only show the + case. The — case can be
derived from + case by using the anti-automorphism w. The cases that ¢ # 0,m1 can be proven
by a direct computation. We only show the case that i = 0 and i = m.

First, we show the case that i = m. By the definition of two edge contractions, we have

[\Pgn1\n1,m1+m2|n1+n2 (X+ 0) , \I,;nzln2,m1+m2|n1+n2 (Hl 1)]
ma, ,

- [Em1,—17 ﬁ1+m1,1] + [Eml,—la Rl - RQ] + [Eml,—h Sl - SQ] (B4)
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We will compute each terms of the right-hand side of (B.4). In order to simplify the notation,
here after, we denote the i-th term of the right-hand side of the equation (-) by (-);. By a direct
computation, we obtain

(B4)y =1 Emyitmit "Erpm, 1t =1 Emy 24mt” Bagmy, 1t (B.5)
v>0 v>0
(BA)s = 1> Byt t™" " By, <1t + 1Y By gyt By, "t (B.6)
v>0 v>0

We can rewrite

(B4)1 = [[Eml,?)-i-mlaE3+m1,—1]7ﬁ1+m1,1]
- HEml,S-i-ml’ﬁl—}—ml,l]’ES—&—mh—l} + [Em1,3+m17 |:E3+m17—17f—j1+m171:|:|' (B7)

holds, we obtain [E3+m1,_1,f~11+m171] =0

(X7 X5

Since E3im, -1 = (H?llsinﬁfl ad (XIO))X "
14+m1,00 2+m1,0ﬂ holds,

mi1+ma2,0

by (2.6). Thus, (B.7), is equal to zero. Since Ep, 31m, = [X,}

ml,O’
we have

[Em1,3+m17ﬁ1+m1,1] = [Xy—;hl) [Xi:-th?Xé:-mho]]

-2 [X;n‘—ho’ [Xi:-mhl’ X;_-I-mbo]] + [X:H,O’ [Xf_-l-mhﬂ’ X;_+m1,1]] .

By (2.8) and (2.13), we have

(Xt [ Xy 00 Xy 0] = (K00 X my 10 Xy 0]
h h

= _5 X:u,m [Xi:-mho’ X2++m1,0]} = _hEm1,m1+1Em1+1,m1+3 + 5 mi,m1+3» (B'8>

B [X:H,U’ [Xi:—ml,l?X;—i-ml,OH + [X:”LLO’ [Xf_-i-mLO’X;-i-leH
h h
= 5{ [Xntl,()’ X1++m1,0] ) X2++m1,0} = hEm17m1+2Em1+27m1+3 - §Em1,m1+3' (BQ)
By (B.8) and (B.9), we have

(B.7)1 = —hEm17m1+1Em1+17_1 + hEml,m1+2Em1+2,—1- (B.lO)

By adding (B.5), (B.6) and (B.10), we find that (B.4) is equal to zero.
Next, we show the case that i = 0. By the definition of two edge contractions, we have

[\Ijgnﬂm,m1+m2|m+n2 (X(—)’—O), \Ijgnz\nz,m1+m2|m+n2 (ﬁl 1)]

= [E,nhlt, ﬁ1+m1,1] + [E,nl’lt, Ry — RQ] + [Efnhlt» Sl — SQ] (Bll)

By a direct computation, we obtain

(BA1)y==h>  Eny1ymt "Brim it + 0> E oy apmit "Eypm, at", (B.12)
v>0 v>0
(B3 =h> E_p1ymt "Brim "™ =0 E o opmit "Boym, 1t (B.13)
v>0 v>0

Since we obtain E_,, 1t = ( i_:"_l;l”ﬁl) ad (X;ro)thl—ng,m we find that (B.11), is equal to

zero by (2.13). By adding (B.12) and (B.13), we obtain (B.11) = 0.
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B.2 The proof of (B.2)

In this appendix, we will show the relation (B.2) in the same way as (B.1). Since the — case
can be derived from + case by using the anti-automorphism w, we will only show the + case.
Moreover, we only show the case that ¢ = 0. The other cases can be proven in a similar way.
By the definition of WTllmmﬁmﬂnﬁnz and \11;n2|n2’m1+m2|m+"2, we have

[\1171711\n1,m1+m2|n1+n2 (I“_jl 1)7 \I/gnz\nz,m1+m2|n1+n2 (XS,—O))] (B.14>

)

= [E’le E*n1*n2,m1+lt] - [Pl — Py, E*n1*n2,m1+lt] + [Ql - QQ’ E,n1,n27m1+1t].

By a direct computation, we obtain

(BA1)y=hY _ Eim 1t "By nyat™? =B Eymypat " B, nyot't?, (B.15)

v>0 v>0
(BAl)y=—hY  Eims1t " Eonnp 1t 1> oy g1t By py ot (B.16)
v>0 v>0

Since E_p, —nymi+1t = [E—n,—ny 3t, 3 m,+1] holds, we have

[ﬁl,laEfnlfnz,m1+ltj| = [ﬁl,la [E*n17n2,3t7 E37m1+1]] (B17)
— [[ﬁl,laE7n17n2,3ti|7E3,m1+1} + [Efnlfng,?)ta [ﬁ1,17E3,M1+1]]'

Since E3 1,41 = (H;@;l ad (X;O))X;ho holds by a direct computation, we obtain
(B17)y = [E_p,—n,3t,0] =0
by (2.13). Since we obtain E_,, _,, st = [X({O, [XffO,ngo]], we have

[fhg, [XS:07 [XIWX;:OH]
= — [0, X0 X))+ 2[Xelo, (X1, X50]] = (X0 [Xi0, X))

by (2.6). By (2.8) and (2.13), we obtain

— [Xo1s [XT0, X30]] + [Xoor [XiT1 X))

h I
- 5{Xofo, (X109 X50] } = BE13E ) nyat + 5 Bni-naat, (B.18)
[Xo00 [ X110, X50]] = [Xoor [ X170, X31]]
h h
= —5{ [X({O,leo],xgo} = —hEy3F_p, pyot — EE_m_m’gt. (B.19)

By adding (B.18) and (B.19), we obtain
(B.17); = hE1 1B —no it — hE2 1By —py ot (B.20)

By adding (B.15), (B.16) and (B.20), we find that (B.14) is equal to zero.

B.3 The proof of (B.3)

This appendix is devoted to the proof of (B.3). Similarly to [28, Section 3|, we define the
elements of Yy . (sl(m|n)):

F(=1)PD [J(hi—1), zF] if i #0,

J(hi) = Hi1+ A; — Aier, J(2F) =
() 1 F +. J(a7) {:F[J(hl),:c(ﬂ ifi =0,
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where
q ol S Bt Eit - B qypt S (SO B,
) 9 o Uy iU 2 o T, U,
i<u<m4+n 1<u<i
h h ~
+ 5 Z Eu7it_s_1Ei7uts+l o 5(_1)10(2) Z (_1)p(u)Ei’ut_s_lEu’itSJrl.
>0 20
1;1_L<i i<u8§_m+n

For the simplicity, we sometimes denote

h

Aip =5 Z Ey it Ejut®, Aip = 5(_1);9(1’) Z (—1)PM By gt By it?
s>0 s>0
i<um+4n 1<u<i
h h ;
Aig =7 > Byt T Bt A= 5(—1)79(1) > (F1)PME; T B,
5>0 5>0
1<u<i i<ulm-+n

Let o be a positive real root of ;[(m]n) We take rZ be a non-zero element of the root space
with +a. We also take simple roots {a;}icy, ., of sl(m|n).

[n

Lemma B.1 ([28, Proposition 4.26]). There exists a complex number cq; satisfying that
(aj, @) [T (hi), 23] = (i, @) [T (hy), 23] = Hea g,
where (, ) is defined by (o, ;) = a; ;.
By Lemma B.1 and the definition of P;, Q;, R;, S}, it is enough to show the relation
[P, — Qi,Rj+ S;] + [Ai, Rj + S;] — [P — Qiy Ay +4] =0 (B.21)
for i,j = 1,2. By a direct computation, we obtain

-1
[‘Pi’ R]] = _hz Z Z Ei7j+m1tivilEuaitv+1isEj+ml7uts

s,u>0u=—n1

-1
+12) > Bujrmt *Eiut " B, U, (B.22)
s, v>0u=—nq
mi+ma2
[P Si1 =02 Y Eigt " Byt By it*

s,v>0 z=m1+1

mi

s,v>0u=1
mi
+h2 Z ZEuﬂ‘_:,_mltisilE@utiUJrsEj_;,_mlﬂ'thrl
s,v>0u=1
mi+ms2
=02 Y > Eijemt  Ejpn, ot B (B.23)

5,0>0 z=m1+1

[Qi? R]] = 07
—n1—1

Qi Sil =1 Y > Eist T Byt By it™

s,0>0 z=—n1—ng2
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—n1—1

0> Y Eijrmt " 'Ejpm, ot VT E 0! (B.24)

s,v>02z=—n1—"n2
By the definition of A; and (A.1), we can rewrite [P, Ajim,| as
[Pi7Aj+m171] - [PiaAjerl,?] + [PiaAj+m1,3] - [PiaAjerlA]'
By (A.1), we obtain
hQ 1 1—
[PiaAjerl,l] = Z E; ,j+m1t_v E, ltv+ SE]+m1 u

s,v>0
u>]+m1

mi+ma
—v—1—
E E Eijymt " OBt T By, ot
sv>Oz—j+m1+1
mi+m2
—v—1 v+1+s
E > Eejpmit Bt T B, it
5,020 z=j+m1+1

h2
> Eujmt “Bigt U By it (B.25)

s,v>0
u>]+m1

By a direct computation, we obtain

(B.25), + (B.25), = —— Z Z Eijymt U B T T By Wt
s,u>0u=—ni1—n2
m1+m2
Y Z Z Eivj'f‘mltivilEzaitisEj—f—mu,zt8+v+1v
s,v2>0 z=j+mi1+1
mi+ma
(B.25); + (B.25), = Z S Bt T T B B it
s,v>0 z=j+mi+1

9 -1
- —v—1 1
9 Z Z B jim U Byt o +SEJ m1,ztv+ .

s,v>0u=—n1—n2
Then, we can rewrite

—n1—1
— 1 +1
[PiaAjerhl]: Y E E E,J+m1t S Euztv Ej+m1,ut
s,v>0u=—n1—n2
—ni1—1
2 : § : —v—1 s st+v+2
E; ,j—l—mlt Eu 1t J+ma, ut
s, v>0u=—n1—n2
—1
2 : § : —v—1 v+1—s
E,j+m1t Eu zt + E]+m1 u
s,v>0u=—n1
mi1+ma
—v—1 1
§ > Eijymt T Bt B, ot
sv>Oz—j+m1+1
mi1+ma

1 +1
Z Z E.jimyt T B A By, at®
s,v>0 z=5+mi1+1
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—ni1—1
Z Z By jimyt VT VBt By, it"t
s,v>0u=—n1—ng
—ni1—1
Z Y Bujrmit *Eiut ™ By, it
s,uv>0u=—ni1—n2
2
5 Y Bugrmt Bt T By it (B.26)
s,v>0u=—ny
Similarly, by (A.1) and (A.2), we can rewrite
Y, Oy
12 o
[Pi7Aj+m172] = ? Z ZEi,ut_v_l_SEj+m1,itv+1Eu,j+m1ts
s,v>0u=1
mi1+ma
Z D Bt T T By Bt
s$,v2>0 z=j+mq
h2 mi1+me
Ty Y ) Eit " 'Ejymyit "Eo it
$,v>0 z=j+my
h? “
— o Z ZEj+m17ut78Ei’j+mltivilEuﬂ'tUJrlJrs, (B.27>
s,v>0u=1
hz m1+m2
[P, Ajymi 3) = = Z Z Ei ot " B, jpn t T B, it
s,v>0 z=m1+1
h? - Y ~
=5 2 2 Bijimt ™ T Bt By ut™!
s,0>0u=1
hg j+mi—1
Z Z Ei jrmit™ o 1Eu1t ° j+mai, uthrSJrl
$,v2>0 z=m1+1
h2 j+mi—1
Z Z B jymit T 1EZ ZtSEJ+m1 zthrl
s,v>0 z=m1+1
h? “
) S Bujrmt " Eiut T By it
s,v>0u=1
mi+ms
Z > Eijpmit " Ejimy it VBt (B.28)

s$,v>0 z=m1+1
mi+mg
[Piy Ajymy 4] = Z Z Bt By it By iy 0T
s,v>0 z=j54+m1+1
—ni1—1

—u—s—2 +1 s+1
- E > Bt By it Bujmt

s, v>0u=—ni1—n2

—v—5—2 1 1
T2 D Bt T B it B,

s, v>0u=—nq

—ni1—1

+* S>> Ejpmat ' Eijymt T Byttt

s, v>0u=—ni1—n2
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-1
h? e o
+ 5 > Y Ejrmiut T Byt T Byttt

s, v>0u=—n1

mi+ma

s Z > By ot T T B, Bt (B.29)
s,v>0 z=54+m1+1

By a direct computation, we have

mi+m2

(B.26), + (B.28), = — — Z 3" Buit ™ Eijrmt ™ Byt

s,v>0u=mi+1
uFj+my

mi+ma

(B.26), + (B.28), § > Eajimit T By it BT,
s,v>0z=mi+1
zF#j+mi

h? —o—1—
= (B.27), = (B-29)g = = > Ejrmagrmat " " By t* By it
s,v>0

h2
— (B.27); — (B.29), = Z Eijimyt U B it By t5 T
s,v2>0

Then, we find that

(B.26), + (B.28), + (B.26), + (B.28), — (B.27), — (B.29)s — (B.27), — (B.29),

mi1+me2

h2 _
_ § : § : Eu zt s ; ]+m1t v— lE]—‘rml, 751}—&—5—4—1
s,v>0u=mi1+1

mi1+ma

Z > Eejimit "V By it Bt (B.30)
s,v>0z=mi+1
2#j+ma

Similarly, by the definition of A;, we can rewrite [Q;, Ajym, ] as
(Qis Ajrmi 1] — [Qis Ajtma 2] + [Qis Ajrma 3] — [Qis Ajrm, 4.
By (A.1) and (A.2), we obtain

—n1—1
[Qi’Aj-‘rml, = Z Z E,j+m1t_v - SEZ ztv+1E]+m1,
s,v>0z=—n1—"n2
—ni1—1
Z > Eujimt Eigt VT By it (B.31)
s,v>0z=—n1—n2
—ni1—1
[Qis Ajymi 2] = == Z Y Ejrmiet T Bigpm t° Bt
5,0>0 z=—n1—ng2
h2 —ni1—1
+5 > > Bt T By it B 67T (B.32)

s,v>0z=—n1—"n2

h2 —ni1—1 o B
[Qi’Aj+m1,3] = D) Z Z E; -t ’ 1Ez,j+m1tv ° j+m1,its+1

s,0>0 z=—n1—n2
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—ni1—1
Z > Eijimt " By, ot* B ", (B.33)
s,v>0 z=—n1—n2
—ni1—1
Qi Ajpmy 4] = —— Z Z Ei ot By it By oy, t°T!
s,v>0z=—n1—n2
—ni1—1
Z Z Ej+m1,Zt_s_lEiJ-H”mtS_UEZJ'tU—H' (B'34)
s,v>0z=—n1—n2
By a direct computation, we obtain
—n1—1
— (B.32), — (B.34), j{: > Ejrmyt T Byt EL 72 (BL35)
s,v>0 z=—n1—"n2
—n1—1
— (B.32), — (B.34), j{: Y Eiot U P E iy it By, T (B.36)
s,v>02=—n1—"n2
By the definition of A;, we can rewrite [A;, Rjim,] as
[Aits Bjm,] — [Ai2, By, | + [Ai3, Bjpma] — [Aigs Bjgm, |-
By (A.1) and (A.3), we obtain
h2 —
[Aits Rjvm] = 5 > Y Buit T Eijrmt T By ut® T
s,v>0u=—n1
hz N —s—v—1 s+1 v
) Z Z Eyjtmat Ejimy it Bt (B.37)
s,v>0u=—ny
L4L27}%44nJ =0, ( '38)
[Ai 3, Rjym,] = 0, (B.39)
-1
[Ai g, Rjsm] = 44,22 > Eijpmit T Byt T B, it
s,v>0 u=—ny
-1
T 9 Z Z E‘J'i'mlt_S v 1EJ+m1,utsEu ZtU—H
s,v>0u=—nq
12 L
) Z Z Eiut™" ' Bujymit " Ejym "t
$,v>20u=—n1
12 L
+ 5 YD Bujrmit Bt By, U (B.40)

s,0>0 u=—n1
By the definition of A;, we can rewrite [A;, Sjim,| as
[Ai, Sjtm] = [Ai2, Sjemi] 4 [Ai3, Sjvmi] = [Aias Sjrm]-
By a direct computation, we obtain

K2 : s
[Ai1, Sjpmi] = 5 Z ZEu,it VB e U E ey at*T

s,v>0u=1
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mi+mg

h2
— —v—s—1
+ 2 Z Z Ezijlet v Ei,ztUEj+m1,itS+1
$,0>0 z=m1+1
-1

h2
Ty Yo D Eejrmt T T Bt By it
371)202:*711

h2 —ni—1
+ o Z Z EZ’jerlt_v_s_lEi,ztij+m17its+1

s,v>0z=—n1—n2

h2 7
+ ? Z ZEu’j+m1tis*lEj-f—ml,itiin,utU+s+1
s, v>0u=1

mi+mg

h2
2 Z Z Ei:j+m1t_s_lEz,it_ijerl’Ztv+s+1

s,0>0 z=m1+1

h2 -1
B ? Z Z Ei’j+m1t_8_1EZ7it_v j+m17ztv+s+1

s5,0>0z=—n1

—ni;—1

h2
2 Z Z Eivj+m1t_s_1EZ7it_v j+m1,ztv+s+1’ (B.41)

s,v>0z=—n1—"n2

h2
[AZZ’ Sj+m1] = 9 Z Ei,zt_s_v_lEjJrnu,its+1Ez,j+m1tv
s,v>0
1>z
h2
) Z Ej_i_mhztiin’j_,_mltisilEZﬂ'terUJrl, (B.42)
s,u>0
1>z

hQ i—1
[Ai,37 S]+m1] = ? Z Z EZ,itisivilEiﬂ'_&_mltij_"_mhutS‘i’l

s,v>0u=1

h2 1—1 -
9 Z ZEu,j+m1t 5 1Ej+ml7it_UEi7utv+s+17 (B.43)

S,”UZO u=1

h2
[Ai747 S]—‘rml] = ? (_1)p(Z)Ei,Zt7U7571Ez’j+m1tUEj+m17it5+1

+ ? Z Z (_1)p(Z)Ei,zt_v_1EZ’j+mlt_s_lEj_i_ml’itS—‘rv-i-Q

h2 -1
+ ? Z Z (_1)p(Z)Ei7zt7U71Ez,j+m1tisilEjJ,—ml,itSJrUJrQ
s5,0>0 z=—n1
h2 mi
+ 2 Z Z(_l)p(z)Ei,zt_v_lEz7j+m1t_s_lEj+m1,it5+v+2
371)20 z=1
h2 —n1—1
+ ? Z Z (_1)p(Z)Ei’Zt_v_lEZ,j+m1t_s_lEj+mhits+v+2

h2 mi
2 > > Eijpmt ™ Byt By, ut

S,UZO u=1



Commuting Subalgebras of Affine Super Yangians Arising from Edge Contractions 33
h? -
s,0>0u=1
K2 S 2 1
- Z Z (-1) (Z)Ei,j+m1t_s_“_ Ej g 5T Ezvitv-&-l
s,u>02z=—n1
hg m1+m2
_ Z Z ( 1)p(z)Ei,j+m1t_s_v_2Ej+m1,ZtS+1Ezit”“
s,v>0 z=m1+1
h? —
Y SO (VPO E it T By T Bt
s,v>0 z=1
A —ni1—1
5 2 D VOBt R, Bt
5,020 z=—n1—n2
h? 1
-5 (—V)PE B jymy t 5 By otV E, 5T (B.44)
020
Siv<z

Since

h? sy
(B'41)1 + (B'43)1 = _? Z Ei,it Y 1Ei,j+m1tUEj+m1,its+l7
s,u>0

h? L B
(BAL)y + (B.43), = 2 Z Eijtmt ™" By it Bt T,

s,v2>0
h2
— (BA2); - (BAd), = —— (—)PEE; ™" B j iyt By it ™t
v>0
qu;éi
h2
— (B42), — (B.44),, = o Z (=P Byt By ot Bt T,
,v>0
qu;éi

we obtain

(B.41), + (B.43), + (B.41), + (B.43), — (B.42), — (B.44), — (B.42), — (B.44),
mi+mg

h? —s—
=—3 > D>, VBT B i B, it

s,v>0 z=m1+1

_? Z Z (_1)p(Z)Eivzt_v_s_lEZ,j+m1tij+m17its+1

h? o
_? Z Z (_1)p(Z)Ei’Zt v 1EZ,j+m1tij+m1ft !
s,v>02z=—n1
h2 mi
2 Z Z(_l) (Z)EivztivisilEzaj-ﬁ-Tmtij+m1,itS+l
s,v>0 z=1
h2 m1+m2

+? Z Z (_1)p(Z)Ei:j+m1t_S_1Ej+m1,zt_UEz,itS+v+1

s,v>0 z=m1+1

hz —ni1—1 - B
+? Z Z (_1)p(2)EZ}j+m1t ’ 1Ej+m1,zt sz,itSJerrl

s,0>0 z=—n1—n2
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+? Z Z(_Dp(Z)Ei:j-i-ml t_s_lEj-H’m,zt_sz,its+v+1- (B.45)

By a direct computation, we obtain
(B.22); — (B.26)5 + (B.37); — (B.40); — (B.40), + (B.41), — (B.44),4

—1
h? -
=52 2 Bt T iy w Bt

v>0u=—n1

(B.22), — (B.26)g + (B.37), — (B.40)5 — (B.40), + (B.41), — (B.44),

-1
h? e
_?Z Z Eiut™ 1Eu,j+m1Ej+m1,itv+l7

'UZO uU=—ni

(B.23), — (B.28), — (B.44), — (B.44),

h? —
—s—v—2 2
-y SO  Eijrmt T By, it

s,v>0 z=1
(B.23), — (B.28) — (B.44), — (B.44),
mi
fmli Z ZE’]erlt—s v— 2E]+m1, ts+v+2
s,v>0 z=1

(B.23), — (B.28), — (B.44), + (B.45), = 0,
(B.23), — (B.28), — (B.44),, + (B.45), = 0,
—(B.24), — (B.26). + (B.29), + (B.31), + (B.34), + (B.36) — —(B.44) + (B.45), = 0,
—(B.24), — (B.26), + (B.29), + (B.31), + (B.34), + (B.35) — —(B.44),, + (B.45); = 0,
(B.27), + (B.45), =0,  (B.27), + (B.45), = 0,

—(B.26), + (B.4l)g =0,  —(B.26)5 + (B.41), = 0,
ﬁ2 mi-+msa
—(B.30), + (B.41), = Z > Bujimt™ T B, ut" T
s,v>0u=mi1+1
mi+ma
—(B.30), + (B.41), = Z > Eejimit TV By, ot
s,v>0z=mi1+1
(B.29); + (B.45), Z Z (s + 1)(~1)PEE; t=* 1B, 45+
§>0 z=—n1

K2 — o
+?Z Z Eivut ! lEuaj""mlEj-i-ml,itwrl’

v>0 u=—n1

h? !
_ _ (). 4—s—1 4s+1
(B.29); + (B.45); = - > > s+ D)(-1)PPE T B, it

s>0 z=—n1
h2 - 1 1
a ?Z Y Eijrmt ™" Ejpmy uBuit’
v>0u=-—ng

By adding (B.3)-(B.3), we obtain (B.21). This completes the proof of Theorem 3.2.
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C Proof of Theorem 8.2

This aapendix is devoted to the proof of Theorem 8.2. We define a grading on b by setting
deg(e; ;) = col(j) — col(i). Let us set

T —_— ..
a,b - : 67').] .
col(i)=col(j)+r
row (i)=a, row(j)=b

Fora € I,)|q,, weset 1 < s, <lasa€ly _y, |q—q., \Iurusa_ﬂqrqsa_r Since

lq1>

A:{f;b]O§r§l—1,sa§sb}u{f;b\sa—sbgrgl—l,sa>sb}

forms a basis of gl(M|N)/ = {g € gl(M|N)|[f, g] = 0}, it is enough to show that Wélb) and Wézb)
generate all terms of A by [16, Theorem 4.1]. Here after, we set f/, =0 if r > [ or s, > sp,
r < 8qg— Sp ’

We show that W( ) and W( ) generate these terms by two claims, that is, Claims C.1 and C.2.
In Claim C.1 below we show that W(b) and W(b) generate the term whose form is

i ;[—1] + higher terms for i # j.
In Claim C.2 below, we prove that W(b) and W(b) generate the term whose form is
+i[—1] + higher terms.
Claim C.1.
(1) The elements Wé}b) and Wé?b) generate the term whose form is
fij[=1] + higher terms if i # 7.
(2) The elements Wé,lb) and W(Qb) generate the term whose form is
(1P D f7,1-1) — (1P fr [ 1) + higher terms.,
Proof. By a direct computation, the following equation holds:
(2210 Pl 1) = B 121) = Gy (—1pessens) ptel ()

if f7; #0and f;’, # 0. Items (1) and (2) follow from (C.1). We only show item (1). Item (2)
can be proven by the same way as [26, Claim A.1.4]. The element W( ) has the form such that
;’b[—l] + degree 0 terms. In the case that s, < sp, by (C.1), we obtam

((W(z))( )) Wélb) = (fa a[—l])(o)) W( ) 4 higher terms = fap + higher terms.

a,a

In the case that s, = s, + 1, by (C.1), we obtain

((W(z))( )) Wfb) = (fa al— 1])(0))Tf37b + higher terms = f”'1 + higher terms.

a,a

Thus, it is enough to show the case that s, > s + 1.
In the case s, > sp + 1, we set wg as a and take w, satisfying that s,, = s, — u for
1 <wu<sq—sp—1. Then, by (C.1), we have

Sa—Sp—1

H (( iu_l,wu[_1])(0))&;8:;8,1’121 = g,b'

u=1

Thus, we have proved (1). [
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Claim C.2. The elements WS) and Wz(j) generate the term whose form is f,[’i[—l]—f—higher terms
foralll <r<I[-—1.

Proof. Suppose that f];[—1] + higher terms has been generated if a; <z —1. If a; = z, let us
take y satisfying a, =  — 1. Then, by (C.1), we have

(fER[1D) gy fRal =1 = flal=1] = (=17t f 1]

for 1 < r <z — 1. By the induction hypothesis, (—1)p(ei,k)f]:k[—l] + higher terms is gener-
ated. Thus, chlb) and Wfb) generate the term whose form is f];[—1] + higher terms. [

Since we complete the proof of Claims C.1 and C.2, we have proved Theorem 8.2.
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