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Abstract. We consider the asymptotics of orthogonal polynomials for measures that are dif-
ferentiable, but not necessarily analytic, multiplicative perturbations of Jacobi-like measures
supported on disjoint intervals. We analyze the Fokas—Its—Kitaev Riemann—Hilbert problem
using the Deift-Zhou method of nonlinear steepest descent and its @ extension due to Miller
and McLaughlin. Our results extend that of Yattselev in the case of Chebyshev-like mea-
sures with error bounds that give similar rates while allowing less regular perturbations. For
the general Jacobi-like case, we present, what appears to be the first result for asymptotics
when the perturbation of the measure is only assumed to be differentiable with bounded
second derivative.
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1 Introduction

Consider a Borel measure p on R of the form

g+1 P P
) =Y " hi() g, (@) (b — 2)% (z — aj) dw + Y 16, = plx)de + Y rjde;, (1.1)
j=1 j=1 j=1
where a; < b; < ajt1 and {c1,...,cp} is a subset of the complement of (J;[a;, b;]. We assume

that a; > —1, 8; > —1, r; > 0 for each j and h;(x) > 0 on [aj, b;]. We consider the problem of
determining the strong asymptotics of the (monic) orthogonal polynomials, denoted by m,(; i),
with respect to 1 as m — oo when h; is not assumed to be analytic. Polynomials orthogonal
over disjoint intervals were originally considered by Akhiezer [1] and Akhiezer and Tomchuck [2]
for a special class of weight functions. These authors described the orthogonal polynomials and
their associated weighted Cauchy integrals, two of the main objects of study here. See [24] for
a method to study a different special class using polynomial mappings.

We are interested in obtaining asymptotic formulae for many reasons. One is in the use
of the asymptotics in approximation theory. Specifically, the approximation of functions across
multiple disjoint intervals has been found to be fruitful in computing matrix functions [7]. Within
random matrix theory there are other applications. First, the local asymptotics near the edge(s)
and bulk(s) imply universality for certain invariant ensembles [12, 28] and bounds on the growth
of the polynomials can imply a certain stability of the recurrence coefficients that is useful in
statistical estimation problems [17, 19].

The so-called strong asymptotics of orthogonal polynomials was developed in the book of
Szegb [34] for the classical families of orthogonal polynomials where one has a related differential
equation and integral formula. The asymptotics are termed “strong” because they provide
precise, pointwise, leading-order behavior. Two slightly more modern references are [29, 38].
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The majority of these results focus on orthogonal polynomials on a single finite interval, on the
entire real axis or on a semi-axis.

The Riemann—Hilbert approach to determining strong asymptotics was pioneered in [12, 15,
26] for weights on the real axis and in [28] for the interval [—1, 1]. Crucially, these works used that
weight function p in p(dz) = p(z) do had an appropriate analytic continuation to a neighborhood
of the support of u. It is worth noting here that the approach in [29], for example, does not
require analyticity. For a special choice of weight function, explicit formulae exist in terms of
Riemann theta functions [11].

The Riemann-Hilbert approach was extended to non-analytic weights on the unit circle
and the real line in [30, 31]. Then, in [8], the approach was used to obtain asymptotics
for orthogonal polynomials on [—1,1] for smooth, but not analytic, perturbations of the Ja-
cobi weight (1 — x)#(1 4+ 2)®. Continuing, in [41] the asymptotics were refined in the case
where a, 8 € {—~1/2,1/2}. This refinement is important because if p(z) = h(z)(1 —2)%(1 +z)°,
a,B € {—1/2,1/2} and h is analytic then one knows the error terms in the asymptotic expan-
sions are exponentially small with respect to the degree of the polynomial [27]. The work of [41]
uses a Riemann—Hilbert analysis to show that as the smoothness of h increases, the order of the
error term decreases accordingly. As noted in [41], this can also be seen to be a consequence of
theorems concerning orthogonal polynomials on the unit circle, using the canonical (Joukowski)
mapping of the unit circle to the unit interval [—1,1].

For orthogonal polynomials for weight functions supported on multiple disjoint intervals of
the form (1.1) for «;,8; € {—1/2,1/2}, i.e., the Chebyshev-like case, the relevant works are
first [40] and then [17], where the quantities in [40] were made more explicit and used for
perturbation theory. We are unaware of results for multiple intervals for general o, 3;, i.e., the
general Jacobi-like case, even for analytic perturbations. Thus, specifically, in this work we are
interested in extending these results to the case where (i) h; in (1.1) is not analytic and (ii)
considering general a;,3; > —1. The goal is not specifically to obtain new formulae for the
asymptotics in such situations, since the formulae for analytic perturbations h; broadly hold
for non-analytic perturbations. Rather, one is interested in the size of the error terms in the
asymptotics. For this reason, we largely leave our main results, Theorems 2.6 and 3.1, in an
abstract form. If more specifics about the details of the asymptotics is desired, we refer the
reader to [17] for asymptotics away from the edges and [28] for local behavior near the edge.

The notation C*(I) is used to denote the space of k times continuously differentiable func-
tions f on a set I with norm | f|[cw () 1= maxo<e<k maxzer |f z)|. And let C**(I) denote
the space of k times continuously dlfferentlable functions f on a set I such that f*) is a-Holder
continuous, with norm

F)(x) — £
_ 00y 1 sup LD = FOW)
Wllowen = gz s P @I+ o =

For general o, 3;, we assume that h; € C*1([a;,b;]), k > 1 and k > 2 max; max{|a;], |Bj|} —
(see Theorem 2.6). We also utilize the Sobolev spaces WP ([a;, b;]) consisting of functions that
have k weak derivatives that are all in LP([a;, b;]) with respect to standard Lebesgue measure.
In the special case, where a,3; € {1/2,-1/2}, we allow h; € W"4([a;,b;]), k > 1, ¢ > 4.
Below, we reserve the index k to refer to this assumed smoothness class.

As noted above, [41] considered the case of a single interval with aq, 5, € {1/2,—-1/2}. It
was shown that the error term is, in particular, O( l‘zg_ﬁ) if hy € C*([a1,b1]) and k > 3. Here
we obtain similar error bounds®' while allowing ¢ > 0, P > 0, and only requiring k& > 1, see
Theorem 3.1. There is a strong reason to believe this is still less than optimal, see Figures 4

'In a previous version of this manuscript, an error bound without the logn factor was stated. While we believe
this bound to still be valid, there was a flaw in the argument.
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and 5. These plots seem to indicate that this bound is suboptimal by a factor of 1/n in the
situation where the density has, in a sense, a single point of non-analyticity.

In the same vein as [41], the method described in this paper works by constructing close-to-
analytic extensions of each function h; using polynomial approximation. Then, again borrowing
directly from [41], we reuse an argument based on the Bernstein-Walsh inequality. Here it
requires a bit more care in its implementation using a comparison, see Proposition A.1.

For the case of general o, 3;, our approach differs moderately from the most closely related
work in [8]. In [8], the authors construct an approximately analytic extension of a Szegé-like
function that appears in the exponent. This has the benefit that one can directly use the
exact classical parametrices to solve local problems. It appears to have the drawback that as
the assumed smoothness is increased, one does not recover the order of the error term that is
found in the case of analytic h;. The method proposed here directly constructs a nearly analytic
extension of h; and one obtains error terms on the order of O(n‘He) for any € > 0 by supposing
that h; is smooth enough. The drawback of our approach is that there is a small interval on
the real axis where we do not obtain uniform estimates, determined by the § parameter in
Theorem 2.6. Importantly, 6 > 1/n? is always possible and the so-called Bessel asymptotics for
the orthogonal polynomials near a;, b; can be determined using the method here. If uniform
asymptotics are desired using this method, we conjecture that a Sobolev improvement of our L?
bounds is possible, with possibly greater smoothness assumptions on h;.

The outline of the paper is as follows. In the remainder of this section, we introduce the
Fokas—Its—Kitaev Riemann—Hilbert problem and fix more notation. In Section 2, we present
the 0 deformations for the general Jacobi-type case aj, fj > —1. This leads to Theorem 2.6. In
Section 3, we first present an improvement for the Chebyshev-like case «;, 3; € {—1/2,1/2} in
Theorem 3.1 and then discuss the addition of a finite number of point masses. Section 4 discusses
the implied asymptotics for recurrence coeflicients and uses this to present numerical experiments
demonstrating that Theorem 3.1 is likely suboptimal. We also include five appendices that
include technical developments.

On a notational note, with possible subscripts, C, C’, C”, ¢, ¢, D, D’ will be used to denote
generic constants that may vary from line to line. Capital bold symbols A, B, ... will be used
to denote matrices and matrix-valued functions. Lower-case bold characters are used to denote
vectors. For concreteness, ||A|| denotes the Frobenius (Hilbert—Schmidt) matrix norm.

1.1 The asymptotics of the recurrence coefficients

We briefly review the implications of the asymptotic estimates obtained here by reviewing the
formulae given in [18]. For error terms E1, E9, F3, the recurrence coefficients for the orthonormal
polynomials with respect to a measure p (1.1) satisfy

©2(c0;d2; (n+1— P)A + Q)

n (U _c2 @2(00,d2,(n_P)A+C)+E ,
O1(coidg;(n— PYA+() 2

)~ B =P)A+G OV (1= P)ALY
" ©1(c0;d2; (n — P)A+¢)  O1(c0ida; (n+1— P)A+() '

For the definition of ©; see (D.1), and the superscript (!} denotes the O(1/z) term in the

expansion of the function at co. The vectors dj, A, and ¢ are determined in (2.3) and the

constant g; is the O(1/z) term in the expansion of g at oo (see (A.2)). The size of the error

terms Fy, Fo, F3 is determined by the size of the error terms, with respect to n, obtained in

Theorem 2.6 or Theorem 3.1.
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1.2 The Fokas—Its—Kitaev Riemann—Hilbert problem

In [22], the authors found a characterization of orthogonal polynomials in terms of a matrix
Riemann-Hilbert (RH) problem. We now review such a formulation. Define the Cauchy trans-
forms of the monic orthogonal polynomials?

el =5 | 1)),

2mi A—z
and the matrix-valued function
(23 1) cn(z; 1)
Y,(z;pn) = n , z € su ,
% k) {Vn—l(ﬂ)ﬂn—l(z§ﬂ) Tn—1(p)Cn—1(2; 1) # supp(4)

where we use the notation v, (u) = —27i||7,(+; u)||£22(u). It then follows that (see [22] or [27])

Y (zu) =Y, (25 1) L p(2) , Y (z;p) := lim Y, (2 £ie p), (1.2)

0 1 e—0t
at all points z € R where p has a continuous density p. From the discrete contributions to p,
| 0 o |
Res—c; Yn(2; 1) = Zl;ngj Y, (25 1) [0 201} , j=12,...,P. (1.3)

We will initially suppose that P = 0 and discuss the requisite modifications later.
Additionally,

Z—n

Yoo (2 1) [ . z‘ﬂ _14+0(1/2), - o0 (1.4)

We need to impose singularity conditions at the endpoints, following [27], we require the
entry-wise asymptotics

(1 1+ |z — byl
O ! ’ j O)
1 1+|Z—bj|aj J#
Y, (z;p) = :1 log | — b z = by,
O g ! 9 ]:0,
1 log|z — by
1 14 z—ay®
O ! ) ] 07
1 1+ |z —aj|% bi #
Y,.(z;n) = :1 log | | z = aj. (1.5)
oglz—a,
O s g ; B]:[)v
1 log|z — ajl

We make an important note here. First, it follows that det Y, (z; ) = 1. Second, if we con-
struct another function, Y, (2;p) that also satisfies (1.2), (1.3), (1.4) and (1.5) then the ra-
tio Y (z; )Yy (z;) ! will be analytic except for possibly a;, b; where isolated singularities
could persist. Indeed, we check, as z — b;, if a; # 0, for example,

= . . -1 _ 1 1+‘Z—bj‘aj 1+|Z—bj|aj 1+‘Z—bj‘aj

Yﬂ(za N)Yn('zmu) - O |:1 1 + ‘Z _ bj‘aj 1 1
O e A e

].+|Z—bj|aj 1+’Z—bj|aj

From the condition o;; > —1, we see that this isolated singularity must be removable. Liouville’s
theorem gives Y, (z; 1) Yn(z; )" =L

2The monic orthogonal polynomials are defined by the requirement that 7, (z;u) = z™(1 + o(1)), n — oo,
and [ 7 (2; w)mm (25 p) p(dz) o Onym.
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Remark 1.1. First, in all our calculations, z = = + iy where x,y € R. We will treat a func-
tion f(z) of a complex variable also a function two variables f(x,y) and will abuse notation
here. We typically write f(z,y) when f may not be an analytic function of z = x + iy.

Remark 1.2. We typically use f*(z) to denote the boundary values of a function f from the
left (+) or right (—) side of an oriented curve. In some cases, it may be convenient to use
subscripts to denote the boundary values, e.g., f.(2).

2 Dbar deformation

We begin the deformation procedure by first recalling the definition and properties of the so-
called g-function, see (A.2). Historically speaking, this construction is found in [2]. This function
is also related to the exterior Green’s function with pole at oo [39]. Often this function is
determined during the process of deformation, but we need it at the outset. Throughout what
follows, we now suppose that ¢ > ¢ > 0 are sufficiently small so that both ¢(z;a;), ¢(z;b;)
from (A.3) are conformal on the balls Be (a;), Be(b;), respectively, for all j. We assume that
all the sets Be(a;), Be(bj), 7 = 1,2,...,9 + 1 are at a distance at least, say, 10¢’ from one
another. Next, define A; = ¢(Bc(aj);a;), Bj = ¢(Bc(b;);bj). We also now suppose that € > 0
is sufficiently small so that these sets are convex.

When h; is assumed analytic, one arrives at a local RH problem that needs to be solved
explicitly near a;, b;. After employing the local conformal mappings, one finds a model problem
with piecewise constant jump matrices. The solution of this problem is built out of Bessel and
Hankel functions [28]. As will be made clearer below, the jump contours for the model problem
are given in Figure 1. The contours will then need to be mapped using the inverse mappings.
So, define X, » = o1 (fjﬂ Ty aj), Yo, 0= @_I(Fjﬁ Fg;bj), forj=1,2,...,9+1,¢=1,23.

Iy

I

Figure 1. Model contours. Here we use o = 27/3. The contours are symmetric about the real axis.

The contours in Figure 2 will become jump contours in a deformed hybrid RH-0 problem.

For 2 € C, z = re? 0 € [0,27), define (2), := r®i®?. Similarly, for z € C, z = rel,
0 € [-m,7), define (2)* := r®e® /2 = 21/2. Consider the function w;(z) = (b; —x)% (x—a;)%,
a; <x <bj, and

wi(z) = (5~ )% (2 — a;), 2 € C\ ((~00,05] U by, 0)).
Then for a; < x < bj, lim_ow;(z + i) = e 7™ (z — b)Y (v — a;)% = w;(x), and therefore it
is the analytic continuation of w;(z) to the upper- and lower-half planes.

In Appendix B, we develop a ! operator that extends a function off the real axis, while
satisfying several convenient conditions. For fj(xz) = 1/h;(x), consider fj (r,y) with Kk = k,
7 = €/2. The choice of 1, 05 that appear in the definition of fjti will be discussed below.

3Here we use the notation Be(c) = {z € C ||z —¢| < €}.
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Figure 2. Mapping the contours I'; using the local conformal mappings, with valid choices for 6, 62
displayed.

aj 2,0

El,aj

Figure 3. The addition of contours to form 3; + and enclose the regions §2; +. The definition of ¥; 1
includes the mapped contours near a;, b;.

Before we state some properties of f}j, we define a region where fJti will be used. The con-
tours X1 4, and X3 ,; intersect the circle {|z—a;| = €} at points off the real axis, and to the right
of the line a; +iR. The same is true of the intersection of the contours ZLbj and Eg,bj and the
circle {|z —b;| = €} to the left of bj+iR. So, a straight line, lying within the lower-half plane, can
be used to connect X1 4; N {[z — a;| = €} and X3, N {|z — b;| = €}, giving a contour ¥; _, using
left-to-right orientation. And a straight line, lying within the upper-half plane, can be used to
connect Y3 4, N{[2 —a;| = €} and X1, N{|z —b;| = €}, giving a contour ¥; |, using left-to-right
orientation. This is depicted in Figure 3. The contours ¥; 4+ now enclose open regions €2; +, also
depicted in Figure 3.

Define the 0 derivative d = 3(9, +i0,). We have the following properties of f]ﬁ (again, see
Appendix B) so long as we choose 05 sufficiently small so that 3(x —a;,y) and B(x —bj,y) in the
definition of the # operator are identically equal to 1 on Ya;.05 X; 0, £ =1,3. The extension f]Lt
of f; then satisfies:

(1) for a; <z < by, fi(z,0) = f(x),

or c=a;,05, |2 —c| <e€/2,and z € 21U 2.3, we have
(2) f j>bjy |2 — ¢ <€/2,and z € X1 U3, we b

0)
f] e‘(C) (Z - C)é,

k
filey) = filze) =)

=0

(3) f]ﬁ extends to be continuous on €2; . U, _, and
(4) for (z,y) € Q4+ UQ; _, gf?(:r:,y)‘ < CHfjuck,l([aj,bj)}’y‘k, for some C' > 0.
We further suppose that e is sufficiently small so that f;(z;c) does not vanish for |z — c| < €/2.
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2.1 The first @ deformation of the FIK RH problem

To begin to deform the RH problem, we notice the factorization

e | e S T

We will use this factorization locally near each interval [a;, b;]. Define

( 1 0
[ # ] , R € Qj,+7
—fi(@,y)/wi(z) 1
@) =Yl { [ ca
fj (@, y)/wj(z) 1
I, otherwise.
We compute
' 0 0
Yn(zvﬂ) - y 2 € Q',-l-a
[—af;?(x, y)/wj(2) 0] ’
0Zn(x,y) = 0 0
( y) Yn(Z,M) = ot ; z € Qj,*a
0, S (C\ (ﬁjﬁ. Uﬁj’_)
This can actually be rewritten as
0 0
Zn(za ,u’) A off , %€ Qj7+7
—0fj(x,y)/wj(z) O
0Zy(x,y) = 0 0
(:E y) Zn(Z,,U) ] ol ) S Qj,*)
8fj (z,y)/w;(z) 0O
0, ze€C\ (ﬁj,-i- U§j7_).
Setting ¥; = ;1 UX; _, as in Figure 3, we have the jump conditions
1 0
[f% ) () 1]’ e
z,y)/wi(z
Z) (2,y) = Zy (w,y)  EI Y
0 p(x)
, AS [aj,bj].
—1/p(z) 0

Next, to handle the asymptotics at infinity, which we have not changed, we recall the definition
of g(z) in Appendix A and set ¢ = lim,_, ? We define

S () = 2 o) 007, o= | O

We find that S,,(,y) solves the normalized hybrid RH-0 problem

( 1 0
[eQ"g(Z)ff(x,y)/wj(Z) R
S (z,y) =S, (z,y) 0 p(x)
z € (aj,b5),
[—w(x) 0 € (4 5)

e AT, z € (bj,aj11),
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S Qj,+7

)
—e2nalz afﬁxw/w]() 0|’

A Qjﬁ,

3Su(z,y) = Sn(2) [ ]
~2ng Z)Of”w y)/wji(z) 0]
0

z€C\ (Q+UQ,-),

Sn(z,y) =1+ O(z 1), 2 — o0.

We recall here that g* (z) + g~ (z) = 0 for = € [a;,b;] and g*(z) — g_(z) = A, for z € [b;, aj11]
where A; is a constant.

2.2 The second 8 deformation of the FIK RH problem

While one can proceed to construct a parametrix for S,(x,y) — an approximate solution
as n — oo, there is a fundamental difficulty. The outer solution will be determined, as we
discuss further below, by a function that depends on the whole of p — the Szegé function.
The natural way to solve S, (z,y) near z = a;, b; is to use the Bessel parametrices that depend
on fj(z;¢), ¢ = aj,b;, using its analyticity in a crucial way. The matching of this parametrix
with the outer solution will not remove the jump on the real axis if h; does not have an analytic
extension. The discrepancy can be estimated but it is not the most convenient way to handle
the issue.
Define (using the notation in (B.1))

filwse)
fi(z)

fi(z)
fi(z;¢)

dj771($;6) = [ (1—b7($70)), C:ajabja

der(x; c) = [ —1] (1—b7($;c)), c:aj,bj,

and set d L (z,y;¢) to be the extension, as in Appendix B, with 7 = § < ¢/4 and Kk = 0 —
dg L(z,y5c ) = d; +(z;c) for |y| < e/4. More explicitly, for example,

dg',i(%y; aj) = (1 —bs(|yl; 0)) [b(z)dj+ (23 a5) + (1 — bs(x;a5)(1 — Bz — aj,y))dj+(z; a))
+ Bz — a,y)(1 — bs(x; a;))d; + (az; aj)].
We write
‘ fiwic) 1‘ VA - VG 1
fi() fi(x) ~2VE/fi(x)

for £ between f;(z;c) and f;(x). Since both of these functions are bounded below on [0, 26], we
find

|fi(x5¢) — f ()],

[dj (5 a5)llooa b,7) < ClLi(5as) = Fi(Dlleo(ag.a;+24))»
ldj (505l 0oy b,) < CllL(5as) = Fi()llcop;—26.6;))-

Similarly, we find

Idj (5 ai)ller(fay 5,7) < CNLi(5as) = Fi( oz ,a;+26))
ldj (50l erlag v, < CNFC305) = fi(ll ooy —26,6;1)-

We immediately have the following.



On the Asymptotics of Orthogonal Polynomials with Non-Analytic Weights 9

Lemma 2.1.

4 . k+1 3t . k
ded:("y’ C)HLOO([aj,bj}) <O, Hadji(~,y, C)HLOO([aj,bj}) < C6".
Next, define
d._(z,y;0) +1 0 2€Q1, |z—d <6
Tn(xay) :Sn($,y) 0 d§,+(x7y;c>+1 ’ c:ajvij
I otherwise.

We find that T,,(z,y) solves the hybrid RH-0 problem for ¢ = aj,b;

i 1 0 ey
) Z ‘7
290 i, ) oy (2) 1 ’
0 wj(x)/ fj(@;c) |z =l <4,
i) fwi@) 0 @ € (0:0),
¢ > 26
T, (z,y) =T, (z,y) ! p(z) , oo
~1/p@) 0 # € (ag,0),
r & _(ay50)+1
0 PO G ayort| < |z—c <2,
d“#(gc,y;c)-i-l -1 T oze a;j,bj),
|~ @ ’ ot
o203 z € (bj,aj41),

0Ty (2, y) = Tn(z,y)Wa(z,y),

(T ad} | (z,ic) 0

& (2041 z€ 4,

—_ d* (z,y;0)+1 ad* (zyy5e) | _
_ 72ng(z)8 8 . G\ Gy—= " |Z C| <€,
e (z,y)/w;(z
i fi (@, y) s )dﬁ-,_(:c,y;c)ﬂ & _(yi0)+1

i ad} , (2,y3c) 0

& (y50)+1 z € Qy -,

# 34t )
—ong(2)7 ¢t (N Ga@ytl  9d) (i) lz—c| <e
© 9=, y)/wj(z)dg-,_(fc,y;C)Jrl & (z,y;c)+1 ’

Wn(:vvy) = r 0 0 "Z € ij“f‘;
_ , z —aj| > e,
e (@, y) fwj(z) 0 b
il s

r A Qj_,

0 0 ’
—ong(2)7 ¢4 , |z —aj| > ¢,
€ afj(%?/)/wj(Z) 0 |z —b;| > €
i s
0, FAS C\(Qjﬁ_Uﬁj’_),

T,(x,y) :I—}—O(z_l), zZ — 00.

And motivated by this, we define p(z;c) := w;(2)/f;(z;¢),

p(x;c), |z —c| <0, c=aj,bj,
ﬁ(;p,é) = p(l‘), |'1" _C‘ > 267 Cc= alabh- . 'aangl)ngrl?

dt _(z,y;0)+1
?(7)’ d<|z—c| <25, c=uaj,bj.
dj 4 (zy50)+1
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2.3 Construction of the global parametrix

The value of the so-called Szegé function G(z) is that it allows one to replace the jumps (aj, b;)
with something simpler at the cost of adding to the jumps on (bj,a;j+1). Define?

Jlogp aj+1
G(2) Z/ T— 2z R+ Z/ x—zR ) ’

J

where the constants (; are yet to be determined. Note that
Gt (2) + G (2) = —logp(2), z € (aj,bj),
G (2) =G (2) =G, z€(bj,a41)

Since R(z) = O(z9™!), we see that G(z) = O(z9). To avoid unbounded behavior of G at
infinity, we choose ¢ = (Cj)?zl so that as z — oo G(z) = O(1). Indeed, we find a linear system
of equations

SN dz I\ [ dx
— log p(x)z*~! — / Gttt =0, £=1,2,...,9.
;/aj ( Ry (z) 2 b, . R(x)

J=1

This system of equations is uniquely solvable for ¢ using the fact that the normalized differentials
exist, and involves the same coefficient matrix that is used to determine the polynomials ), in
Appendix D.

As a first approximation, we consider the matrix T, (z) that is obtained from T (z,y) by
dropping the 0 conditions, and just using p on the real axis

1 0

[e—Q"E(Z) fj(x,y) Jw;(2) 1]  FEE

T (2) =T, (2) 0 plx) b
[—1/,0(;5) 0 ] | el
e—A]-a'3’ S (bj,aj—i—l)?

’i‘n(z):I—i—O(z_l), z — 00.

Then consider U, (z,y; 1) = eZ3¢()T, (z; n)e~73¢() . We check the jumps of U,

1 0
U P € Ra
s [ 208)-G ) iz, y) oy (2) 1] FER
0 1
U, (z50) = { Uy (23) [1 0] : z € (aj, b)),
e A G 0
Ur_z,(zalj“)) 0 enAj""Cj] € (bj7aj+l)7

and asymptotics Uy (z) =1+ O(z71), 2 — oc.
Due to the exponential decay that e 9(?) will induce, see Appendix D, we expect the dom-
inant contribution to the solution of this RH problem to come from the jump conditions on

“See Appendix D for the definition of R(z2).
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the real axis, at least away from the endpoints a;, b;. From Appendix D, (D.2) specifically, we
expect Uy (z,y) =~ L(z;nA + ¢). And so, the global parametrix to T, is

Gn(z) = e_G3G(°°)L(Z; nA + C)e"SG(z).

While this will indeed give the asymptotics of the orthogonal polynomials away from the end-
points, to complete the analysis, we need a modified version of this function. Define

~ Y% log p(z;6) dx 4+
G(z) Z/a x—z Ri(z +Z/ m—zR ) ’

érn(z) = Gn(z;é) — e—0'3G(oo) (Z nA + C) o3G( )

Note that the constants (; are the same as those in the definition of G(z). This is so that the
ratio G(z)/G(z) will be analytic across the gaps (a;+1, b;).

For a given z € C\ [a, ] let n(z) be the closest point in [a,b] to z. Set S(z) = v/z —avz —b.
Then

P f@) dat b1 [ n(z) S .,
S() o &' —2z 84 (2) —f(n(Z))/a x! —ZS+ / ' —z St () de.

The first integral can be computed explicitly and seen to be bounded on all of C. If L is the
Lipschitz constant for f on [a, b] then because |2’ — n(z)| < |2’ — z| the last integral is bounded
by L f b |S ‘ dx which is bounded on bounded subsets of C. Then using Lemma 2.1

g+1
G(2) = G(2)| < CY_ llp/ws = p(-6)/wjllco(fa; p,7) < C'6%, (2.1)
j=1

where the constants depend on the subset.

2.4 Using local solutions

In this subsection, we make heavy use of the definitions and jump conditions established in
Appendix C. Consider the function

R, (z,t) = Tp(z,y) (Gn(z)Gn(z)_an(z; bj)) -

We claim that for |z — bj| < €, that the function R,, is continuous for z & (b; — €,b;), and
for |z — b;| < 4. Indeed, Ty, (x,y) and P, (2;b;) have the same jump condition for z & (b; — €, b;)
and G,,(2)G,(2)! is analytic for 2 & (b; — €, b;).

We then recall that for b; — e < z < b; we have

T =Talen) |y |

1

Using that for b; —e < z < b;

A Gaity) = Ay oo (A ) Bt ()7,
and

) — . 0 p(2;b;5) _ ,
Q:{(Zabj)_Qn(Zb){ 1//7( ) Oj:|a bj_6<z<bj7
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we compute, again for b; — e < z < bj, that

R/ (2) = R, (2)G,, (2)G, (2) 1A} (2:0)Q,, (23 b))
LCTIA AP CT) A
- (p(Z;bj)> Qu (736507 (2) E(ﬂ(Z;bj))
x E7NUT(2)73 A, (2,0;) 7 G (2) Gy (2) 7L

For b; — 6 < z < b;, we have that p(z;0) = p(z;b;) and the claims about R, follow.
Define

Bi(2) = G5 (2)Gy (2) T AL (2 b))Qy (2:by),
By (2) = Q (2:b;) 0T (2)UE,

Bs(2) = ET'UT(2)7 AL (2:0) TG, (2)Gy, ()7
The following is a direct consequence of Lemma C.5.

Lemma 2.2. Let bj — e < z < bj, and

p(z;0) _ P (Zb)_ e(z) = max Z z

PEDtva), BEM e ) = maxlld ()] ()
and define

ety = |- Bita) (25 ) B (£575) B

Asn?(bj — z) = 00, on(z;bj) = O(n~tz — bj| te(2)?).

2.5 Global approximation

We have already defined R,,(2) for |z — b;| < e. To complete the definition, we set

1

(?n(z)Gn(z)_an(z;bj))_ .|z =0l <,
R (2,9) = Tn(2,9) { (Gn(2)CGn(2) "Pulzi0;) " |z =0yl <e,
Gn(2)7 1, otherwise.

We now make the restriction that n~? < § < € to find that, for some ¢ > 0, R, (z,y) should
solve the hybrid 9-RH problem

I+0(e™), z€X;+UX_, |[z—0bj| >¢€ |z2—aj| >¢

R (z,y) =R, (2,9) I—i—O(n +(5k) |z —c| =€, ¢=aj,bj,
I+0(n'67), ze€(bj—e€b;—0)U(a;+6,a;+e¢),
5Rn($,y) =R (z,y)Xn(z,9),
Gn(2)Wo(2,y)Gn(2) "tz € Q; 4 N (B (aj) U B (bj)) )
G (2)Gn(2) ' Pu(2 ) Wi (2,9)Pr(2;0) 1G(2)G(2) 7

xz € Qj+ N Be(c), ¢ = aj,bj,
o, zeC\ (+UQ;_),
Rn(:c,y):I—l-O(z ), z — 00,

Xn(z,y) =

where the jump condition error terms are uniform in z.
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The jump condition on (b; — €,b; — §), for example, comes from Lemma 2.2, and the jump
condition on |z — ¢| = € follows from (2.1) and the fact that G, '(2)Py(z;¢) = I+ O(n™!)
for |z — ¢| = ¢, see Appendix C.

To solve this problem, asymptotically, we first consider the problem with the RH component
removed. We seek C,,(z,y) that is continuous on C and satisfies

ICn(z,y) = Cn(2)Xn(z,y),  2€ Q1 UQ_,

Cu(z,y) :I—i—O(z*l), Z — 00,
where derivatives are understood to hold in a distributional sense. We set Q = J,_. U; 0.
Lemma 2.3. Forp > 2, k> 0, suppose

2p(2|la;| — k) +p—4 <0, 2p(2|Bj| — k) +p—4<0,

for all j. Then

_ (B+k)p=1)((2k—1)p+4)

HXTLHLP(Q) = O((l 4 ]ln:O log n)n2(77*k)+1*% +n (2k+5)p2 + 5k>,

n = 2m]axmax{]aj’, 185}

Proof. We define three regions
;1= (e UQ-) N {z [ 0Pz = bj] < e},
Q= (Y UQ ) N {z | e <n?lz = by < N,
ij,IH = (QjHr U Qj7,) N {Z | N < n2\z - bj’ < 7”L26},

where c is sufficiently small, but fixed, such that the estimates in Lemma C.1 hold, and N < n?.
In €, 1 and , 11 we simply estimate |e_9(z)\ < 1. Then for a;j # 0, z € 4, 1 we have for Dy > 0,
using Lemma C.1,

X (2, )|l < Dr(n? 4z — b 1ol|y|F 4 6%) < Dy (2o H 2 — py|~loslth 4 67),
where we used that

0 0

W (z5b;) [1 Ju(2) 0] Wz:65)” = {W@bﬁ?/w(z) 8]

is bounded. Then rescaling and using polar coordinates®

2 c
/ | X (2, y)||P dedy < D€n2p(2|°‘j|_k)+p_4 / / pPleg PR+ g g9 + 0(5]"7’).
b1 0 0

From this, we find the conditions p(k — |o]) +1 > —1, 2p(2|a;| — k) + p — 4 < 0, where the
first is required for integrability and the second is needed to obtain a meaningful estimate. The
second is more restrictive. Now, if a; = 0, we have

X, 9)| < Di(nlz — by logn|= — byl + &),
giving

/ | X (,9)||P dz dy < DPn=2PE+P=4(log n)? + O((Skp), —2pk +p—4<0.
b1

®For convenience, we will routinely use the fact that for a,b > 0, p > 0 that (a + b)? < Cp(aP + bP).
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Then, again, rescaling and using polar coordinates and Lemma C.4,
N
/ X (z,y)||P dedy < DY, [N3p/2n_4_2kp/ rkptl dr} + O(5"P)
b, 11 0
DH N3p/2+k’p+2 —4—2kp + O(5kp)

-  kp+2

Now, in €, 111, the change of variables will not be sufficient. So, we need an estimate on g(2).
For any e > 0, sufficiently small, there is ¢/ > 0, such that for |y| < e we have

Reg(z) < —c|yl, (2.2)
which, of course, implies ‘eg(z)‘ <e W Forz e Qp; 111,
X (2, )P < DYy (Jy[PF|a — by| 7P 2= Privl 4 gkP).

And then because Oy 111 C {2z | bj +m™'N?/n* <z < bj+e¢, |y| < €} for some m > 0, we have,
using Lemma C.5,

bj —+€

/ X (2, y)||P dedy < 2D¥; / yPre=P | — bj|_p/2 dz dy + O((Skp).
Oy 111

bj+m—1N2/n2

So, we set ' = x — bj, ¥ = ny giving

| Xyl dedy
Qp . 111

o0 1 €
< 2DP (d'pn) PR [/ yPre™y dy] ziP/? +O(5*7).
0 1 _p/2 m~—1N2/n?2

We are left with, by possibly increasing Dryi,

[ Xl dedy < Dt H5N 7 1 O(5).

Qp 111

To set N, we set

np(l—k)—3N2—p _ NSp/2+kp+2n—4—2kp N3p/2+(k+1)p _ n1+(k+1)p

1+(k+1)p
N = n3p/2+k+1)p |

We note that this is a valid choice for N because, for p > 2,
1+ (k+1)p
3p/24+ (k+1)p

Then for ¥ = Q\ U;(Be(a;) U Be(b;)), we use (2.2), the formula for W, and the boundedness
of G,, to conclude

€
/ X (2, y)||P dzdy < D/ yPhe PV dy < D'n Pk-L, =
= 0

Proposition 2.4. Suppose p > 2 and p(k —2|c;|)+2 > 0,p(k—2|8;])+2 > 0 for all j. Suppose
also that Vy(z,y) € L>*(C) satisﬁes

- [YAREEE) gpy  L [ 2T s, (23

Then V,(z,y) + 1 is a solution of the & problem solved by C,(x,vy). Lastly, V, is a-Hélder
continuous for some 0 < a < 1 and V,|q is differentiable almost everywhere.
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Proof. We use [3, Theorem 4.3.10] which states that, in a distributional sense, the integral
operator

Kou(z,y) = 1/ Uz y) dA(Z)

o 2 —z

is inverse to 0, provided u € L?(C). The condition imposed on k implies that X,, € L?(C). So,
if V,, € L%(C), V,,X,, € L*(C) so that 9V, = V., X, + Xy, 9(Vy +I) = (Vi + I)X,,. Next,
from [3, Theorem 4.3.13], we have that o maps LP(C) into the space of a-Hdélder continuous
functions for « =1 —2/p, p > 2. And we again use the relation V,, = Kq(V,X,) + KoX,, to
get the desired conclusion because X,, € LP(2). The claim about V,|q follows from the elliptic
regularity theorem, see [23, Theorem 9.26], since V,|q € L*™(Q). [

We also see that for any p >2 > ¢,1/p+1/q¢ =1, and U € L*>°(C),

dA(2) )1/‘1’

|z — 2|9

1Kl (o) < CIU e Xl o <sup /
2eQ JQ

1 U, )X, (2,
Kn(z,y) = 7T/Q ( 2’)— z( ) dA(2).

We arrive at our main theorem concerning the existence of a solution Cy(z,y).

Theorem 2.5. Fiz k > 1 and set n = 2max; max{|a;|, |5;|}. Suppose 2(n — k) —1 < 0. Then
for every v > 0, and n sufficiently large, there is a unique L*°(C) solution of (2.3) that satisfies

[Vl poocy = O(n¥=R =17 4 6k,

which is also Holder continuous on C. Furthermore, V., +1 solves the O problem for C,, satisfying
the pointwise estimate

Valzee(c)

Proof. By choosing p > 2 in Lemma 2.3 sufficiently close to 2, the theorem follows by Propo-
sition 2.4. ]

This implies that [|Cp(z,y)|| and ||Cp(z, y)~!|| are uniformly bounded for n sufficiently large.
So, set Ry, (z,y) = Ry (z,y)Cp(x,y)~ . It then follows that, for some ¢ > 0, R, (z,%) should
solve the RH problem

I+ O(e™ ), z€X; UX,_, |z—bj| >¢€ |z—aj| >
R/ (2) =R, (2) I+0(n~t+6%), [z2—c =€ c=ajbj,

I+0(n71671), =ze(bj—e€bj—0)U(a;+d,a;+¢),
R, (2) :I-I—O(z_l), z — 00,

where the jump condition error terms are uniform in z. Standard theory, see [12], for example,
gives estimates on R,,. We find the following.

Theorem 2.6. Suppose h; € C*¥'([a;,bj]) for each j. For k > 1 such that 2(n — k) < 1,
n = 2max; max{|a;|, |B;|} and any fized v > 0, sufficiently small, set

dg-ﬂr(x,y; c)+1 0

Du 7 - )
559) 0 d_(z,y;0) +1
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R L LI A .
Dh(:,:?y):{Dj(Z,aj) Dj(z;65)7", 2€Qjq,

I, otherwise,
1 0
h ﬁ 3 z e Qj’:‘:,
Fiz,y) = ¢ |£fj(2,9)/wi(2) 1
I, otherwise.

Then forn™! < § < 1,

Yo (25 1) = ¢ 73T, (2, y) D (2, y)e RT3 (2, y),
Gn(z)Gn(z)_an(z; bj), |z—10bj] <e,
Th(z,y) = Rn(2)(Va(2,9) + 1) § Gn(2)Gn(2)'Pu(z;a), |2 —aj] <e,
G (2),

(2) otherwise,
where
S 1 0,(¥") -1 —15-1 k
Ro(e) =T+gn | 5 4 IOl = O(n™" + 07070 40,
n—k—o—y +n2(17—k)—1+'y + (5k
VTL ) =0 ;
(z,9) ( 1+ |z]

and therefore

- —k+v 2(n—k)—14~ 1e1 &
Rn(Z)(Vn(x,y)+I)_I+O<n +n +nls _’_5>7

1+ |z|
Gn(2)Gp(z) =TI+ 0(8%), D¥(z,y) = I+ 0(s%),

uniformly for z in sets bounded away from I's, where

ngU({z ||z —aj| =€etU{z ||z —bj| =€} U(bj —€,bj —6) U (aj +6,a; +¢)).
J

Proof. Let Y, (z; 1) = ¢ 93T, (x,y)D%(x, y)e"0*)3F (1, 3)). All the estimates have been pre-
viously discussed and the remaining issue is the equality — that Y, (z; 1) = Yn(z;p). It can
be shown that the jump conditions for Rn(z) satisfy the so-called product condition [37, Def-
inition 2.55] and derivatives of the jump matrix are essentially bounded. Thus O,, € H.(Ts),
[37, Definition 2.48], an appropriate Sobolev space to ensure that Rn(z), as defined, is uni-
formly a-Holder continuous and takes a-Hdélder continuous boundary values for some a > 0.
And Y, (z; ) satisfies the jump conditions set for the FIK RH problem, in a continuous sense
(away from aj, bj).

Next, we need to verify analyticity. But from classical elliptic regularity, [23, Theorem 9.26],
we have that Y, (-; ) € C®(Q) for every open set € that does not intersect any one of the
contours used in the deformation, i.e., for

Q' cC\z, Y= U(Ejv* UXj+Ulaj,bjlU{z]| |z —aj| =€} U{z ||z —bj| =¢€}).
J

Furthermore, Y, = 0 in such a set {/, implying analyticity. .
Lastly, from the singularity structure of Ppessel it follows that Y, has the same singularity
orders as Y,, and therefore Y,, = Y,,. [ |
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Effective use of this theorem then requires choosing ¢. If asymptotics are desired away from
the endpoints aj, bj, one can choose k so that n161 =gk, § = /(D) For 2(n—k) <0,
this will give errors of O(n_k/ (k“)). On the other hand, if one wants asymptotics near z = a;,
for example, care has to be taken in estimating R, (z). We write I's as a disjoint union

I's =(a; +9d,a;+¢€) UTg,

and find the entry-wise estimate for z € By(2;), 0’ < 4,

1/2
ajJre dx
B |x_z|g> + O(|OnllL2(ry))
5

‘(Rn(z) - I)z‘j‘ < ”OnHL2(F5) (/
= 0(0720nllr2(ry))-

So,if n1673/2 < 1, or § = n~2/3t7, and 2(n—k)+1/3 <0, we obtain a valid error term giving
uniform asymptotics on scaled neighborhoods of the endpoints a;, b;. Furthermore, by taking k
sufficiently large, v < 2/3 here can be chosen arbitrarily close to 2/3.

3 Extensions and improvements

In this section, we discuss two topics. The first is the improvement in the estimates for the
aj, B € {1/2,—-1/2}, the perturbed Chebyshev-like case. The second is the addition of point
masses to the measure pu, i.e., P > 0.

3.1 Chebyshev-like polynomials on multiple intervals

So, suppose «j, 3; € {1/2,—1/2}. In the case where f; = 1/h; is analytic in a neighborhood
of [aj,b;] for every j, local parametrices are not needed [27] (see also [17]). To treat the case of
non-analytic f; using this fact, one needs to find an extension of f; to an entire neighborhood
of [a;,bj] to appropriately pose a hybrid -RH problem. This was accomplished in [41]. While
we follow this idea, we use a slightly different method of extension, since we have already
developed our extension operator *. First, we recall that for ¢ > 0, f; € W¥P([a;,b;]) has
a WEP([a; — 2¢,bj + 2¢]) extension. Similarly, f; € C*%([a;,b;]) has a C*([a; — 2¢,b; + 2€])
extension. This can be constructed simply by polynomial interpolation of the function and
its first k& derivatives at the endpoints — the Taylor polynomial. For what follows, we will
assume f; € C*%([a;j,b;]), K > 1 and any o > 0 or f; € W*4([a;,b;]), K > 1 and ¢ > 4. Then,
we find a sequence of polynomials (plm,j)mzl of degree m such that

Ejm,q = Hf], _p;n,j L9 ([a;—2e,bj+2€¢]) 7 0, q > 6.

From Jackson’s theorem, see [4, Theorem 3.7.2], we can select the sequence such that E; ;oo =
O(m~F1=2) if f € C*([aj,b;]), but more refined estimates are possible for W*([a;,b;])
[10, 20]. Specifically, if f; € W*P([a;,bj]), we can select the sequence such that [10, (5.4.16)]

k—1

—k+1 £+1
Ej,m,q <Cm * E : ”fj( )”Lq([aj—Qe,bj—&—%])
{=min{k—1,m+1}

—k+1
< C'mT M| fillwk o (ag—2eb,+26)) -

Set, for example, py, ; = fj(a;) + f; p;nj(x’) da’. Then, define 7, ; = f; — pm j, and its exten-
L . 30 : o
sion 1y, ;(z,y) with x = 0 and 7 = €/2. Then the extension of f; is given by

Fiay) =718 (2,9) + pmj(2)-
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Note that for z € Q) := {2 | ¢/2 —a; <2 < bj +¢€/2, 0 < [y| < ¢/2}, we simply have

F1@,y) = 1o 3 (@) + Py (2).

In our deformations, we reuse the analogous notation from the previous sections and trust it
will not cause too much confusion. Define Q; L= Q; N C* and

1 0 ,
t , Z€ Qj#,
—f;(z,y)/wj(z) 1
(,y) (23 11) i 0 L sew
fi(z,y)/wi(z) 1 ’
I, otherwise.
So that
Z,(z; 1) 0 ze
U o @) fwi(z) 0 a
0Zy(z,y) = 0 0
D=z | seq
o, (w.y)fwi(z) 0 ’
07 z € (C \ ﬁ;
Set

Yoo ={zlz=0aj—-¢/2,0<y<¢€/2}
=U{z|ly=¢€¢/2,a;—€2<x<bj+e/2}U{z|x=0j+¢/2,0<y<e€/2},
i.e., the “top” boundary of the box Q; We give this negative orientation (as the boundary
of 7). And set ¥ = {z]z€ Z‘;-’Jr}, inheriting orientation.
It follows that the matrix used in the definition of Z,, is continuous across the real axis
for a; —€/2 < x < a; and b; < x < b; + €/2 [27] giving the resulting jump conditions

1 0] / /
¥$ wilz ) Zegj_UEj’Jr’
er(l’,y) =7, (z,y) fj( 2 Y)/ i(z) 1
0 p(x) clab]
~1/p(x) 0 | Z & 144,951

As before, define T,,(xz,y) = "@3Z,(x,y)e "8(2)73 We find that T, (z,) solves the normal-
ized hybrid RH-0 problem

1 0
, zeX_uUux. |
L?w@ﬁwwv%@>1] T
T (2,y) =T, (x, 0
(z,y) (z,y) p(x) 7 2 € (a5.by),
~1plx) 0
eiAja?)v (AS (ijaj-i-l)a
[ 0 0
— , zeQ
;f%wm%@wmw>4 g
oT,, z,y) = Ty(z 0
( ) ( ) —2ng(2) 9.4 ] ’ z € ng—’
o 2 C00r?, () s (2) O o
0, ze€C\ Q;.,
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T,(z,y) :I-I—O(z*l), zZ — 00.

With the notation for G, (z) being precisely the same, we set Ry, (x,y) = Tp(z,y)Gp(2)~!, and
find that R, (x,y) solves

1 0
™28 fH(z,y) fwj(2) 1

Rz(xu y) = R;L(I‘,y)Gn(Z) ] Gn(z)il’ z € E./fv* U 2;7+’

0 0

_e—2ng(z) —2G(z)5rﬁ

G, (2)e3G(2)
* my; (T y)/wj(z) 0

xe?3GE) G, (2)7Y, ze

- J7+’
IR, (7,y) = Ry (2) 0 0
’ G, —03G(z) B
ET e 200502, (0,90 (2) 0
xe?3G ()G, (2) 71, zeQ;_,

L0, ze€C \ST;,
R (z,y) :I+O(z_1), Z — 00.

As above, we then seek C,(x,y) that is continuous on C and satisfies
IC,(2,y) = Cn(2)Xn(z,y), z € Q;-,
Cu(z,y) :I—i—O(z_l), Z — 00,

where derivatives are understood to hold in an L?(C) distributional sense. As above, we seek
a solution C,, = V,, + I where V,, satisfies

1 V / / X / / 1 X / /

Vn(:x,y)—— n(x,y) "(x’y>dA(z’):— n(:n,y)

™ Jo Z/—Z ™ Jo Z/—Z

dA(z), =]
J
Define the operator £, U := Kq/(UX,,), and the companion operator

Kqu(z) = 1/ Uy dA(Z).

™ Jo ’Z/—Z’

Below, we will establish conditions under which |[Ke/ (|| Xy|[)[zeoc) — 0. This will then
imply, via a standard Neumann series argument, that C,(z,y) and C,(z,y)~! are uniformly
bounded, for n sufficiently large, and tend uniformly to the identity matrix.

Next, we make a similar observation to what was made in [41]. The Bernstein-Walsh inequal-
ity, see [33, Theorem III.2.1], in its simplest form, states that if a polynomial p(z), of degree n,
satisfies max_1<z<1 [p(z)| < C, then

p(z)| < Clp(2)[", z2€C,  d(r)=z+Vz-1Ve+1

Therefore, if a polynomial p(x), of degree n, satisfies max,<z<p |p(x)| < C, then

p(2) < ClO(ME)[",  2€C,  M(z) = M(za,b) = bfa(z—bg“) (3.1)

Thus, for the sequence of polynomials pp, j(x) that converge uniformly on [aj,b;], we have
|pm.j(x)| < C for some constant, independent of m (and j). From this, and Proposition A.1,
provided that e is sufficiently small we have that

P (2)]|e729@)| < C|¢(M (2; a5, b)) 72+, (3.2)

for some ¢ > 0. So, we choose, for example m = |cn| so that (3.2) is O(e™").
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Now, as before, set Ry, (z,9) = Ry (z,9)Cp(z,y)~". It then follows that R, (z, %) should solve
the RH problem

Ri(2) =R, (:)I+0(e™"), 2€%, ¥= U(Z;,, Ui)
R, (2) :I+O(Z_1), z — 00,

where the jump condition error terms are uniform in z. Standard theory, see [12], for example,
again gives estimates on R,,, and we find the following.

Theorem 3.1. For k> 1, ¢ > 6 and® € sufficiently small set

1 0 ,
t , ZE€ Qj7i,

I, otherwise,

Fh({B, y) =

and suppose ||Kqy ([[Xn ||z (c) = o(1), n — co. Then for n sufficiently large,

Yo (25 1) = ¢ "7 (2, )€™ TIR (2, ),
T,(z,y) = f{n(z)(Vn(m, y) +1)Gn(2),

where

Ro(2) =T+ o [ 2 ar 0 = 06,
and

Vi(z,y) =0 <HKQ/(|1§||B’HLOO(C)> , z € C, m = |cen].

Proof. The only remaining detail to spell out is the estimate on V,,. First, it follows that

1£nll Lo @) < 1Kar ([ Xanl)ll Lo c)-

This implies that the integral equation V,, — £, V,, = KX, is near-identity. For n sufficiently
large, it has a unique solution, tending to zero as n — oo, and

IVall S ILnVall + 1Ko Xall < (14 [[Vall Lo @) 1Ka (IXn Dl o () - u
To finalize the preceding theorem, we have the following estimates.
Lemma 3.2 (norm bounds). Forp> 2, q>6, and 1/p=1/q+ 1/r, and m = |cn|,

1Ko (1XnlDll L) = O(n~ 1" max Ejm.q)-

Furthermore,

1Ko (IXnl)ll ooy = O(n ™" log nmax Ejm,o0)-

5Recall that € appears in the definition of DI/
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Proof. Importantly, we note that by Lemma C.3, e_QG(z)/wj (z) is bounded in a neighborhood
of [a;,b;]. From the (at most) quarter-root singularities of Gy, (2)e™3%(%) we find for z € Q;
that

0 0
Y eagG(z)Gn P -1
P () ey () O )

satisfies
X (@, )l < ClOrt, (w,y)||2 — aj|~V/2|z — by| /2 2nReale),

With the aim of using (E.1), we have

1Xnllzoce) < CHOrE il g s lr s,

hjn(z) =]z — aj|_1/2|2’ _ bj|—1/2e—2nReg(z)’

for 1 < p <4, and 1/p = 1/q¢ + 1/r. Since we will need p > 2 below, and using (E.1)
requires v < 3/2, we choose r < 3, and ¢ > 6, giving ||Xn||Lp(Q;) =O(n"Y"Ejpm,q). The first
claim follows from the fact that ||Cqul| L~ (C) < Cpllul|pr(qary for some G, > 0, provided p > 2.

To establish the second claim, we need to establish the estimate Kq/hjn(2) = O(n_1 log n)
This essentially follows from the proof of [41, Lemma 4] once we note that, after the change of
variable 2’ = 1/2(7 + 1/7), there is a helpful factor of |72 — 1| that can be used to cancel the
singularity in

1/2 _ 27

5 -
‘z 1| ’72—1"

3.2 The addition of a finite number of point masses

The addition of point masses follows a simple procedure, see, for example, [17]. Diagonal and
triangular rational modifications are made to the original RH problem, with the second applying
only in a neighborhood of each of the point masses, converting a residue condition (1.3) into
a rational jump condition. The effect of this is a rational modification of the densities on [a;, b;]
for every j, a change in the asymptotics at infinity and the introduction of a jump condition on
a small curve encircling the point masses. Once the g-function is introduced, this jump condition
becomes exponentially close to the identity. We sketch this procedure here but refer the reader
to [17] for more detail.
Define

~

Yn(z) = Yn(Z;,U) [H

f:l(z — )7 . 0
0 Hj:l(z —¢5)

Then let =; be a small neighborhood of ¢;. Define

1 0
- ~ 7 , R € E],
Yn(z) = Yn(z) —— 1

Z—Cj
I, otherwise,
where 7; is defined as
27
o . -2
Tj 1= - (¢j —cr) "
Ik

The RH problem satisfied by Y, is found by modifying the RH problem satisfied by Y, in three
ways:
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with

)
P
H z —cj). (3.3)

e Replace p(z

e Include the jump

Vi) =Y (2) [_ . (1)]

Z—Cy

on the positively-oriented boundary of =;.

e Replace the asymptotics at infinity with Y, (z)z~ ("o =1 4 O(z71), z — o0

Then Theorem 2.6 holds if one makes the new definition

b z—cj 0
Fh(x,y) = Hh(:n,y) [HJI(O ) Hf:1(z _ Cj)l] )

1 0
ﬁ P z e Qj7i,
:l:fj (@, y)/w;(z) 1
Hi(z,y)=<[1 o0 ~
7 1 ) KAS =E
Z—C]'
I, otherwise,

p is replaced with (3.3) and n is replaced with n — P. Similarly, Theorem 3.1 holds if one makes
the new definition

P
F(z,y) = H(z,y) [Hjl(g 2 1% 1(2’0—0-)1] ,
Jj= J

1
, zeQ
+ 11 (x,y) fwi(2) 1] »
H'(z,y) 1 0 _
7 1 ) z € =gy
Z—C]'
I, otherwise,

p is replaced with (3.3) and n is replaced with n — P.

4 Asymptotics of recurrence coefficients
and estimating optimal errors

While asymptotics of the polynomials themselves are directly available using the above calcu-
lations, we are primarily interested in the asymptotics of the associated recurrence coefficients.

The recurrence coefficients (an,(@))n>0 and (by(1t))n>0, bn(p) > 0, are the coefficients in the
relation

p-1(z;p) =0,  po(z;p) =1,
Tpn (75 1) = by (1) Prt1 (25 1) + an ()P (25 1) + b1 (0)Pr—1 (5 ).
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If we write

Yn ’ — I Y(l) —1 O -2 (7'3TL7 Y(l) — yll(nhu) y12(n7,"6) ,
(i) = (T4 Yi2 =+ O(7))2 U= g nig) gnlni )

we have

Pz 1) = () mn (25 1) = (1) (2” Fyri(ng )2 4 ) 7
1
cn(2 ) = —Tfn(u)zz” = yra(ns )2
i
Equating coefficients in the recurrence, gives

Cn(p) = bp (1) lng1 (1), Cn(p)y11(n; ) = by () g1 ()y11(n + 1; p) + an(p)ln(p)-

And therefore

~ Ang1(p) o y12(n+1; 1)
bl =gy =T

In Theorem 2.6 or Theorem 3.1, we have as z — oo

an(p) = y11(n;p) — y1r(n + 1; ).

To(z,y) = (I+ TV +0(272))Ga(z),  Gul2) =1+GH2'+0(27?)
for Tg) — 0. Then using that
g(z) =logc+logz+ g1zt + O(z_Q),

we have
eng(z)0'3 — (O3 ,no3 (I + ng103z_1 + O( —2))
Yo(zp) =c "3 (I+ [G(l) + T(l)] 0(27?))(I+ngiozz! + 0 (272)) 73278
= (I + [C_nUS [G(l) + T(l)} nIs 4 nglag]z + O(z ))2"03.
This gives the expansion
YN (p) = o [Gg) + Tg)] ¢"73 + ngio3.
If we set

cw _ [gu(nip) gia(n;p)
go1(n; ) goaz(ns p)

9

we have

an(pt) = g11(n; 1) — g1 (n + 1; ) — g1 + O(TY),
glg(n + 1; M) + O(Tg))
gr2(n; p) + O(TS))

To compare our error estimates to the true errors, we consider a single interval [a1,b;] =
[—1,1], g =0. We use a; = 51 = 1/2,

bn(ﬂ)2 =

1 1<z
hi(xz) =<
1(@) {1+x7( 1+2)712, 0<z<1.

IN

0,
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10 [

107

Figure 4. A comparison of the recurrence coefficients when v = 3/2. The observed discrepancy between
the recurrence coefficients and their known asymptotics appears to be O(n_"/_l).

E\ +m7112»2

o @—y=n?
5

10°

1071 -

10 10° 10°

n

Figure 5. A comparison of the recurrence coefficients when v = 2. The observed discrepancy between
the recurrence coefficients and their known asymptotics appears to be O(n‘”‘l).

Then, if one uses the Gauss-Jacobi quadrature rules (z;,w;), (y;,v;) such that

n
r)V1—22dr = Zp(xj)wj,
j=1
1 n
/ px)a?VT—zdz =Y ply)v;,
0 ,
7j=1
for all polynomials p of degree less than 2n, the inner product can be approximated well because

/f g(2)V1 — 22hy (2 dx—waj mjw]—i—ny] g(zj)vj,

7j=1

when f and g are polynomials of degree less than or equal to n — 1. This implies the recurrence
coefficients can be generated exactly (up to roundoff). The ideal algorithm is the RKPW method
as outlined in [25] which has O(n2) complexity. In Figures 4 and 5, we provide evidence that
error term in the asymptotics of the recurrence coefficients is O(n‘”‘l) whereas our method,
and that of Yattselev [41], using ¢ = oo predicts O(n~7logn). We do note that, while potentially
indicative, this density is piecewise analytic. A more exotic density might be needed to see the
rate predicted by Yattselev, but running computations in such a case will likely be its own
entirely separate challenge.
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5 Conclusions and outlook

The main open problem here is to obtain error bounds that reflect the true rates demonstrated
in Figures 4 and 5. It is also unknown how close to optimal the rate we have obtained for the
general Jacobi-type case is.

It is also of interest to see if these deformations, at least in some way, could be helpful in
computing the recurrence coefficients as was done in [6, 35, 36], potentially enabling compu-
tations with optimal complexity. We also anticipate using the asymptotics discussed here in
perturbation theory & la [17] for random matrices that have anomalous edge/bulk behavior.

A The g-function

In this appendix, we define what is commonly called the external Green’s function with pole
at infinity [39], or rather the analytic function whose real part is this Green’s function, and
determine some essential properties. This construction can be also be found in [2]. Specifically,
we find a function g that satisfies

(a) g'(z) =1/2+ O(1/2?) as z — oo,

(b) g{i-(z)7g/—<z) € iR on [ajvbj]a

(c) b(zj“g’(z)dz =0,7=1,2,...,9

The following construction can be found in [17]. Set”

g+1
g(z) = %’((;)), where R(z)? = jHl(z —a;)(z — b)), (A1)

where @4 is a monic polynomial of degree g. The coefficients for Qg4, Qq(2) = >, ayzt, are found
by solving the linear system, which enforces (c)

/%‘-H 9-1 P 4 /a.7'+1 9 4 T
E Qf Z= = Z, J=L44...,9
b, = R(2) b, R(2)

This system is uniquely solvable due to abstract theory, see Appendix D.
Then set

a2 = [ W)Y, 2 a0, (A.2)

where the path of integration is taken to be a straight line.
The following properties then hold:

(i) ay € R for every ¢,
(11 ( ) (Z) = 07 S (ajabj)7

)
) @
(iii) g7 (2) — g (2) =t Aj € iR is constant on [bj, a;+1], and
)

(iv) Reg(z) is strictly positive on any closed subset of R\ (J,[a;, b;].

"See Appendix D for the definition of R(z).
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We will need to characterize the last property more quantitatively. Consider the function
p(z)=z+Vz—1vz+ 1.

It follows that ¢(z) is a conformal mapping from C \ [—1, 1] to the exterior of the unit disk. It
can also be shown that

z dZ/
lo z)| = Re .
glo(:) =Re [ =
Then for a < b, set M(z;a,b) = %(2 — I’JFT“) and we establish the following in Appendix C.5.

Proposition A.1. For every € > 0 sufficiently small, there exist v,y > 0 such that if a; — e <
z < bj+e€ and |y| <€, then

0B > ¢(M(z5a5,0))"  and R0 < (M (z3.a5,b5))"

Define the vector A = (Aj)§:1~ We now define conformal maps in the neighborhood of each
endpoints aj, b;. Specifically, define for j =1,2,...,g,

2 2
¢<Z;aj>:</wg<z>dz) , so(z;bj)=</b_g(z)d2> . (43)

J J

The following is immediate.

Lemma A.2. Foreach j=1,2,...,9+1, p(z;a;) (resp. ©(z;b;)) is a conformal mapping from
a neighborhood of a; (resp. bj) to a neighborhood of the origin. For e sufficiently small, and
0<s<e @la;+s;a;) <0 and p(b; — s;b;) < 0.

B Extension operator

In this appendix, we define an extension operator # that will take a sufficiently smooth function
defined on the interval [a,b] and extend it to the complex plane suitably. Let b(x) be a smooth
function satisfying

3(:1:) _ {O, r <1,

1, z=>2
that is monotonic on the interval [1,2]. Set
br(zic) =b(lz —¢|/7), 0<7<(b—a)/s. (B.1)

Then consider b(z) = by (z;a)br(x;b). We use b and b to define an extension of a function
m: [a,b] — R. We assume m is s times differentiable with its (k 4 1)-th derivative existing
almost everywhere. Define the Taylor extension

" n0(a
miwy) =Y "5 D), wela)
¢=0 '

and the Taylor approximations
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For 0 < 61 < 62 < 7/2, construct an infinitely smooth function that for 0 € [—7/2,7/2]
satisfies

p0) =

P 07 _01 < 0 < 915
1, |9‘ > 0.

Then extend 3(0) to the entirety of interval [—m, 7] using an even reflection about 0 = /2.
Then, one obtains a function on the unit circle in the obvious way B(z) = B(9), z = ', Wthh
then extends to a function on C\ {0} B(z,y) = B(z/|z|). The extension is then defined as®

m*(z,y) = (1= b(|y}; 0))[b(z)m(z,y)
+ (1 = br(z50))(1 = B(z — a,y))m(z,y) + B(z — a,y)(1 — by (z;a))m(2; a)
+ (1= br(2;0))(1 = B(x — b,y))m(z,y) + B(x — b,y) (1 — by (2;0))m(2;)].

We now verify the following properties of m?:

(1) mf(z,y) extends to be continuous for a < z < b, y € R,
(2) for a < 2 < b, m(x,0) = m(z),
(3) for c=a,b, |z —¢| <7,
mﬂ(x,y) :m(z;a’)v by < |arg(z—a)| <7T/27
m*(x,y) = m(z;b), O < |arg(b— z)| < 7/2,

(4) fora <z <band |yl <, ||5mﬁ(‘,y)||Loo([a7b]) < Cillm|lora (o, lyl", for some Cy > 0.

B.1 Verification of the properties

The following lemma will assist in the verification above properties.

Lemma B.1. Suppose f € C™'(I), where I is an open interval containing x = 0. Then for
zel,

@) s ), ol
) i = SO iyl < g Sl gl
j=0 J: j=0 J: j=1

for a constant C that only depends on I and k.
Proof. We use Taylor’s theorem with remainder to write
A FUTO(
L Rj(z),

=0

where |R;(z)| < Mjsupge; ‘f(’*“)(f)ﬂx\“*j“. Then, the binomial theorem gives

ij.,( )iy =ij.,(0)(x+iy)a+zw’
j:O j j=0 J jZO ]

and the claim follows. [ |

SHere m(z,y) is only defined for = € [a, b], but because the b(x) = 0 for |z — a| < 7, |z — b| < 7, this naturally
extends to |z —¢| < T, ¢ = a,b.
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B.1.1 Property (1)

The only points where continuity does not follow immediately is z = a,b. So, for |z — a| < 7 we
have

mi(z,y) = (1 = B(z — a,y))m(z,y) + Bz — a,y)m(z; a).
We then write, using Lemma B.1,
mﬁ(x, y) = m(zv CL) + (1 - B(QZ’ —a, y))Pk-‘rl(J; —a, y)v

where Py1(x,y) is bounded by a homogeneous polynomial of degree k + 1 in x and y. With
the definition mf(a, 0) := m(a; a), continuity follows. Similar considerations hold near z = b.

B.1.2 Property (2)

For a + 27 < 2 < b — 27, we have b,(z;a) = b.(2;b) = 1 giving m#(z,0) = m(z,0) = m(z).
Then for a < z < a+ 27, we have b, (z;b) =1 and

m¥(x,0) = by(z;a)m(x,0) + (1 — by(2;a))m(z,0).

A similar calculation follows near z = b.

B.1.3 Property (3)
By definition, for |z —a| < 7 and 0y < |arg(z — a)| < 7/2, we find that m*(z,y) = m(z;a). The
same calculation follows near x = b.
B.1.4 Property (4)
We first note that, in general, for almost every x
K (6+1) k@ (k+1)
_ m x) . m x),. _ m ), \k
2m(z,y) = 3 T By -3 e ) e

| — 1) |
~ ¢! — (¢ —1)! k!

So, we immediately have the property we desire for z such that a+27 < x < b—27, when l;(:c) =1
Then for |z — a| < 27 and —6; < arg(z —a) < 64

mb(x,y) = m(z,y)(1 - b(z)) +m(z,y)b(z).

We again immediately have the desired property. }
Now, consider 0 < |z —a| < 7 and |arg(z — a)| > 61. Then b(z) = 0 and we have

mt(z,y) = (1 = Bz — a,y))m(z,y) + Bz — a,y)m(z; a).
Since Om(z;a) = 0, we find
25mﬁ(x, y) = (2—28(x — a,y))0m(z,y) + 208(x — a,y) [m(z;a) — m(z,y)].

The first term admits a bound of the desired type using previous considerations. We use
Lemma B.1 to bound

k+2

[m(z;a) = m(@,y)| < Cllmllor o Y _lz — alfy~ .
/=1
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And because |arg(z — a)| > 61, we find
Im(z;a) — m(z,y)| < C'|lmll e (qap lyF

It remains to bound 98.
Then we compute

0uB(x,y) = 0,8 (2*&) = (z/rz|>

8,8(x,y) = 9, (j%) = B'<z/|z|>;|j|.

For some A > 1, A~Yy| < |z| < Aly| whenever |arg(z — a)| > 0;. This then implies that
A3 <a? < A% (A*2+1)y2<x2+y2§ (A% +1)y°

So, within this sector, we have ‘ ‘m
for a new constant C’, we have

0:8(z,y)| < C'lyl™%, 18,B8(x,y)| < C'|y| 7"

The remaining case of 7 < |z —a| < 27 and |arg(z — a)| > 6 can be established analogously by
using b(x) = b-(x;a) and therefore

m*(z,y) = m(z,y) + (1 — b-(2;0)) B(x — a,y)(m(z;a) — m(z,y)).

This establishes property (4), with a 7-independent constant for |y| < 7.

—I‘ZM < C|y|™!, for a constant C' > 0. Therefore,

C Construction and estimation of local parametrices

We first define the classical Bessel parametrix (0 = 2m/3)

([ 1.(2¢2 1/2)
27.‘.151/2 Iz (221/2) 251/2 K’£2§1/2 ] arg§ € (—o,0),
L 1H(1)( 2(— 5)1/2) 51/2 L orios
Prssa(§0) = | [n€/280) (2(6)1/2) 51/2H<2) (2(—§>1/2)] S e
1 H(2 (2( 5)1/2) )(2( £) 1/ )
7r§1/2H )( 2(—£)1/2) 7r§1/2H ’(2 1/2)]
L e 20MT, arg{ € (—m,—o).

Here L, Ko, HY and HY are the modified Bessel and Hankel functions [32]. From [28], we
have the following.
The function Ppegsel satisfies the following jump conditions

Bes5el (57 ) Besgel(§7 )JBeSSel(g; Oé), 5 € Fl U PQ U F37
1 0
[eomi 1] ) 5 € Fla

0 1
JBessel(f; Oé) = !_1 0] ) 5 € FQu

1 0
L_Mi 1] , §els,
\
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where contours are oriented in the direction of decreasing modulus. The asymptotics at the
origin are given by the following three cases. If a > 0,

(. [leler? jel=or?
O B . Jargg| < 2m/3,
€[22 |g|~o/2
PRessel (§; ) = as &€ — 0.
el el
O , 2m/3 < |argf| <,
7 g2 fel-ove
If @« =0, then
v [log gl log g
PBessel(faa) =0 |:10g ‘§| log ‘§| s as 5 — 0.

And if o < 0,

. €172 gl
PB@S*‘“’”:O[MPQ maﬂ}’ weh

We also remark that det Ppesser = 1 (see [32, 10.28.2]) so that asymptotics for the inverse
of Ppegssel can be easily inferred. We also have

[\
—~

12— iz i 1/2,._ _on
PBeSSel(RZf;a) = [%(71-177,) / § 1/462 g2 i i) / g 1/4e 2 51/2]

i(ﬂn)1/2§1/462n§1/2 (22)1/2&1/46727151/2

X (I—I—O(n_1]§|_1/2)), n — 0o.

We rewrite this in a more convenient form
_1

PBessel (n2§; Oé) = (7777') 2(7357&0'3:E)Besse1 (n2§)e2n§1/2¢73’

Epessel (n°6;0) = E+0(n7'g[71?),  E= E ﬂ . (C.1)

These asymptotics apply for all £ with |arg| < w. Furthermore, the asymptotics remain valid
up to the boundary, arg & = +.
Now set, following [27],

W (2 a5) = e ™02 (5 —5)25/2 (2 — a;)%/2 f(2705) 12,
W (23b;) = (2 — bj)*/%(2 — a;)/2 f (2, b;) /2.

The last factor in each line can be seen to be analytic in a neighborhood of z = a;, b;, respectively,
with the choice of the principal branch. For ¢ = a;, b;, set p(2;¢) = w;(2)/f(2;¢), and we have
for

W(z; b)) = eiimi/zp(z;bj)l/Q, bj —e <z <bj,
W(z;a;) = eFm3i/2 (2 aj)l/Q, a; <z <aj+e, (C.2)

so that for appropriate choices of z

W (zb)W ™ (2:b5) = p(2ib;),  W(z05)W ™ (2105) = p(z; ).
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Then for ¢ = a;,b;, v = B, aj, respectively, set

P(si) = A 0Qu(si0h Qulsic) = Pas (1275 i ) W(si) e,

where A,,(z;¢) is to be determined.
We recall that

otz = ([ ) dz')Q.

And for Imz > 0,

z

A
= ]-1—/ g, (2)d2.
2 ),

J

Similarly, for Im z < 0, we have

Next, using the principal branch we consider ¢(z; bj)l/Q. As ¢(z;b;5) is injective for |z — bj| <€,
we conclude that ((z;b;)/2 can only fail to be analytic for z < b;. Because ¢(2;b;) is positive
for z > b; the same is true of ¢(2;b;)"/2. And then we consider szj g'(2')d?’, z > b;. It can be
shown that the monic polynomial Q,(2) in the (A.1) must have a root in each interval (b;, aj+1).
From this, it follows that g/(b; + €/) > 0 for ¢ > 0 sufficiently small. Then

(2 b;)V? = / o) d.

bj
And therefore
A
QO(Z‘b')1/2: g(z)_Tja |Z—bj|<6, Imz >0,
Y 9(2)+%7 |z —bj| <€, Imz<O0.

We repeat these calculations for ¢(z;a;) and find that with the convention that Ag =0= Ay

Ai_q
(2;0;)Y2 = 9(2) = ]2 , lz—ajl<e, Imz>0,
SO’Z?a]) - Ajfl
g(z) + 5 |z—aj]<e, Imz < 0.

For |z — a;| = €, we have Im z # 0,

1
293

P, (z;a;) = An(2;a5) <2> 4

™

_1g, p\z; aj
(P(Z;aj) 403EBessel <n2(j);6j>
X oI B A TSy (2 ),

And for |z — b;| = €, we have Im z # 0,

1
2\ 278 1 z;b;
P (2:b) = An(z:b) () o(2:b))" 17 Eea (n”( J);aj>

™
« ef(sgnlmz)aAjUgW(z; bj)*ds'
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We set

. n 2\ "293

A, (z5a5) = Gn(Z)W(z;aj)USG(SIgnImz)fAf*1”3E’1 <7m) @(z;aj)i‘”?
. n 2\ T293

A, (2;h;) = G (2)W (2;bj)73eienmz) 58505 p—1 (Wn> (2 b;)3.

In the following appendices, we discuss the behavior of the parametrix near b; leaving the
calculations near a; to the reader.
C.1 The jumps of Q,, near b;

We then compute, for example, for b; —e < 2z < b;

4 ’ -1 0

= Q; (b)) {_1/;22;%) P(Z(;)bj)} .

Then for b; < z < b; +¢,

—1ie: b; _
Q;(Zv b]) = |:hﬁ)l Ppessel <n2<P(Z o 7]) 'Oéj>:| |: 0 1:| p(z;bj)_oﬁwi(z;bj)oéeng (2)os

QI(Z; b]) = PBessel (nQ@(ZZi ])

; aj) Wi (2;b;) 738 (o

= PBessel <n2()0(iilm§ OKj) W_ (Z; bj)_age_ngi(z)a'Se—nAjO'B

= Q (z:by)e "7,

For z € Ebj,l,

1 0
Flab.) — (>} .
Qn (Za b]) - Qn (27 bj) |:elaj7rw(z; bj)*2e*2"9(z) 1:| ’

From (C.2), it follows that W (z;b;)? = €% ™ p(2;b;), so that e W (2;b;)72 can be seen to
be the analytic continuation of 1/p(z;b;) to the upper-half plane

_ 1 0
QZ(Z; bj) =Q, (Z;bj) [e—2ng(z)f}(x’y)/wj(z) 1] ) ze Eijl'

Then because e ™ W ~(2;b;)~2 can be seen to be the analytic continuation of 1/p(z;b;) to the
lower-half plane

1 0
Qn(z:85) = Qu (=381 le—m@f% e 1]’ 2 € By
7 ?

C.2 The jumps of vec A,, near b;

We then need to analyze the analyticity and jump behavior of A,. We note that it is immediate
that A, is analytic off the real axis. For b; < z < bj + ¢,

+ + o3 20osm-1 [ 2 309 Lo,
A7 (2:05) = G (2)W (25 05)7%e2 273 B | — @(z;0;)17°

™

1
. 2\ 278
— Gy ()W (5 by)7e 3o () o(z30,) 75 = A (2:y).

™
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Then for b; — € < z < b; since ¢(z;b;) is conformal and real-valued on the real axis,
hﬁ)l o(z £ i€ bj)1/4 = 4oz bj)|1/4.

Thus

liﬁ)l o(z + i€ bj)1/4 =: ¢(z; bj)i/A‘ = ip(z; bj)1_/4 = lif(c)lcp(z — ig; bj)1/4.

Then we compute

A:LF(Z; bj) = G;L (Z) |:_1/Op(z) p(OZ):| P(z; bj)U3W7(Z; bj)fg'Se%AJ""3

1
2 —50'3 1 o3
m (Z) e (eet)

To simplify this expression, we first note that for y # 0,

[—Z(l)/y l(ﬂ = [—01 (1)} v

and

L i\7° —o 0 1 1 -3 i\ —o3p—lg—03/2
) v (% G
S () ol G

and therefore
1
o3 n 2 —503 1\ 93
A;L’_(Z, bj) = G;(z) <p(pz(zb>)) W_(z;bj)"3e_§AJ'°'3E_1 <> <<p(Z; bj)4)
1 05

A ) s (S ) R

C.3 The jumps of vec P, near b;

For all but one contour near b;, the jump of P,, is precisely the same as that of Q,, (and therefore
the same as S,,) because A,, is analytic. So, it remains to consider b; — e < z < b;

Pi) = AL Gi0)QE Gity) = A Gat)Queaty) |y 0y 0 A5
— A~ (»}. —0o3 IO(Z) 78 - o3V (- 1. .1 .\O3 0 1
= A, (%0)UT(2) E(,O(Z;bj)> E-'UH(2)73Q;, (2;b;)p(2; b;) {_1 0}
= Pyt Q esty) 1 ) B ()

x BTN (2)72Q,, (23 b5)p(2; b;) 7 [—01 é] '
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C.4 Local estimates

We have the following estimates which we state in a series of lemmas.
Lemma C.1. Suppose |z —b;| <€,z € Q; . UQ; _. If |oj| > 0, then
1Quz:b,) W (2:b7)7 | = O(nl*|z — by 91/2) . (= —by) 0.
If aj =0, then
1Qn(2:b;)W (230;)7%|| = O(log mlz — bjl),  n®(z —b;) = 0.
Also, Reg(z) = O(|z — bj|1/2), z = bj.

Lemma C.2. The function

1
2 293
An(Z; C) < TL)

is uniformly bounded in both z and n for |z —c| <€, ¢ = aj,bj. The same holds for its inverse.

To prove this lemma we use the following lemma® of [17, Lemma A.2] which shows that
e@()731W (2: ;)73 is bounded in a neighborhood of z = b;.

Lemma C.3. Ifk > 0, for some ¢ > 0, and for every j =1,2,...,9+ 1, we have

G(z) = —% log(z — b;) — %log(aj —2)+ Ri(2), dist(z, [a;, bj]) <,

where R;(z) is a uniformly bounded function for dist(z, [a;,b;]) < e.

Proof of Lemma C.2. By Lemma C.3, it follows that e“(*)73 W (2; b;)73 is bounded in a neigh-
borhood of z = b;. And then one can show, as is classically used the derivation of the local solu-
tions [28], that if p(2) is replaced with p(z;b;) in the definition of G(z) for, say, b; —2e < z < bj,
then A, (z;b;) is analytic for |z — bj| < € as the singular factors produce weaker-than-pole
singularities. Thus, the actual A, (z;b;) is a bounded perturbation of this analytic approxima-
tion. The theta function terms that contribute to Q, are uniformly bounded, and the claim
follows. |

Lemma C.4. Suppose |z —bj| < €, 2 € Q4 UQ;_. For any ¢ < C = C(n), C < n?, for
sufficiently large n, there exists a constant D such that if ¢ < {n2(bj — z)! < C, then

[9(2)72 < DOV, [[An(eiby)| < DOVE, (| Quls: by)W (= b;)°%| < DCV2.
Proof. We have for |z — b;| < € and some d € R, D’ > 0,

|(23b5) — d(z = bj)| < D'z = b;,
In*@(2;b;)| — |dn®(z — bj)| < (n*D'|z — b;*)n? < D'C?/n’.

So |d|/C — D'C?*/n* < |n*p(z;b;)| < |d|C + D'C?/n?, and the bound on ¥(z)7* follows
for n sufficiently large. It follows from previous arguments that A, (z;b;)¥(2)~73 is bounded
for |z — bj| < € as n — co. The claim then follows for A, (z;b;). Then, for Q,(z;b;)W (z;b;)73
factors of I/V(z;b]%"3 cancel. Then if C = O(1), we have from Lemma C.1 ¢™(*) = O(1),

and Ppegsel (an) = O(1) uniformly for z in the range. Now, let C' > 0 be sufficiently

9The proof in [17] was for a; = 8; = 1/2 but the same calculations hold in general.
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large, but an absolute constant, so that the entry-wise bound from (C.1) holds for [n2¢| > C'.
And then for n?|z — bj| > 2C’, there exists n sufficiently large so that }n2%‘ > (', and
for C" < |n?(z — bj)| < C, we have

[W(2)7Qn(z;b;)W(2;b;)7°|| < D.
The last claim follows from the estimates on W. [ |
Lemma C.5. Suppose |z —bj| <€, z € Q4+ UQ;_. Then as |n*(b; — 2)| = oo

1A (25 5;)Qu (25 b)) W (2 ;) 72| = O(|z — b ~'/*),

W (23 b3) 2 Q2 by) ()~ = e M58 = O (5| — by V%)

B0 (2)72 A (2;0) 7Y = O(]z — b 7V/4).
Proof. For the first claim, we can write

An(Z; b])Qn(Z7 bJ)W(Za bj)GB = Gn(Z)W(Za bj)o3e(5ignlmZ)%Ajo-gE_lEBessel

x (77,2 @(Zzibj);aj> ef(signImz)%Ajo'g.

The claim then follows from the asymptotics of Epegser and the fact that, from Lemma C.3,
G, (2)W(2;b;)7% has quarter-root singularities.
Then we write

E—l\I/(Z)aan(Z; bj)W(z; bj)crse(signlmz)%Ajag — T+ O(n_l‘z _ bj‘_1/2)7

from which the second claim follows. The last claim follows analogously. |

C.5 Proof of Proposition A.1
We first consider y > 0 and a; < x < b;. We write
(2) . (=)
z) = r(z),
g VZ—aj\/z—bj

where 7(z) is analytic in a neighborhood of [a;, b;] and is positive on [aj, b;]. We have

y
Reg(z) = —/ Img'(z +iy') dy'.
0
Similarly, using M in (3.1),
dy’
\/x—i—iy’ — bj\/a:+iy’ — aj'

We write r(z) = h(z,y) + ig(x, y), where h and g are real valued. From Taylor’s theorem,

Yy
MQMM@WMM=—AIm

h(z +iy) = h(z) + Oyh(x, &)y, gz +iy) = dyg(x, &)y,
for 0 < &1,& < y, or, rather that |h(x +1iy) — h(z)| < Cly|, |g(z + iy)| < Cly|. Then we have
that
1
Ve +iy —bj\/r+iy —a;
1

VItiy—bj\/r+iy—a;

Img'(z +iy) = h(x + iy) Im

+ g(z +1iy) Re
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We then claim that

Re : VY : <.
Vo iy —bj/r+iy — a;
Indeed,
v : !
e+ iy = b1V le +iy — a5 (@ —by)2 /2 + 1) (@ — a5)? + 92) V!
1

<

(2 —aj)? +92)"*
And we find that

Re vy
Vi +iy —bj\/r+iy —a;

1 1
< min ,
{ ((z —a)2 + )" ((@ = b)2 +y2) }
<z
~ (b —ay)!/?

This results in, for ¢ > h(z +iy) > ¢,

1

/
I
¢ m\/x+iy—bj\/x+iy—aj

+ "y > Img (z +iy)dy

1

>cIm - C"\/y,
- Vi +iy —bjy/r+iy —a;j vy
20" y
clog [p(M (z; a;,b;))] + 7y3/2 2/ Im g'(z +iy) dy
0
20// .
> clog|p(M(z;aj,b5))| — TyS/Q.

We then claim for 0 < y < v and aj <z < bj;, that there exists ¢/ > 0 such that

1
I(z,y) =Im > .

Vo +iy —bjy/r+iy —a;

Indeed, if this were not the case, then there would exist a convergent sequence (z, yn)n>1 such
that I(zpn,yn) — 0. And we must have that (2, yn) = (a;j,0) or (zn,yn) = (b;,0). But neither
can occur as I(zy,y,) — +o0o. This implies

)
log [6(M (5 a5, b)) = &ys %2 = — Y log |p(M (25 a;,b;))].

= !

And therefore

2 C// Ui )
(¢ + Vi ) toelo i) > [ g’ (o + i)y

, 20//
> (¢ = Vig | log|6(M (2105, b))l

from which the claim follows. Similar considerations work for Imy < 0, establishing the claim
for a; < o < b;. Continuity of the ratio Reg(z)/log|¢(M(z;a;,b;))| near aj, b; allows the
desired bound to hold in neighborhoods of a;, b;, completing the proof.
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D Hyperelliptic Riemann surfaces

Classic references for what follows are [5, 9, 16]. Much of what follows here was closely adapted
from that in [18]. Using the intervals [a}, b;], 1 < j < g+ 1, we define a Riemann surface by the
zero locus of

g+1

w? = [ (z = ) (z = b)) = w® = Pagya(2)
j=1

in C2. Then define the analytic function
R: C—C, R(2)? = Pagya(2), R(2)z7971 =1, as z — 00,

where

A g+1
C=c\ [Jlaj,b5).
7j=1

A Riemann surface I' is built by joining two copies of C; see Figure 6. The Riemann surface
has a canonical set of cycles, a homology basis. For a cartoon of these a-cycles and b-cycles see
Figure 6. We have a natural projection operation 7: I' — C defined by 7((z,w)) = z and its

right-inverses 71]-_1(2) = (2, (=1)"'R(2)), j = 1,2.

Figure 6. An illustration of the Riemann surface I'.

It is well-known that (see [9], for example) a basis for holomorphic differentials on I' is given by

=24 i—1,2 1
I/j—w Z, 7=12,...,9+ 1.
Then define the_lg x g matrix of periods A = (A;;) by A;; = fa_ dv;. Note that if ¢ =
[c cy - C ] = A~ le; for the standard basis vector e;, then '
1 €2 g J Js

g g
E Cl dl/k = E CkAik = el-TAc = eiTej = (513
% g=1 k=1

A basis of normalized differentials is then given by

dwq diq

dWQ dV2
=2mA !

dw, dyg

These satisfy fai dw; = 27id;;. The fact that the matrix A is invertible follows from abstract
theory [9].
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u(z) = (/:dwjx:l, (R

where, for the sake of concreteness, the path of integration is taken to be a straight line con-
necting a; to z. We can treat u as both a function u(z) on C and as a function u(P) on T.
Then u(P) is a single-valued analytic function on the Riemann surface I' provided I' is cut
along the cycles {ai,...,a4,b1,..., by}, making it simply connected. Another important fact is
for z € C, u(wfl(z)) = —u(7r2_1(z)).

The associated Riemann matrix of b periods is given by

T = (135) = </b] dwi>

It follows, see [9], that T is symmetric, real and negative definite. The vector k of Riemann
constants is defined componentwise via

271+ 755 1
kj="—"72 _ % id =1,2,...,9.
' 9 271_1; a[uj We, J y 4y g

The associated theta function is defined by

1<i,j<g

bz = 3 exp (;(m,Tm) 4 (m,z)) . zecy,

mez9

where (a,b) = a'b. We have

1
0(z + 2miej;7) = 0(z;7),  0(z+Tej;T) =exp (‘2% = Zj) 0(z; 7).

A divisor D =}, n;P; is a formal sum of points {P;} on the Riemann surface I. The Abel
map of a divisor is defined via A(D) = 3>, nju(F;).
We construct an important function that will have piecewise constant jump conditions. Set

(u(z) +v—d;7) 6O(-u(z)+v-d;7)
0 (u(z) —d;7) 0 (—u(z) —d;7)

O(z;d;v) = O(z) := [ ] ., z¢R (D)

The first component function is nothing more than % restricted to the first sheet.

The same is true for the second component function on the second sheet. The vector v is a free
parameter. Then consider

i1 raps g j—1 g
ut(z) +u (z) = (2 Z/ dwg> <Zj(1{ dwg> = 2miN, z € [aj, bj],
k=1" bk ¢ k=1" % =1

=1

for a vector N of zeros and ones. Then we compute

ut(z) —u(2) = (2%/? dwg>“ = (ﬁdw

J

g
) = Tey, zZ e [bj,aj+1].
=1

Directly using this relation, it follows that, for z € [b;, aj41],

0(ftut(z)+v—d;T) O(u (2)Lt7ej+v—d;7T) ejF”fe (tu () +v—-d;7)
0(fut(z)—d;r)  O(xu(2)tTe; —d;T) 0 (tu(z)—d;7)
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On the interval (—oco,a1), ut(2) = u(z). And on (byt1,00),

ut(z) —u(z) = (jé dwj)jl’

where C is a clockwise-oriented simple contour that encircles a1, bg+1]. Because all the differen-
tials dw; are of the form P(z)/R(z) where P is a degree g — 1 polynomial and R(z)/29™! — 1
as z — o0, it follows that fc dw; = 0. Thus, ignoring any poles ® may have, we find that ©
satisfies the following jump conditions:

o (2) [0 1] L ze(anby)

;

1 0

O (2) =
) ] . 2 € (bj,aj41),

CHEN z € (—00,a1) U (bgy1,00).

Also, note that since u(co) is finite, ® is analytic at infinity.

Next, we must understand the poles of ®. It is known that (see [9], for example) if for
D =P+ + P, 0(u(P) — A(D) — k) is not identically zero,'° then, counting multiplicities,
O(u(P)— A(D)—k), has g zeros on 2. These zeros are then given by the points in the divisor D.

Consider the function
1/4

3(2) = ﬁ(‘b) ,

J=1

analytic on C\ {J,[a;,b;], with v(2) ~ 1,2 — oco. It can be shown that v — 7! has a single
root z; in (bj,aj41) for j =1,2,..., g, while y+~~! does not vanish on (C\Uj laj,bj]. So, define
two divisors

g g
Dy =Y m'(z), Di=> m'(z)
j=1 j=1

From [21] (see also [37, Lemma 11.10]), these divisors are nonspecial so that the # functions we
consider do not vanish identically.

Note that for d; := A(D1) + k, the function z + 6(u(z) — dq; 7) has zeros at z;, while the
function z — 6(—u(z) — di; 7) is non-vanishing. Similarly, for dy := A(Dz2) + k, the function
z+ 0(—u(z) — dg; T) has zeros at z;, while the function z — (u(z) — do; 7) is non-vanishing.

Following [14], consider

(7(z)+g(2)_1) ©1(z;da; V) (’Y(z)*;(z)q) O(z;dy;v)
L(z;v) = , (D.2)
(@) @1 (sidisv) (HE) @s(z5dyiv)

which is analytic in C\ ; laj,bj], with a limit as z — oo and satisfies the jumps

~ [0 1
L (Z;V) 1 0] ) KAS (ajabj)>
LY (siv) = S
L_(Z;V) |1, =€ (bj7aj+1)>
0 evs
L™ (z;v), z € (—00,a1) U (bgy1,00).

10T his holds if D is nonspecial.
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This follows because v (z) =iy~ (z) for z € (aj,b;) and therefore
7R+ (1)) =107 () = (7)),
7 (@) = (=) =il @)+ (=) ) ).

It is important to note that (D.2) was first used in [14] and subsequently by many, see [11, 13, 16],
for example.

E Estimates of some exponential integrals

In this appendix, we discuss how to estimate integrals of the form
/ 2 — [ |z — b [e ™| dA(2),
Ep(d,b)

By={z| s+ Va+IVa—1l<p}),  p>1,

b— b
Ey(a,b) = M(E,), M \(z) =M (za,b) ="~ Le4+ T2

2x+2,

as m — oo. From Proposition A.1, it follows that we can consider, for a new m,

= 22— 1 "e(z) ™™ 2).
Im.—/Epi 177 16(2)] "™ dA(2)

We then set z =1/2(w 4+ w™!) for 1 < |w| < p and change variables. We have

_1fwr—f

dA(z) = o dA(w).

To finish the change of variables, we note that

pl)=w, 2 -1= [1(w—w‘1>r =w? [(wQ - 1)}2-

Therefore,
Ly = / [P 4mme2 =2 w2 — 1772 qA(w).
1<|wl<p
For v <1, we have I,,, = O(m_l), and therefore
/ |2 —a| 7|z — b e ™) | dA(2) = O(m ). (E.1)
Ep(a’ )

Now, suppose 0 > 2 —2y = —g > —1. We write w = pe'? and 0 € [—7/2, 7/2], following [41],
write
w1 = \/(p = 1)? + 4psin?(8/2) = Cl(p— 1) + |4,

for some C' > 0. Consider

/p/ﬂ/2 w1 dpdd < [ R d
p~"w—1["7dpdfd < _"/ p " / p-
1 Jonj2 1 —x2 ((p=1)+101))°

For o < 1, the 0 integral produces a continuous function of p. Since it therefore must be bounded,
we can conclude the integral is O(m_l). This argument can then be used for w in the right
and left half-planes separately, bounding |w £+ 1|77 < 1 for £ Rew > 0 to also conclude (E.1)
for v < 3/2.
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