Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 22 (2026), 007, 37 pages      arXiv:2407.15367      https://doi.org/10.3842/SIGMA.2026.007

Commuting Subalgebras of Affine Super Yangians Arising from Edge Contractions

Mamoru Ueda
Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba Meguro-ku Tokyo 153-8914, Japan

Received August 08, 2025, in final form January 08, 2026; Published online January 31, 2026

Abstract
In the previous paper, we constructed two kinds of edge contractions for the affine super Yangian and a homomorphism from the affine super Yangian to the universal enveloping algebra of a $W$-superalgebra of type $A$. In this article, we show that these two edge contractions commute with each other. As an application, we give a homomorphism from the affine super Yangian to some centralizer algebras of the universal enveloping algebra of $W$-superalgebras of type $A$. Using the edge contraction, we also show the compatibility of the coproduct for the affine super Yangian with the parabolic induction for a $W$-superalgebra of type $A$ in some special cases.

Key words: Yangian; edge contraction; $W$-algebra; coset.

pdf (585 kb)   tex (31 kb)  

References

  1. Arbesfeld N., Schiffmann O., A presentation of the deformed $W_{1+\infty}$ algebra, in Symmetries, Integrable Systems and Representations, Springer Proc. Math. Stat., Vol. 40, Springer, Heidelberg, 2013, 1-13, arXiv:1209.0429.
  2. Bezerra L., Mukhin E., Quantum toroidal algebra associated with $\mathfrak{gl}_{m|n}$, Algebr. Represent. Theory 24 (2021), 541-564, arXiv:1904.07297.
  3. Brundan J., Kleshchev A., Parabolic presentations of the Yangian $Y({\mathfrak{gl}}_n)$, Comm. Math. Phys. 254 (2005), 191-220, arXiv:math.QA/0407011.
  4. Creutzig T., Linshaw A.R., Trialities of $\mathcal{W}$-algebras, Camb. J. Math. 10 (2022), 69-194.
  5. Drinfeld V.G., Hopf algebras and the quantum Yang-Baxter equation, Dokl. Akad. Nauk SSSR 283 (1985), 1060-1064.
  6. Drinfeld V.G., A new realization of Yangians and of quantum affine algebras, Dokl. Akad. Nauk SSSR 296 (1988), 13-17.
  7. Feigin B., Frenkel E., Duality in $W$-algebras, Int. Math. Res. Not. 1991 (1991), no. 6, 75-82.
  8. Feigin B., Jimbo M., Miwa T., Mukhin E., Branching rules for quantum toroidal $\mathfrak{gl}_n$, Adv. Math. 300 (2016), 229-274, arXiv:1309.2147.
  9. Frenkel I.B., Zhu Y., Vertex operator algebras associated to representations of affine and Virasoro algebras, Duke Math. J. 66 (1992), 123-168.
  10. Gaberdiel M.R., Gopakumar R., Triality in minimal model holography, J. High Energy Phys. 2012 (2012), no. 7, 127, 27 pages, arXiv:1205.2472.
  11. Gaiotto D., Rapčák M., Vertex algebras at the corner, J. High Energy Phys. 2019 (2019), no. 1, 160, 86 pages, arXiv:1703.00982.
  12. Genra N., Screening operators for $\mathcal{W}$-algebras, Selecta Math. (N.S.) 23 (2017), 2157-2202, arXiv:1606.00966.
  13. Guay N., Nakajima H., Wendlandt C., Coproduct for Yangians of affine Kac-Moody algebras, Adv. Math. 338 (2018), 865-911, arXiv:1701.05288.
  14. Hoyt C., Good gradings of basic Lie superalgebras, Israel J. Math. 192 (2012), 251-280, arXiv:1010.3412.
  15. Kac V.G., Roan S.-S., Wakimoto M., Quantum reduction for affine superalgebras, Comm. Math. Phys. 241 (2003), 307-342, arXiv:math-ph/0302015.
  16. Kac V.G., Wakimoto M., Quantum reduction and representation theory of superconformal algebras, Adv. Math. 185 (2004), 400-458, arXiv:math-ph/0304011.
  17. Matsuo A., Nagatomo K., Tsuchiya A., Quasi-finite algebras graded by Hamiltonian and vertex operator algebras, in Moonshine: The First Quarter Century and Beyond, London Math. Soc. Lecture Note Ser., Vol. 372, Cambridge University Press, Cambridge, 2010, 282-329, arXiv:math.QA/0505071.
  18. Maulik D., Okounkov A., Quantum groups and quantum cohomology, Astérisque 408 (2019), ix+209 pages, arXiv:1211.1287.
  19. Miki K., Toroidal and level $0\ U'_q(\widehat{{\rm sl}_{n+1}})$ actions on $U_q(\widehat{{\rm gl}_{n+1}})$ modules, J. Math. Phys. 40 (1999), 3191-3210, arXiv:math.QA/9808023.
  20. Nakatsuka S., On Miura maps for $\mathcal{W}$-superalgebras, Transform. Groups 28 (2023), 375-399, arXiv:2005.10472.
  21. Nazarov M.L., Quantum Berezinian and the classical Capelli identity, Lett. Math. Phys. 21 (1991), 123-131.
  22. Ol'shanskii G.I., Representations of infinite-dimensional classical groups, limits of enveloping algebras, and Yangians, in Topics in Representation Theory, Adv. Soviet Math., Vol. 2, American Mathematical Society, Providence, RI, 1991, 1-66.
  23. Peng Y.-N., Finite $W$-superalgebras via super Yangians, Adv. Math. 377 (2021), 107459, 60 pages, arXiv:2001.08718.
  24. Stukopin V.A., Yangians of Lie superalgebras of type $A(m,n)$, Funct. Anal. Appl. 28 (1994), 217-219.
  25. Tsymbaliuk A., The affine Yangian of $\mathfrak{gl}_1$ revisited, Adv. Math. 304 (2017), 583-645, arXiv:1404.5240.
  26. Ueda M., Affine super Yangians and rectangular $W$-superalgebras, J. Math. Phys. 63 (2022), 051701, 34 pages, arXiv:2002.03479.
  27. Ueda M., The surjectivity of the evaluation map of the affine super Yangian, Osaka J. Math. 59 (2022), 481-493, arXiv:2001.06398.
  28. Ueda M., Construction of the affine super Yangian, Publ. Res. Inst. Math. Sci. 59 (2023), 423-486, arXiv:1911.06666.
  29. Ueda M., Two homomorphisms from the affine Yangian associated with $\widehat{\mathfrak{sl}}(n)$ to the affine Yangian associated with $\widehat{\mathfrak{sl}}(n+1)$, Lett. Math. Phys. 114 (2024), 133, 31 pages, arXiv:2404.10923.
  30. Ueda M., The coproduct for the affine Yangian and the parabolic induction for non-rectangular $W$-algebras, arXiv:2404.14096.
  31. Ueda M., Affine super Yangians and non-rectangular $W$-superalgebras, Lett. Math. Phys. 115 (2025), 95, 40 pages, arXiv:2406.04953.
  32. Ueda M., Affine Yangians and some cosets of non-rectangular $W$-algebras, J. Math. Phys. 66 (2025), 121702, 17 pages, arXiv:2404.18064.

Previous article  Next article  Contents of Volume 22 (2026)