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Abstract. We consider the asymptotics of orthogonal polynomials for measures that are dif-
ferentiable, but not necessarily analytic, multiplicative perturbations of Jacobi-like measures
supported on disjoint intervals. We analyze the Fokas–Its–Kitaev Riemann–Hilbert problem
using the Deift–Zhou method of nonlinear steepest descent and its ∂ extension due to Miller
and McLaughlin. Our results extend that of Yattselev in the case of Chebyshev-like mea-
sures with error bounds that give similar rates while allowing less regular perturbations. For
the general Jacobi-like case, we present, what appears to be the first result for asymptotics
when the perturbation of the measure is only assumed to be differentiable with bounded
second derivative.
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1 Introduction

Consider a Borel measure µ on R of the form

µ(dx) =

g+1∑
j=1

hj(x)1[aj ,bj ](x)(bj − x)αj (x− aj)
βj dx+

P∑
j=1

rjδcj = ρ(x)dx+
P∑

j=1

rjδcj , (1.1)

where aj < bj < aj+1 and {c1, . . . , cP } is a subset of the complement of
⋃

j [aj , bj ]. We assume
that αj > −1, βj > −1, rj > 0 for each j and hj(x) > 0 on [aj , bj ]. We consider the problem of
determining the strong asymptotics of the (monic) orthogonal polynomials, denoted by πn(;µ),
with respect to µ as n → ∞ when hj is not assumed to be analytic. Polynomials orthogonal
over disjoint intervals were originally considered by Akhiezer [1] and Akhiezer and Tomchuck [2]
for a special class of weight functions. These authors described the orthogonal polynomials and
their associated weighted Cauchy integrals, two of the main objects of study here. See [24] for
a method to study a different special class using polynomial mappings.

We are interested in obtaining asymptotic formulae for many reasons. One is in the use
of the asymptotics in approximation theory. Specifically, the approximation of functions across
multiple disjoint intervals has been found to be fruitful in computing matrix functions [7]. Within
random matrix theory there are other applications. First, the local asymptotics near the edge(s)
and bulk(s) imply universality for certain invariant ensembles [12, 28] and bounds on the growth
of the polynomials can imply a certain stability of the recurrence coefficients that is useful in
statistical estimation problems [17, 19].

The so-called strong asymptotics of orthogonal polynomials was developed in the book of
Szegő [34] for the classical families of orthogonal polynomials where one has a related differential
equation and integral formula. The asymptotics are termed “strong” because they provide
precise, pointwise, leading-order behavior. Two slightly more modern references are [29, 38].
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The majority of these results focus on orthogonal polynomials on a single finite interval, on the
entire real axis or on a semi-axis.

The Riemann–Hilbert approach to determining strong asymptotics was pioneered in [12, 15,
26] for weights on the real axis and in [28] for the interval [−1, 1]. Crucially, these works used that
weight function ρ in µ(dx) = ρ(x) dx had an appropriate analytic continuation to a neighborhood
of the support of µ. It is worth noting here that the approach in [29], for example, does not
require analyticity. For a special choice of weight function, explicit formulae exist in terms of
Riemann theta functions [11].

The Riemann–Hilbert approach was extended to non-analytic weights on the unit circle
and the real line in [30, 31]. Then, in [8], the approach was used to obtain asymptotics
for orthogonal polynomials on [−1, 1] for smooth, but not analytic, perturbations of the Ja-
cobi weight (1 − x)β(1 + x)α. Continuing, in [41] the asymptotics were refined in the case
where α, β ∈ {−1/2, 1/2}. This refinement is important because if ρ(x) = h(x)(1− x)β(1+ x)α,
α, β ∈ {−1/2, 1/2} and h is analytic then one knows the error terms in the asymptotic expan-
sions are exponentially small with respect to the degree of the polynomial [27]. The work of [41]
uses a Riemann–Hilbert analysis to show that as the smoothness of h increases, the order of the
error term decreases accordingly. As noted in [41], this can also be seen to be a consequence of
theorems concerning orthogonal polynomials on the unit circle, using the canonical (Joukowski)
mapping of the unit circle to the unit interval [−1, 1].

For orthogonal polynomials for weight functions supported on multiple disjoint intervals of
the form (1.1) for αj , βj ∈ {−1/2, 1/2}, i.e., the Chebyshev-like case, the relevant works are
first [40] and then [17], where the quantities in [40] were made more explicit and used for
perturbation theory. We are unaware of results for multiple intervals for general αj , βj , i.e., the
general Jacobi-like case, even for analytic perturbations. Thus, specifically, in this work we are
interested in extending these results to the case where (i) hj in (1.1) is not analytic and (ii)
considering general αj , βj > −1. The goal is not specifically to obtain new formulae for the
asymptotics in such situations, since the formulae for analytic perturbations hj broadly hold
for non-analytic perturbations. Rather, one is interested in the size of the error terms in the
asymptotics. For this reason, we largely leave our main results, Theorems 2.6 and 3.1, in an
abstract form. If more specifics about the details of the asymptotics is desired, we refer the
reader to [17] for asymptotics away from the edges and [28] for local behavior near the edge.

The notation Ck(I) is used to denote the space of k times continuously differentiable func-
tions f on a set I with norm ∥f∥Ck(I) := max0≤ℓ≤k maxx∈I

∣∣f (ℓ)(x)
∣∣. And let Ck,α(I) denote

the space of k times continuously differentiable functions f on a set I such that f (k) is α-Hölder
continuous, with norm

∥f∥Ck,α(I) := max
0≤ℓ≤k

sup
x∈I

∣∣f (ℓ)(x)
∣∣+ sup

y ̸=x

∣∣f (k)(x)− f (k)(y)
∣∣

|x− y|α
.

For general αj , βj , we assume that hj ∈ Ck,1([aj , bj ]), k ≥ 1 and k > 2maxj max{|αj |, |βj |} − 1
2

(see Theorem 2.6). We also utilize the Sobolev spaces W k,p([aj , bj ]) consisting of functions that
have k weak derivatives that are all in Lp([aj , bj ]) with respect to standard Lebesgue measure.
In the special case, where αj , βj ∈ {1/2,−1/2}, we allow hj ∈ W k,q([aj , bj ]), k ≥ 1, q > 4.
Below, we reserve the index k to refer to this assumed smoothness class.

As noted above, [41] considered the case of a single interval with α1, β1 ∈ {1/2,−1/2}. It
was shown that the error term is, in particular, O

( logn
nk+α

)
if h1 ∈ Ck,α([a1, b1]) and k ≥ 3. Here

we obtain similar error bounds1 while allowing g > 0, P > 0, and only requiring k ≥ 1, see
Theorem 3.1. There is a strong reason to believe this is still less than optimal, see Figures 4

1In a previous version of this manuscript, an error bound without the logn factor was stated. While we believe
this bound to still be valid, there was a flaw in the argument.
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and 5. These plots seem to indicate that this bound is suboptimal by a factor of 1/n in the
situation where the density has, in a sense, a single point of non-analyticity.

In the same vein as [41], the method described in this paper works by constructing close-to-
analytic extensions of each function hj using polynomial approximation. Then, again borrowing
directly from [41], we reuse an argument based on the Bernstein–Walsh inequality. Here it
requires a bit more care in its implementation using a comparison, see Proposition A.1.

For the case of general αj , βj , our approach differs moderately from the most closely related
work in [8]. In [8], the authors construct an approximately analytic extension of a Szegő-like
function that appears in the exponent. This has the benefit that one can directly use the
exact classical parametrices to solve local problems. It appears to have the drawback that as
the assumed smoothness is increased, one does not recover the order of the error term that is
found in the case of analytic hj . The method proposed here directly constructs a nearly analytic
extension of hj and one obtains error terms on the order of O

(
n−1+ϵ

)
for any ϵ > 0 by supposing

that hj is smooth enough. The drawback of our approach is that there is a small interval on
the real axis where we do not obtain uniform estimates, determined by the δ parameter in
Theorem 2.6. Importantly, δ ≫ 1/n2 is always possible and the so-called Bessel asymptotics for
the orthogonal polynomials near aj , bj can be determined using the method here. If uniform
asymptotics are desired using this method, we conjecture that a Sobolev improvement of our L2

bounds is possible, with possibly greater smoothness assumptions on hj .

The outline of the paper is as follows. In the remainder of this section, we introduce the
Fokas–Its–Kitaev Riemann–Hilbert problem and fix more notation. In Section 2, we present
the ∂ deformations for the general Jacobi-type case αj , βj > −1. This leads to Theorem 2.6. In
Section 3, we first present an improvement for the Chebyshev-like case αj , βj ∈ {−1/2, 1/2} in
Theorem 3.1 and then discuss the addition of a finite number of point masses. Section 4 discusses
the implied asymptotics for recurrence coefficients and uses this to present numerical experiments
demonstrating that Theorem 3.1 is likely suboptimal. We also include five appendices that
include technical developments.

On a notational note, with possible subscripts, C, C ′, C ′′, c, c′, D, D′ will be used to denote
generic constants that may vary from line to line. Capital bold symbols A,B, . . . will be used
to denote matrices and matrix-valued functions. Lower-case bold characters are used to denote
vectors. For concreteness, ∥A∥ denotes the Frobenius (Hilbert–Schmidt) matrix norm.

1.1 The asymptotics of the recurrence coefficients

We briefly review the implications of the asymptotic estimates obtained here by reviewing the
formulae given in [18]. For error terms E1, E2, E3, the recurrence coefficients for the orthonormal
polynomials with respect to a measure µ (1.1) satisfy

bn(µ)
2 =

1

c2

Θ2(∞;d2; (n+ 1− P )∆+ ζ)

Θ1(∞;d2; (n+ 1− P )∆+ ζ)
+ E1

Θ2(∞;d2; (n− P )∆+ ζ)

Θ1(∞;d2; (n− P )∆+ ζ)
+ E2

,

an(µ) =
Θ

(1)
1 (d2; (n− P )∆+ ζ)

Θ1(∞;d2; (n− P )∆+ ζ)
− Θ

(1)
1 (d2; (n+ 1− P )∆+ ζ)

Θ1(∞;d2; (n+ 1− P )∆+ ζ)
+ g1 + E3.

For the definition of Θj see (D.1), and the superscript (1) denotes the O(1/z) term in the
expansion of the function at ∞. The vectors dj , ∆, and ζ are determined in (2.3) and the
constant g1 is the O(1/z) term in the expansion of g at ∞ (see (A.2)). The size of the error
terms E1, E2, E3 is determined by the size of the error terms, with respect to n, obtained in
Theorem 2.6 or Theorem 3.1.
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1.2 The Fokas–Its–Kitaev Riemann–Hilbert problem

In [22], the authors found a characterization of orthogonal polynomials in terms of a matrix
Riemann–Hilbert (RH) problem. We now review such a formulation. Define the Cauchy trans-
forms of the monic orthogonal polynomials2

cn(z;µ) =
1

2πi

∫
R

πn(λ;µ)

λ− z
µ(dλ),

and the matrix-valued function

Yn(z;µ) =

[
πn(z;µ) cn(z;µ)

γn−1(µ)πn−1(z;µ) γn−1(µ)cn−1(z;µ)

]
, z ̸∈ supp(µ),

where we use the notation γn(µ) = −2πi∥πn(·;µ)∥−2
L2(µ)

. It then follows that (see [22] or [27])

Y+
n (z;µ) = Y−

n (z;µ)

[
1 ρ(z)
0 1

]
, Y±

n (z;µ) := lim
ϵ→0+

Yn(z ± iϵ;µ), (1.2)

at all points z ∈ R where µ has a continuous density ρ. From the discrete contributions to µ,

Resz=cjYn(z;µ) = lim
z→cj

Yn(z;µ)

[
0

rj
2πi

0 0

]
, j = 1, 2, . . . , P. (1.3)

We will initially suppose that P = 0 and discuss the requisite modifications later.
Additionally,

Yn(z;µ)

[
z−n 0
0 zn

]
= I+O(1/z), z → ∞. (1.4)

We need to impose singularity conditions at the endpoints, following [27], we require the
entry-wise asymptotics

Yn(z;µ) =


O

[
1 1 + |z − bj |αj

1 1 + |z − bj |αj

]
, αj ̸= 0,

O

[
1 log |z − bj |
1 log |z − bj |

]
, αj = 0,

z → bj ,

Yn(z;µ) =


O

[
1 1 + |z − aj |βj

1 1 + |z − aj |βj

]
, βj ̸= 0,

O

[
1 log |z − aj |
1 log |z − aj |

]
, βj = 0,

z → aj . (1.5)

We make an important note here. First, it follows that detYn(z;µ) = 1. Second, if we con-
struct another function, Ỹn(z;µ) that also satisfies (1.2), (1.3), (1.4) and (1.5) then the ra-
tio Ỹn(z;µ)Yn(z;µ)

−1 will be analytic except for possibly aj , bj where isolated singularities
could persist. Indeed, we check, as z → bj , if αj ̸= 0, for example,

Ỹn(z;µ)Yn(z;µ)
−1 = O

[
1 1 + |z − bj |αj

1 1 + |z − bj |αj

] [
1 + |z − bj |αj 1 + |z − bj |αj

1 1

]
= O

[
1 + |z − bj |αj 1 + |z − bj |αj

1 + |z − bj |αj 1 + |z − bj |αj

]
.

From the condition αj > −1, we see that this isolated singularity must be removable. Liouville’s
theorem gives Ỹn(z;µ)Yn(z;µ)

−1 = I.

2The monic orthogonal polynomials are defined by the requirement that πn(x;µ) = xn(1 + o(1)), n → ∞,
and

∫
πn(x;µ)πm(x;µ)µ(dx) ∝ δn,m.
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Remark 1.1. First, in all our calculations, z = x + iy where x, y ∈ R. We will treat a func-
tion f(z) of a complex variable also a function two variables f(x, y) and will abuse notation
here. We typically write f(x, y) when f may not be an analytic function of z = x+ iy.

Remark 1.2. We typically use f±(z) to denote the boundary values of a function f from the
left (+) or right (−) side of an oriented curve. In some cases, it may be convenient to use
subscripts to denote the boundary values, e.g., f ′

±(z).

2 Dbar deformation

We begin the deformation procedure by first recalling the definition and properties of the so-
called g-function, see (A.2). Historically speaking, this construction is found in [2]. This function
is also related to the exterior Green’s function with pole at ∞ [39]. Often this function is
determined during the process of deformation, but we need it at the outset. Throughout what
follows, we now suppose that ϵ′ > ϵ > 0 are sufficiently small so that both φ(z; aj), φ(z; bj)
from (A.3) are conformal on the balls Bϵ′(aj), Bϵ′(bj), respectively,

3 for all j. We assume that
all the sets Bϵ′(aj), Bϵ′(bj), j = 1, 2, . . . , g + 1 are at a distance at least, say, 10ϵ′ from one
another. Next, define Aj = φ(Bϵ(aj); aj), Bj = φ(Bϵ(bj); bj). We also now suppose that ϵ > 0
is sufficiently small so that these sets are convex.

When hj is assumed analytic, one arrives at a local RH problem that needs to be solved
explicitly near aj , bj . After employing the local conformal mappings, one finds a model problem
with piecewise constant jump matrices. The solution of this problem is built out of Bessel and
Hankel functions [28]. As will be made clearer below, the jump contours for the model problem
are given in Figure 1. The contours will then need to be mapped using the inverse mappings.
So, define Σaj ,ℓ = φ−1

(
Aj ∩ Γℓ; aj

)
, Σbj ,ℓ = φ−1

(
Bj ∩ Γℓ; bj

)
, for j = 1, 2, . . . , g + 1, ℓ = 1, 2, 3.

Γ1

Γ3

Γ2

σ

0

Figure 1. Model contours. Here we use σ = 2π/3. The contours are symmetric about the real axis.

The contours in Figure 2 will become jump contours in a deformed hybrid RH-∂ problem.
For z ∈ C, z = reiθ, θ ∈ [0, 2π), define (z)α→ := rαeiαθ. Similarly, for z ∈ C, z = reiθ,

θ ∈ [−π, π), define (z)α := rαeiαθ,
√
z = z1/2. Consider the function wj(x) = (bj−x)αj (x−aj)

βj ,
aj ≤ x ≤ bj , and

ωj(z) = e−iαjπ(z − bj)
αj
→ (z − aj)

βj , z ∈ C \ ((−∞, aj ] ∪ [bj ,∞)).

Then for aj < x < bj , limϵ→0 ωj(x + iϵ) = e−iαjπ(x − bj)
αj
→ (x − aj)

βj = wj(x), and therefore it
is the analytic continuation of wj(x) to the upper- and lower-half planes.

In Appendix B, we develop a ♯ operator that extends a function off the real axis, while
satisfying several convenient conditions. For fj(x) = 1/hj(x), consider f ♯

j (x, y) with κ = k,
τ = ϵ/2. The choice of θ1, θ2 that appear in the definition of f ♯

j will be discussed below.

3Here we use the notation Bϵ(c) = {z ∈ C | |z − c| < ϵ}.
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Σ3,aj

Σ1,aj

Σ2,aj
aj

θ2 θ1

Σ1,bj

Σ3,bj

Σ2,bj bj

Figure 2. Mapping the contours Γj using the local conformal mappings, with valid choices for θ1, θ2
displayed.

Σ3,aj

Σ1,aj

Σ2,aj
aj

Σ1,bj

Σ3,bj

Σ2,bj bj

Σj,+

Σj,−

Ωj,+

Ωj,−

Figure 3. The addition of contours to form Σj,± and enclose the regions Ωj,±. The definition of Σj,±

includes the mapped contours near aj , bj .

Before we state some properties of f ♯
j , we define a region where f ♯

j will be used. The con-
tours Σ1,aj and Σ3,aj intersect the circle {|z−aj | = ϵ} at points off the real axis, and to the right
of the line aj + iR. The same is true of the intersection of the contours Σ1,bj and Σ3,bj and the
circle {|z−bj | = ϵ} to the left of bj+iR. So, a straight line, lying within the lower-half plane, can
be used to connect Σ1,aj ∩ {|z − aj | = ϵ} and Σ3,bj ∩ {|z − bj | = ϵ}, giving a contour Σj,−, using
left-to-right orientation. And a straight line, lying within the upper-half plane, can be used to
connect Σ3,aj ∩{|z−aj | = ϵ} and Σ1,bj ∩{|z− bj | = ϵ}, giving a contour Σj,+, using left-to-right
orientation. This is depicted in Figure 3. The contours Σj,± now enclose open regions Ωj,±, also
depicted in Figure 3.

Define the ∂ derivative ∂ = 1
2(∂x + i∂y). We have the following properties of f ♯

j (again, see
Appendix B) so long as we choose θ2 sufficiently small so that β(x−aj , y) and β(x−bj , y) in the
definition of the ♯ operator are identically equal to 1 on Σaj ,ℓ, Σbj ,ℓ, ℓ = 1, 3. The extension f ♯

j

of fj then satisfies:

(1) for aj ≤ x ≤ bj , f
♯
j (x, 0) = fj(x),

(2) for c = aj , bj , |z − c| < ϵ/2, and z ∈ Σc,1 ∪ Σc,3, we have

f ♯
j (x, y) = fj(z; c) =

k∑
ℓ=0

f
(ℓ)
j (c)

ℓ!
(z − c)ℓ,

(3) f ♯
j extends to be continuous on Ωj,+ ∪ Ωj,−, and

(4) for (x, y) ∈ Ωj,+ ∪ Ωj,−,
∣∣∂f ♯

j (x, y)
∣∣ ≤ C∥fj∥Ck,1([aj ,bj)]|y|

k, for some C > 0.

We further suppose that ϵ is sufficiently small so that fj(z; c) does not vanish for |z − c| ≤ ϵ/2.
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2.1 The first ∂ deformation of the FIK RH problem

To begin to deform the RH problem, we notice the factorization[
1 ρ(x)
0 1

]
=

[
1 0

1/ρ(x) 1

] [
0 ρ(x)

−1/ρ(x) 0

] [
1 0

1/ρ(x) 1

]
.

We will use this factorization locally near each interval [aj , bj ]. Define

Zn(x, y) = Yn(z;µ)



[
1 0

−f ♯
j (x, y)/ωj(z) 1

]
, z ∈ Ωj,+,[

1 0

f ♯
j (x, y)/ωj(z) 1

]
, z ∈ Ωj,−,

I, otherwise.

We compute

∂Zn(x, y) =



Yn(z;µ)

[
0 0

−∂f ♯
j (x, y)/ωj(z) 0

]
, z ∈ Ωj,+,

Yn(z;µ)

[
0 0

∂f ♯
j (x, y)/ωj(z) 0

]
, z ∈ Ωj,−,

0, z ∈ C \
(
Ωj,+ ∪ Ωj,−

)
.

This can actually be rewritten as

∂Zn(x, y) =



Zn(z;µ)

[
0 0

−∂f ♯
j (x, y)/ωj(z) 0

]
, z ∈ Ωj,+,

Zn(z;µ)

[
0 0

∂f ♯
j (x, y)/ωj(z) 0

]
, z ∈ Ωj,−,

0, z ∈ C \
(
Ωj,+ ∪ Ωj,−

)
.

Setting Σj = Σj,+ ∪ Σj,−, as in Figure 3, we have the jump conditions

Z+
n (x, y) = Z−

n (x, y)



[
1 0

f ♯
j (x, y)/ωj(z) 1

]
, z ∈ Σj ,[

0 ρ(x)

−1/ρ(x) 0

]
, z ∈ [aj , bj ].

Next, to handle the asymptotics at infinity, which we have not changed, we recall the definition
of g(z) in Appendix A and set c = limz→∞

eg(z)

z . We define

Sn(x, y) = cnσ3Zn(x, y)e
−ng(z)σ3 , σ3 =

[
1 0
0 −1

]
.

We find that Sn(x, y) solves the normalized hybrid RH-∂ problem

S+
n (x, y) = S−

n (x, y)



[
1 0

e−2ng(z)f ♯
j (x, y)/ωj(z) 1

]
, z ∈ Σj ,[

0 ρ(x)

−1/ρ(x) 0

]
z ∈ (aj , bj),

e−n∆jσ3 , z ∈ (bj , aj+1),
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∂Sn(x, y) = Sn(z)



[
0 0

−e−2ng(z)∂f ♯
j (x, y)/ωj(z) 0

]
, z ∈ Ωj,+,[

0 0

e−2ng(z)∂f ♯
j (x, y)/ωj(z) 0

]
, z ∈ Ωj,−,

0, z ∈ C \
(
Ωj,+ ∪ Ωj,−

)
,

Sn(x, y) = I+O
(
z−1
)
, z → ∞.

We recall here that g+(x) + g−(x) = 0 for x ∈ [aj , bj ] and g+(x)− g−(x) = ∆j for x ∈ [bj , aj+1]
where ∆j is a constant.

2.2 The second ∂ deformation of the FIK RH problem

While one can proceed to construct a parametrix for Sn(x, y) — an approximate solution
as n → ∞, there is a fundamental difficulty. The outer solution will be determined, as we
discuss further below, by a function that depends on the whole of ρ — the Szegő function.
The natural way to solve Sn(x, y) near z = aj , bj is to use the Bessel parametrices that depend
on fj(z; c), c = aj , bj , using its analyticity in a crucial way. The matching of this parametrix
with the outer solution will not remove the jump on the real axis if hj does not have an analytic
extension. The discrepancy can be estimated but it is not the most convenient way to handle
the issue.

Define (using the notation in (B.1))

dj,−1(x; c) =

[√
fj(x; c)

fj(x)
− 1

]
(1− bτ (x; c)), c = aj , bj ,

dj,+(x; c) =

[√
fj(x)

fj(x; c)
− 1

]
(1− bτ (x; c)), c = aj , bj ,

and set d♯j,±(x, y; c) to be the extension, as in Appendix B, with τ = δ < ϵ/4 and κ = 0 —
d♯j,±(x, y; c) = dj,±(x; c) for |y| < ϵ/4. More explicitly, for example,

d♯j,±(x, y; aj) = (1− bδ(|y|; 0))
[
b̃(x)dj,±(x; aj) + (1− bδ(x; aj)(1− β(x− aj , y))dj,±(x; aj)

+ β(x− a, y)(1− bδ(x; aj))dj,±(aj ; aj)
]
.

We write∣∣∣∣∣
√

fj(x; c)

fj(x)
− 1

∣∣∣∣∣ =
∣∣∣∣∣
√
fj(x; c)−

√
fj(x)√

fj(x)

∣∣∣∣∣ ≤ 1

2
√
ξ
√

fj(x)
|fj(x; c)− fj(x)|,

for ξ between fj(x; c) and fj(x). Since both of these functions are bounded below on [0, 2δ], we
find

∥dj,±(·; aj)∥C0([aj ,bj ]) ≤ C∥fj(·; aj)− fj(·)∥C0([aj ,aj+2δ]),

∥dj,±(·; bj)∥C0([aj ,bj ]) ≤ C∥fj(·; aj)− fj(·)∥C0([bj−2δ,bj ]).

Similarly, we find

∥dj,±(·; aj)∥C1([aj ,bj ]) ≤ C∥fj(·; aj)− fj(·)∥C0,1([aj ,aj+2δ]),

∥dj,±(·; bj)∥C1([aj ,bj ]) ≤ C∥fj(·; bj)− fj(·)∥C0,1([bj−2δ,bj ]).

We immediately have the following.
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Lemma 2.1.∥∥d♯j,±(·, y; c)∥∥L∞([aj ,bj ])
≤ Cδk+1,

∥∥∂d♯j,±(·, y; c)∥∥L∞([aj ,bj ])
≤ Cδk.

Next, define

Tn(x, y) = Sn(x, y)


[
d♯j,−(x, y; c) + 1 0

0 d♯j,+(x, y; c) + 1

]
,

z ∈ Ωj,±, |z − c| < ϵ,

c = aj , bj ,

I, otherwise.

We find that Tn(x, y) solves the hybrid RH-∂ problem for c = aj , bj

T+
n (x, y) = T−

n (x, y)



[
1 0

e−2ng(z)f ♯
j (x, y)/ωj(z) 1

]
, z ∈ Σj ,[

0 wj(x)/fj(x; c)

−fj(x; c)/wj(x) 0

]
,

|z − c| < δ,

z ∈ (aj , bj),[
0 ρ(x)

−1/ρ(x) 0

]
,

|z − c| > 2δ,

z ∈ (aj , bj), 0 ρ(x)
d♯j,−(x,y;c)+1

d♯j,+(x,y;c)+1

−d♯j,+(x,y;c)+1

d♯j,−(x,y;c)+1
ρ(x)−1 0

 ,
δ ≤ |z − c| ≤ 2δ,

z ∈ (aj , bj),

e−∆jσ3 , z ∈ (bj , aj+1),

∂Tn(x, y) = Tn(x, y)Wn(x, y),

Wn(x, y) =




∂d♯j,+(x,y;c)

d♯j,+(x,y;c)+1
0

−e−2ng(z)∂f ♯
j (x, y)/ωj(z)

d♯j,+(x,y;c)+1

d♯j,−(x,y;c)+1

∂d♯j,−(x,y;c)

d♯j,−(x,y;c)+1

, z ∈ Ωj,+,

|z − c| < ϵ,
∂d♯j,+(x,y;c)

d♯j,+(x,y;c)+1
0

e−2ng(z)∂f ♯
j (x, y)/ωj(z)

d♯j,+(x,y;c)+1

d♯j,−(x,y;c)+1

∂d♯j,−(x,y;c)

d♯j,−(x,y;c)+1

, z ∈ Ωj,−,

|z − c| < ϵ,

[
0 0

−e−2ng(z)∂f ♯
j (x, y)/ωj(z) 0

]
,

z ∈ Ωj,+,

|z − aj | > ϵ,

|z − bj | > ϵ,[
0 0

e−2ng(z)∂f ♯
j (x, y)/ωj(z) 0

]
,

z ∈ Ωj,−,

|z − aj | > ϵ,

|z − bj | > ϵ,

0, z ∈ C\
(
Ωj,+∪Ωj,−

)
,

Tn(x, y) = I+O
(
z−1
)
, z → ∞.

And motivated by this, we define ρ(z; c) := ωj(z)/fj(z; c),

ρ̃(x; δ) :=


ρ(x; c), |x− c| < δ, c = aj , bj ,

ρ(x), |x− c| > 2δ, c = a1, b1, . . . , ag+1, bg+1,

ρ(x)
d♯j,−(x,y;c)+1

d♯j,+(x,y;c)+1
, δ ≤ |x− c| ≤ 2δ, c = aj , bj .
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2.3 Construction of the global parametrix

The value of the so-called Szegő function G(z) is that it allows one to replace the jumps (aj , bj)
with something simpler at the cost of adding to the jumps on (bj , aj+1). Define4

G(z) = −R(z)

2πi

g+1∑
j=1

∫ bj

aj

log ρ(x)

x− z

dx

R+(x)
+

g∑
j=1

∫ aj+1

bj

ζj
x− z

dx

R(x)

 ,

where the constants ζj are yet to be determined. Note that

G+(z) +G−(z) = − log ρ(z), z ∈ (aj , bj),

G+(z)−G−(z) = −ζj , z ∈ (bj , aj+1).

Since R(z) = O
(
zg+1

)
, we see that G(z) = O(zg). To avoid unbounded behavior of G at

infinity, we choose ζ = (ζj)
g
j=1 so that as z → ∞ G(z) = O(1). Indeed, we find a linear system

of equations

mℓ = −
g∑

j=1

∫ bj

aj

log ρ(x)xℓ−1 dx

R+(x)
−

g∑
j=1

∫ aj+1

bj

ζjx
ℓ−1 dx

R(x)
= 0, ℓ = 1, 2, . . . , g.

This system of equations is uniquely solvable for ζ using the fact that the normalized differentials
exist, and involves the same coefficient matrix that is used to determine the polynomials Qg in
Appendix D.

As a first approximation, we consider the matrix T̃n(z) that is obtained from Tn(x, y) by
dropping the ∂ conditions, and just using ρ on the real axis

T̃+
n (z) = T̃−

n (z)



[
1 0

e−2ng(z)f ♯
j (x, y)/ωj(z) 1

]
, z ∈ Σj ,[

0 ρ(x)

−1/ρ(x) 0

]
, z ∈ (aj , bj),

e−∆jσ3 , z ∈ (bj , aj+1),

T̃n(z) = I+O
(
z−1
)
, z → ∞.

Then consider Un(x, y;µ) = eσ3G(∞)T̃n(z;µ)e
−σ3G(z). We check the jumps of Un

U+
n (z;µ) =



U−
n (z;µ)

[
1 0

e−2(ng(z)−G(z))f ♯
j (x, y)/ωj(z) 1

]
, z ∈ Σj \ R,

U−
n (z;µ)

[
0 1

−1 0

]
, z ∈ (aj , bj),

U−
n (z;µ))

[
e−n∆j−ζj 0

0 en∆j+ζj

]
, z ∈ (bj , aj+1),

and asymptotics Un(z) = I+O
(
z−1
)
, z → ∞.

Due to the exponential decay that e−ng(z) will induce, see Appendix D, we expect the dom-
inant contribution to the solution of this RH problem to come from the jump conditions on

4See Appendix D for the definition of R(z).
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the real axis, at least away from the endpoints aj , bj . From Appendix D, (D.2) specifically, we
expect Un(x, y) ≈ L(z;n∆+ ζ). And so, the global parametrix to Tn is

Gn(z) = e−σ3G(∞)L(z;n∆+ ζ)eσ3G(z).

While this will indeed give the asymptotics of the orthogonal polynomials away from the end-
points, to complete the analysis, we need a modified version of this function. Define

G̃(z) = −R(z)

2πi

g+1∑
j=1

∫ bj

aj

log ρ̃(x; δ)

x− z

dx

R+(x)
+

g∑
j=1

∫ aj+1

bj

ζj
x− z

dx

R(x)

 ,

G̃n(z) = G̃n(z; δ) = e−σ3G(∞)L(z;n∆+ ζ)eσ3G̃(z).

Note that the constants ζj are the same as those in the definition of G(z). This is so that the
ratio G(z)/G̃(z) will be analytic across the gaps (aj+1, bj).

For a given z ∈ C \ [a, b] let η(z) be the closest point in [a, b] to z. Set S(z) =
√
z − a

√
z − b.

Then

S(z)

∫ b

a

f(x′)

x′ − z

dx′

S+(x′)
= f(η(z))

∫ b

a

1

x′ − z

S(z)

S+(x′)
dx′ +

∫ b

a

f(x′)− f(η(z))

x′ − z

S(z)

S+(x′)
dx′.

The first integral can be computed explicitly and seen to be bounded on all of C. If L is the
Lipschitz constant for f on [a, b] then because |x′ − η(z)| ≤ |x′ − z| the last integral is bounded
by L

∫ b
a

|S(z)|
|S+(x′)| dx

′, which is bounded on bounded subsets of C. Then using Lemma 2.1

|G(z)− G̃(z)| ≤ C

g+1∑
j=1

∥ρ/wj − ρ̃(·, δ)/wj∥C0,1([aj ,bj ]) ≤ C ′δk, (2.1)

where the constants depend on the subset.

2.4 Using local solutions

In this subsection, we make heavy use of the definitions and jump conditions established in
Appendix C. Consider the function

Rn(x, t) = Tn(x, y)
(
G̃n(z)Gn(z)

−1Pn(z; bj)
)−1

.

We claim that for |z − bj | < ϵ, that the function Rn is continuous for z ̸∈ (bj − ϵ, bj), and
for |z − bj | < δ. Indeed, Tn(x, y) and Pn(z; bj) have the same jump condition for z ̸∈ (bj − ϵ, bj)
and G̃n(z)Gn(z)

−1 is analytic for z ̸∈ (bj − ϵ, bj).
We then recall that for bj − ϵ < z < bj we have

T+
n (x, y) = T−

n (x, y)

[
0 ρ̃(z; bj)

−1/ρ̃(z; bj) 0

]
.

Using that for bj − ϵ < z < bj

A+
n (z; bj) = A−

n (z; bj)Ψ
+(z)−σ3E

(
ρ(z)

ρ(z; bj)

)σ3

E−1Ψ+(z)σ3 ,

and

Q+
n (z; bj) = Q−

n (z; bj)

[
0 ρ(z; bj)

−1/ρ(z; bj) 0

]
, bj − ϵ < z < bj ,
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we compute, again for bj − ϵ < z < bj , that

R+
n (z) = R−

n (z)G̃
−
n (z)G

−
n (z)

−1A−
n (z; bj)Q

−
n (z; bj)

×
(

ρ̃(z; δ)

ρ(z; bj)

)σ3

Q−
n (z; bj)

−1Ψ+(z)−σ3E

(
ρ̃(z; δ)

ρ(z; bj)

)−σ3

×E−1Ψ+(z)σ3A−
n (z; bj)

−1G−
n (z)G̃

−
n (z)

−1.

For bj − δ < z < bj , we have that ρ̃(z; δ) = ρ(z; bj) and the claims about Rn follow.
Define

B1(z) = G̃−
n (z)G

−
n (z)

−1A−
n (z; bj)Q

−
n (z; bj),

B2(z) = Q−
n (z; bj)

−1Ψ+(z)−σ3E,

B3(z) = E−1Ψ+(z)σ3A−
n (z; bj)

−1G−
n (z)G̃

−
n (z)

−1.

The following is a direct consequence of Lemma C.5.

Lemma 2.2. Let bj − ϵ < z < bj, and

ρ̃(z; δ)

ρ(z; bj)
= 1 + d1(z),

ρ(z; bj)

ρ̃(z; δ)
= 1 + d2(z), e(z) = max{|d1(z)|, |d2(z)|},

and define

ϱn(z; bj) =

∥∥∥∥∥I−B1(z)

(
ρ̃(z; δ)

ρ(z; bj)

)σ3

B2(z)

(
ρ̃(z; δ)

ρ(z; bj)

)−σ3

B3(z)

∥∥∥∥∥ .
As n2(bj − z) → ∞, ϱn(z; bj) = O

(
n−1|z − bj |−1e(z)2

)
.

2.5 Global approximation

We have already defined Rn(z) for |z − bj | < ϵ. To complete the definition, we set

Rn(x, y) = Tn(x, y)


(
G̃n(z)Gn(z)

−1Pn(z; bj)
)−1

, |z − bj | < ϵ,(
G̃n(z)Gn(z)

−1Pn(z; aj)
)−1

, |z − aj | < ϵ,

Gn(z)
−1, otherwise.

We now make the restriction that n−2 ≪ δ ≪ ϵ to find that, for some c > 0, Rn(x, y) should
solve the hybrid ∂-RH problem

R+
n (x, y) = R−

n (x, y)


I+O(e−cn), z ∈ Σj,+ ∪ Σj,−, |z − bj | > ϵ, |z − aj | > ϵ,

I+O
(
n−1 + δk

)
, |z − c| = ϵ, c = aj , bj ,

I+O
(
n−1δ−1

)
, z ∈ (bj − ϵ, bj − δ) ∪ (aj + δ, aj + ϵ),

∂Rn(x, y) = Rn(x, y)Xn(x, y),

Xn(x, y) =


Gn(z)Wn(x, y)Gn(z)

−1z ∈ Ωj,± ∩
(
Bϵ(aj) ∪Bϵ(bj)

)c
,

G̃n(z)Gn(z)
−1Pn(z; c)Wn(x, y)Pn(z; c)

−1Gn(z)G̃n(z)
−1

×z ∈ Ωj,± ∩Bϵ(c), c = aj , bj ,

0, z ∈ C \
(
Ωj,+ ∪ Ωj,−

)
,

Rn(x, y) = I+O
(
z−1
)
, z → ∞,

where the jump condition error terms are uniform in z.
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The jump condition on (bj − ϵ, bj − δ), for example, comes from Lemma 2.2, and the jump
condition on |z − c| = ϵ follows from (2.1) and the fact that G−1

n (z)Pn(z; c) = I + O
(
n−1

)
for |z − c| = ϵ, see Appendix C.

To solve this problem, asymptotically, we first consider the problem with the RH component
removed. We seek Cn(x, y) that is continuous on C and satisfies

∂Cn(x, y) = Cn(z)Xn(x, y), z ∈ Ωj,+ ∪ Ωj,−,

Cn(x, y) = I+O
(
z−1
)
, z → ∞,

where derivatives are understood to hold in a distributional sense. We set Ω =
⋃

o=±
⋃

j Ωj,o.

Lemma 2.3. For p > 2, k ≥ 0, suppose

2p(2|αj | − k) + p− 4 < 0, 2p(2|βj | − k) + p− 4 < 0,

for all j. Then

∥Xn∥Lp(Ω) = O
(
(1 + 1η=0 log n)n

2(η−k)+1− 4
p + n

− ((3+k)p−1)((2k−1)p+4)

(2k+5)p2 + δk
)
,

η = 2max
j

max{|αj |, |βj |}.

Proof. We define three regions

Ωbj ,I = (Ωj,+ ∪ Ωj,−) ∩
{
z | n2|z − bj | ≤ c

}
,

Ωbj ,II = (Ωj,+ ∪ Ωj,−) ∩ {z | c < n2|z − bj | < N},
Ωbj ,III = (Ωj,+ ∪ Ωj,−) ∩

{
z | N ≤ n2|z − bj | < n2ϵ

}
,

where c is sufficiently small, but fixed, such that the estimates in Lemma C.1 hold, and N ≪ n2.
In Ωbj ,I and Ωbj ,II we simply estimate |e−g(z)| ≤ 1. Then for αj ̸= 0, z ∈ Ωbj ,I we have for DI > 0,
using Lemma C.1,

∥Xn(x, y)∥ ≤ DI

(
n2|αj |+1|z − bj |−|αj ||y|k + δk

)
≤ DI

(
n2|αj |+1|z − bj |−|αj |+k + δk

)
,

where we used that

W (z; bj)
−σ3

[
0 0

1/ωj(z) 0

]
W (z; bj)

σ3 =

[
0 0

W (z; bj)
2/ωj(z) 0

]
is bounded. Then rescaling and using polar coordinates5∫

Ωbj ,I

∥Xn(x, y)∥p dx dy ≤ Dp
I n

2p(2|αj |−k)+p−4

∫ 2π

0

∫ c

0
r−p|αj |+pk+1 dr dθ +O

(
δkp
)
.

From this, we find the conditions p(k − |αj |) + 1 > −1, 2p(2|αj | − k) + p − 4 < 0, where the
first is required for integrability and the second is needed to obtain a meaningful estimate. The
second is more restrictive. Now, if αj = 0, we have

∥Xn(x, y)∥ ≤ DI

(
n|z − bj |k| logn2|z − bj ||2 + δk

)
,

giving∫
Ωbj ,I

∥Xn(x, y)∥p dx dy ≤ Dp
I n

−2pk+p−4(log n)2 +O
(
δkp
)
, −2pk + p− 4 < 0.

5For convenience, we will routinely use the fact that for a, b ≥ 0, p > 0 that (a+ b)p ≤ Cp(a
p + bp).
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Then, again, rescaling and using polar coordinates and Lemma C.4,∫
Ωbj ,II

∥Xn(x, y)∥p dx dy ≤ Dp
II

[
N3p/2n−4−2kp

∫ N

0
rkp+1 dr

]
+O

(
δkp
)

=
Dp

II

kp+ 2
N3p/2+kp+2n−4−2kp +O

(
δkp
)
.

Now, in Ωbj ,III, the change of variables will not be sufficient. So, we need an estimate on g(z).
For any ϵ > 0, sufficiently small, there is c′ > 0, such that for |y| ≤ ϵ we have

Re g(z) ≤ −c′|y|, (2.2)

which, of course, implies
∣∣eg(z)∣∣ ≤ e−c′|y|. For z ∈ Ωbj ,III,

∥Xn(x, y)∥p ≤ Dp
III

(
|y|pk|x− bj |−p/2e−c′pn|y| + δkp

)
.

And then because Ωbj ,III ⊂
{
z | bj +m−1N2/n2 ≤ x ≤ bj + ϵ, |y| ≤ ϵ

}
for some m > 0, we have,

using Lemma C.5,∫
Ωbj ,III

∥Xn(x, y)∥p dx dy ≤ 2Dp
III

∫ bj+ϵ

bj+m−1N2/n2

∫ ϵ

0
ypke−c′pny|x− bj |−p/2 dx dy +O

(
δkp
)
.

So, we set x′ = x− bj , y
′ = c′ny giving∫

Ωbj ,III

∥Xn(x, y)∥p dx dy

≤ 2Dp
III(c

′pn)−pk−1

[∫ ∞

0
ypke−y dy

]
1

1− p/2
x1−p/2

∣∣∣∣ϵ
m−1N2/n2

+O
(
δkp
)
.

We are left with, by possibly increasing DIII,∫
Ωbj ,III

∥Xn(x, y)∥p dx dy ≤ Dp
IIIn

p(1−k)−3N2−p +O
(
δkp
)
.

To set N , we set

np(1−k)−3N2−p = N3p/2+kp+2n−4−2kp, N3p/2+(k+1)p = n1+(k+1)p,

N = n
1+(k+1)p

3p/2+(k+1)p .

We note that this is a valid choice for N because, for p > 2,

1 + (k + 1)p

3p/2 + (k + 1)p
< 1.

Then for Σ = Ω \
⋃

j(Bϵ(aj) ∪ Bϵ(bj)), we use (2.2), the formula for Wn and the boundedness
of Gn to conclude∫

Σ
∥Xn(x, y)∥p dx dy ≤ D

∫ ϵ

0
ypke−npc′y dy ≤ D′n−pk−1. ■

Proposition 2.4. Suppose p > 2 and p(k−2|αj |)+2 > 0, p(k−2|βj |)+2 > 0 for all j. Suppose
also that Vn(x, y) ∈ L∞(C) satisfies

Vn(x, y)−
1

π

∫
Ω

Vn(x
′, y′)Xn(x

′, y′)

z′ − z
dA(z′) =

1

π

∫
Ω

Xn(x
′, y′)

z′ − z
dA(z′). (2.3)

Then Vn(x, y) + I is a solution of the ∂ problem solved by Cn(x, y). Lastly, Vn is α-Hölder
continuous for some 0 < α < 1 and Vn|Ω is differentiable almost everywhere.
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Proof. We use [3, Theorem 4.3.10] which states that, in a distributional sense, the integral
operator

KΩu(x, y) =
1

π

∫
Ω

u(x′, y′)

z′ − z
dA(z′)

is inverse to ∂, provided u ∈ L2(C). The condition imposed on k implies that Xn ∈ L2(C). So,
if Vn ∈ L∞(C), VnXn ∈ L2(C) so that ∂Vn = VnXn +Xn, ∂(Vn + I) = (Vn + I)Xn. Next,
from [3, Theorem 4.3.13], we have that KΩ maps Lp(C) into the space of α-Hölder continuous
functions for α = 1− 2/p, p > 2. And we again use the relation Vn = KΩ(VnXn) + KΩXn, to
get the desired conclusion because Xn ∈ Lp(Ω). The claim about Vn|Ω follows from the elliptic
regularity theorem, see [23, Theorem 9.26], since Vn|Ω ∈ L∞(Ω). ■

We also see that for any p > 2 > q, 1/p+ 1/q = 1, and U ∈ L∞(C),

∥Kn∥L∞(C) ≤ C∥U∥L∞(C)∥Xn∥Lp(Ω)

(
sup
z∈Ω

∫
Ω

dA(z′)

π|z′ − z|q

)1/q

,

Kn(x, y) =
1

π

∫
Ω

U(x′, y′)Xn(x
′, y′)

z′ − z
dA(z′).

We arrive at our main theorem concerning the existence of a solution Cn(x, y).

Theorem 2.5. Fix k ≥ 1 and set η = 2maxj max{|αj |, |βj |}. Suppose 2(η − k)− 1 < 0. Then
for every γ > 0, and n sufficiently large, there is a unique L∞(C) solution of (2.3) that satisfies

∥Vn∥L∞(C) = O
(
n2(η−k)−1+γ + δk

)
,

which is also Hölder continuous on C. Furthermore, Vn+I solves the ∂ problem for Cn satisfying
the pointwise estimate

|Vn(x, y)| = O

(∥Vn∥L∞(C)

1 + |z|

)
, z ∈ C.

Proof. By choosing p > 2 in Lemma 2.3 sufficiently close to 2, the theorem follows by Propo-
sition 2.4. ■

This implies that ∥Cn(x, y)∥ and ∥Cn(x, y)
−1∥ are uniformly bounded for n sufficiently large.

So, set R̃n(x, y) = Rn(x, y)Cn(x, y)
−1. It then follows that, for some c > 0, R̃n(x, y) should

solve the RH problem

R̃+
n (z) = R̃−

n (z)


I+O(e−cn), z ∈ Σj,+ ∪ Σj,−, |z − bj | > ϵ, |z − aj | > ϵ,

I+O
(
n−1 + δk

)
, |z − c| = ϵ, c = aj , bj ,

I+O
(
n−1δ−1

)
, z ∈ (bj − ϵ, bj − δ) ∪ (aj + δ, aj + ϵ),

R̃n(z) = I+O
(
z−1
)
, z → ∞,

where the jump condition error terms are uniform in z. Standard theory, see [12], for example,
gives estimates on R̃n. We find the following.

Theorem 2.6. Suppose hj ∈ Ck,1([aj , bj ]) for each j. For k ≥ 1 such that 2(η − k) < 1,
η = 2maxj max{|αj |, |βj |} and any fixed γ > 0, sufficiently small, set

D♮
j(z; c) =

[
d♯j,+(x, y; c) + 1 0

0 d♯j,−(x, y; c) + 1

]
,
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D♮(x, y) =

{
D♮

j(z; aj)
−1D♮

j(z; bj)
−1, z ∈ Ωj,±,

I, otherwise,

F♮(x, y) =


[

1 0

±f ♯
j (x, y)/ωj(z) 1

]
, z ∈ Ωj,±,

I, otherwise.

Then for n−1 ≪ δ ≪ 1,

Yn(z;µ) = c−nσ3Tn(x, y)D
♮(x, y)eng(z)σ3F♮(x, y),

Tn(x, y) = R̃n(z)(Vn(x, y) + I)


G̃n(z)Gn(z)

−1Pn(z; bj), |z − bj | < ϵ,

G̃n(z)Gn(z)
−1Pn(z; aj), |z − aj | < ϵ,

Gn(z), otherwise,

where

R̃n(z) = I+
1

2πi

∫
Γδ

On(z
′)

z′ − z
dz′, ∥On∥L2(Γδ) = O

(
n−1 + n−1δ−1 + δk

)
,

Vn(x, y) = O

(
n−k+γ + n2(η−k)−1+γ + δk

1 + |z|

)
,

and therefore

R̃n(z)(Vn(x, y) + I) = I+O

(
n−k+γ + n2(η−k)−1+γ + n−1δ−1 + δk

1 + |z|

)
,

G̃n(z)Gn(z)
−1 = I+O

(
δk
)
, D♮(x, y) = I+O

(
δk
)
,

uniformly for z in sets bounded away from Γδ, where

Γδ =
⋃
j

({z | |z − aj | = ϵ} ∪ {z | |z − bj | = ϵ} ∪ (bj − ϵ, bj − δ) ∪ (aj + δ, aj + ϵ)) .

Proof. Let Ỹn(z;µ) = c−nσ3Tn(x, y)D
♮(x, y)eng(z)σ3F♮(x, y). All the estimates have been pre-

viously discussed and the remaining issue is the equality — that Ỹn(z;µ) = Yn(z;µ). It can
be shown that the jump conditions for R̃n(z) satisfy the so-called product condition [37, Def-
inition 2.55] and derivatives of the jump matrix are essentially bounded. Thus On ∈ H1

z (Γδ),
[37, Definition 2.48], an appropriate Sobolev space to ensure that R̃n(z), as defined, is uni-
formly α-Hölder continuous and takes α-Hölder continuous boundary values for some α > 0.
And Ỹn(z;µ) satisfies the jump conditions set for the FIK RH problem, in a continuous sense
(away from aj , bj).

Next, we need to verify analyticity. But from classical elliptic regularity, [23, Theorem 9.26],
we have that Ỹn(·;µ) ∈ C∞(Ω′) for every open set Ω′ that does not intersect any one of the
contours used in the deformation, i.e., for

Ω′ ⊂ C \ Σ, Σ :=
⋃
j

(Σj,− ∪ Σj,+ ∪ [aj , bj ] ∪ {z | |z − aj | = ϵ} ∪ {z | |z − bj | = ϵ}).

Furthermore, ∂Ỹn = 0 in such a set Ω′, implying analyticity.

Lastly, from the singularity structure of PBessel it follows that Ỹn has the same singularity
orders as Yn and therefore Ỹn = Yn. ■
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Effective use of this theorem then requires choosing δ. If asymptotics are desired away from
the endpoints aj , bj , one can choose k so that n−1δ−1 = δk, δ = n−1/(k+1). For 2(η − k) ≤ 0,
this will give errors of O

(
n−k/(k+1)

)
. On the other hand, if one wants asymptotics near z = aj ,

for example, care has to be taken in estimating R̃n(z). We write Γδ as a disjoint union

Γδ = (aj + δ, aj + ϵ) ∪ Γo
δ,

and find the entry-wise estimate for z ∈ Bδ′(zj), δ
′ ≪ δ,

∣∣(R̃n(z)− I
)
ij

∣∣ ≤ ∥On∥L2(Γδ)

(∫ aj+ϵ

aj+δ

dx

|x− z|2

)1/2

+O(∥On∥L2(Γδ))

= O
(
δ−1/2∥On∥L2(Γδ)

)
.

So, if n−1δ−3/2 ≪ 1, or δ = n−2/3+γ , and 2(η−k)+1/3 < 0, we obtain a valid error term giving
uniform asymptotics on scaled neighborhoods of the endpoints aj , bj . Furthermore, by taking k
sufficiently large, γ < 2/3 here can be chosen arbitrarily close to 2/3.

3 Extensions and improvements

In this section, we discuss two topics. The first is the improvement in the estimates for the
αj , βj ∈ {1/2,−1/2}, the perturbed Chebyshev-like case. The second is the addition of point
masses to the measure µ, i.e., P > 0.

3.1 Chebyshev-like polynomials on multiple intervals

So, suppose αj , βj ∈ {1/2,−1/2}. In the case where fj = 1/hj is analytic in a neighborhood
of [aj , bj ] for every j, local parametrices are not needed [27] (see also [17]). To treat the case of
non-analytic fj using this fact, one needs to find an extension of fj to an entire neighborhood
of [aj , bj ] to appropriately pose a hybrid ∂-RH problem. This was accomplished in [41]. While
we follow this idea, we use a slightly different method of extension, since we have already
developed our extension operator ♯. First, we recall that for ϵ > 0, fj ∈ W k,p([aj , bj ]) has
a W k,p([aj − 2ϵ, bj + 2ϵ]) extension. Similarly, fj ∈ Ck,α([aj , bj ]) has a Ck,α([aj − 2ϵ, bj + 2ϵ])
extension. This can be constructed simply by polynomial interpolation of the function and
its first k derivatives at the endpoints — the Taylor polynomial. For what follows, we will
assume fj ∈ Ck,α([aj , bj ]), k ≥ 1 and any α > 0 or fj ∈ W k,q([aj , bj ]), k ≥ 1 and q > 4. Then,
we find a sequence of polynomials (p′m,j)m≥1 of degree m such that

Ej,m,q := ∥f ′
j − p′m,j∥Lq([aj−2ϵ,bj+2ϵ]) → 0, q > 6.

From Jackson’s theorem, see [4, Theorem 3.7.2], we can select the sequence such that Ej,m,∞ =
O
(
m−k+1−α

)
if f ∈ Ck,α([aj , bj ]), but more refined estimates are possible for W k,q([aj , bj ])

[10, 20]. Specifically, if fj ∈ W k,p([aj , bj ]), we can select the sequence such that [10, (5.4.16)]

Ej,m,q ≤ Cm−k+1
k−1∑

ℓ=min{k−1,m+1}

∥f (ℓ+1)
j ∥Lq([aj−2ϵ,bj+2ϵ])

≤ C ′m−k+1∥fj∥Wk,p([aj−2ϵ,bj+2ϵ]).

Set, for example, pm,j = fj(aj) +
∫ x
aj
p′m,j(x

′) dx′. Then, define rm,j = fj − pm,j , and its exten-
sion r♯m,j(x, y) with κ = 0 and τ = ϵ/2. Then the extension of fj is given by

f ‡
j (x, y) = r♯m,j(x, y) + pm,j(z).



18 T. Trogdon

Note that for z ∈ Ω′
j := {z | ϵ/2− aj < x < bj + ϵ/2, 0 < |y| < ϵ/2}, we simply have

f ‡
j (x, y) = rm,j(x) + pm,j(z).

In our deformations, we reuse the analogous notation from the previous sections and trust it
will not cause too much confusion. Define Ω′

j,± := Ω′
j ∩ C± and

Zn(x, y) = Yn(z;µ)



[
1 0

−f ‡
j (x, y)/ωj(z) 1

]
, z ∈ Ω′

j,+,[
1 0

f ‡
j (x, y)/ωj(z) 1

]
, z ∈ Ω′

j,−,

I, otherwise.

So that

∂Zn(x, y) =



Zn(z;µ)

[
0 0

−∂r♯m,j(x, y)/ωj(z) 0

]
, z ∈ Ω′

j,+,

Zn(z;µ)

[
0 0

∂r♯m,j(x, y)/ωj(z) 0

]
, z ∈ Ω′

j,−,

0, z ∈ C \ Ω′
j .

Set

Σ′
j,+ = {z | x = aj − ϵ/2, 0 ≤ y ≤ ϵ/2}

= ∪{z | y = ϵ/2, aj − ϵ/2 ≤ x ≤ bj + ϵ/2} ∪ {z | x = bj + ϵ/2, 0 ≤ y ≤ ϵ/2},

i.e., the “top” boundary of the box Ω′
j . We give this negative orientation (as the boundary

of Ω′
j). And set Σ′

j,− =
{
z | z̄ ∈ Σ′

j,+

}
, inheriting orientation.

It follows that the matrix used in the definition of Zn is continuous across the real axis
for aj − ϵ/2 < x < aj and bj < x < bj + ϵ/2 [27] giving the resulting jump conditions

Z+
n (x, y) = Z−

n (x, y)



[
1 0

f ‡
j (x, y)/ωj(z) 1

]
, z ∈ Σ′

j,− ∪ Σ′
j,+,[

0 ρ(x)

−1/ρ(x) 0

]
, z ∈ [aj , bj ].

As before, define Tn(x, y) = cnσ3Zn(x, y)e
−ng(z)σ3 . We find that Tn(x, y) solves the normal-

ized hybrid RH-∂ problem

T+
n (x, y) = T−

n (x, y)



[
1 0

e−2ng(z)f ‡
j (x, y)/ωj(z) 1

]
, z ∈ Σ′

j,− ∪ Σ′
j,+,[

0 ρ(x)

−1/ρ(x) 0

]
, z ∈ (aj , bj),

e−∆jσ3 , z ∈ (bj , aj+1),

∂Tn(x, y) = Tn(z)



[
0 0

−e−2ng(z)∂r♯m,j(x, y)/ωj(z) 0

]
, z ∈ Ω′

j,+,[
0 0

e−2ng(z)∂r♯m,j(x, y)/ωj(z) 0

]
, z ∈ Ω′

j,−,

0, z ∈ C \ Ω′
j ,
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Tn(x, y) = I+O
(
z−1
)
, z → ∞.

With the notation for Gn(z) being precisely the same, we set Rn(x, y) = Tn(x, y)Gn(z)
−1, and

find that Rn(x, y) solves

R+
n (x, y) = R−

n (x, y)Gn(z)

[
1 0

e−2ng(z)f ‡
j (x, y)/ωj(z) 1

]
Gn(z)

−1, z ∈ Σ′
j,− ∪ Σ′

j,+,

∂Rn(x, y) = Rn(z)



Gn(z)e
−σ3G(z)

[
0 0

−e−2ng(z)−2G(z)∂r♯m,j(x, y)/ωj(z) 0

]
×eσ3G(z)Gn(z)

−1, z ∈ Ω′
j,+,

Gn(z)e
−σ3G(z)

[
0 0

e−2ng(z)−2G(z)∂r♯m,j(x, y)/ωj(z) 0

]
×eσ3G(z)Gn(z)

−1, z ∈ Ω′
j,−,

0, z ∈ C \ Ω′
j ,

Rn(x, y) = I+O
(
z−1
)
, z → ∞.

As above, we then seek Cn(x, y) that is continuous on C and satisfies

∂Cn(x, y) = Cn(z)Xn(x, y), z ∈ Ω′
j ,

Cn(x, y) = I+O
(
z−1
)
, z → ∞,

where derivatives are understood to hold in an L2(C) distributional sense. As above, we seek
a solution Cn = Vn + I where Vn satisfies

Vn(x, y)−
1

π

∫
Ω′

Vn(x
′, y′)Xn(x

′, y′)

z′ − z
dA(z′) =

1

π

∫
Ω′

Xn(x
′, y′)

z′ − z
dA(z′), Ω′ =

⋃
j

Ω′
j .

Define the operator LnU := KΩ′(UXn), and the companion operator

KΩ′u(z) =
1

π

∫
Ω′

u(x′, y′)

|z′ − z|
dA(z′).

Below, we will establish conditions under which ∥KΩ′(∥Xn∥)∥L∞(C) → 0. This will then
imply, via a standard Neumann series argument, that Cn(x, y) and Cn(x, y)

−1 are uniformly
bounded, for n sufficiently large, and tend uniformly to the identity matrix.

Next, we make a similar observation to what was made in [41]. The Bernstein–Walsh inequal-
ity, see [33, Theorem III.2.1], in its simplest form, states that if a polynomial p(x), of degree n,
satisfies max−1≤x≤1 |p(x)| ≤ C, then

|p(z)| ≤ C|ϕ(z)|n, z ∈ C, ϕ(z) = z +
√
z − 1

√
z + 1

Therefore, if a polynomial p(x), of degree n, satisfies maxa≤x≤b |p(x)| ≤ C, then

|p(z)| ≤ C|ϕ(M(z))|n, z ∈ C, M(z) = M(z; a, b) =
2

b− a

(
x− b+ a

2

)
. (3.1)

Thus, for the sequence of polynomials pm,j(x) that converge uniformly on [aj , bj ], we have
|pm,j(x)| ≤ C for some constant, independent of m (and j). From this, and Proposition A.1,
provided that ϵ is sufficiently small we have that

|pm,j(z)|
∣∣e−2ng(z)

∣∣ ≤ C|ϕ(M(z; aj , bj))|−2cn+m, (3.2)

for some c > 0. So, we choose, for example m = ⌊cn⌋ so that (3.2) is O(e−cn).
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Now, as before, set R̃n(x, y) = Rn(x, y)Cn(x, y)
−1. It then follows that R̃n(x, y) should solve

the RH problem

R̃+
n (z) = R̃−

n (z)(I+O(e−cn)), z ∈ Σ′, Σ′ =
⋃
j

(Σ′
j,− ∪ Σ′

j,+)

R̃n(z) = I+O
(
z−1
)
, z → ∞,

where the jump condition error terms are uniform in z. Standard theory, see [12], for example,
again gives estimates on R̃n, and we find the following.

Theorem 3.1. For k ≥ 1, q > 6 and6 ϵ sufficiently small set

F♮(x, y) =


[

1 0

±f ‡
j (x, y)/ωj(z) 1

]
, z ∈ Ω′

j,±,

I, otherwise,

and suppose ∥KΩ′(∥Xn∥)∥L∞(C) = o(1), n → ∞. Then for n sufficiently large,

Yn(z;µ) = c−nσ3Tn(x, y)e
ng(z)σ3F♮(x, y),

Tn(x, y) = R̃n(z)(Vn(x, y) + I)Gn(z),

where

R̃n(z) = I+
1

2πi

∫
Σ′

On(z
′)

z′ − z
dz′, ∥On∥L2(Σ′) = O(e−cn),

and

Vn(x, y) = O

(∥KΩ′(∥Xn∥)∥L∞(C)

1 + |z|

)
, z ∈ C, m = ⌊cn⌋.

Proof. The only remaining detail to spell out is the estimate on Vn. First, it follows that

∥Ln∥L∞(Ω′) ≤ ∥KΩ′(∥Xn∥)∥L∞(C).

This implies that the integral equation Vn − LnVn = KXn is near-identity. For n sufficiently
large, it has a unique solution, tending to zero as n → ∞, and

∥Vn∥ ≤ ∥LnVn∥+ ∥KΩ′Xn∥ ≤ (1 + ∥Vn∥L∞(Ω′))∥KΩ′(∥Xn∥)∥L∞(C). ■

To finalize the preceding theorem, we have the following estimates.

Lemma 3.2 (norm bounds). For p > 2, q > 6, and 1/p = 1/q + 1/r, and m = ⌊cn⌋,

∥KΩ′(∥Xn∥)∥L∞(C) = O
(
n−1/r max

j
Ej,m,q

)
.

Furthermore,

∥KΩ′(∥Xn∥)∥L∞(C) = O
(
n−1 log nmax

j
Ej,m,∞

)
.

6Recall that ϵ appears in the definition of Σ′
j,±.
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Proof. Importantly, we note that by Lemma C.3, e−2G(z)/ωj(z) is bounded in a neighborhood
of [aj , bj ]. From the (at most) quarter-root singularities of Gn(z)e

−σ3G(z), we find for z ∈ Ω′
j

that

Xn(x, y) = Gn(z)e
−σ3G(z)

[
0 0

−e−2ng(z)−2G(z)∂r♯m,j(x, y)/ωj(z) 0

]
eσ3G(z)Gn(z)

−1

satisfies

∥Xn(x, y)∥ ≤ C
∣∣∂r♯m,j(x, y)

∣∣|z − aj |−1/2|z − bj |−1/2e−2nRe g(z).

With the aim of using (E.1), we have

∥Xn∥Lp(Ω′
j)
≤ C

∥∥∂r♯m,j

∥∥
Lq(Ω′

j)
∥hj,n∥Lr(Ω′

j)
,

hj,n(z) := |z − aj |−1/2|z − bj |−1/2e−2nRe g(z),

for 1 ≤ p ≤ 4, and 1/p = 1/q + 1/r. Since we will need p > 2 below, and using (E.1)
requires γ < 3/2, we choose r < 3, and q > 6, giving ∥Xn∥Lp(Ω′

j)
= O

(
n−1/rEj,m,q

)
. The first

claim follows from the fact that ∥KΩ′u∥L∞(C) ≤ Cp∥u∥Lp(Ω′) for some Cp > 0, provided p > 2.
To establish the second claim, we need to establish the estimate KΩ′hj,n(z) = O

(
n−1 log n

)
.

This essentially follows from the proof of [41, Lemma 4] once we note that, after the change of
variable z′ = 1/2(τ + 1/τ), there is a helpful factor of

∣∣τ2 − 1
∣∣ that can be used to cancel the

singularity in∣∣z2 − 1
∣∣−1/2

=
2τ∣∣τ2 − 1

∣∣ . ■

3.2 The addition of a finite number of point masses

The addition of point masses follows a simple procedure, see, for example, [17]. Diagonal and
triangular rational modifications are made to the original RH problem, with the second applying
only in a neighborhood of each of the point masses, converting a residue condition (1.3) into
a rational jump condition. The effect of this is a rational modification of the densities on [aj , bj ]
for every j, a change in the asymptotics at infinity and the introduction of a jump condition on
a small curve encircling the point masses. Once the g-function is introduced, this jump condition
becomes exponentially close to the identity. We sketch this procedure here but refer the reader
to [17] for more detail.

Define

Ŷn(z) = Yn(z;µ)

[∏P
j=1(z − cj)

−1 0

0
∏P

j=1(z − cj)

]
.

Then let Ξj be a small neighborhood of cj . Define

Y̌n(z) = Ŷn(z)


[

1 0

− r̃j
z−cj

1

]
, z ∈ Ξj ,

I, otherwise,

where r̃j is defined as

r̃j :=
2πi

rj

∏
k ̸=j

(cj − ck)
−2.

The RH problem satisfied by Y̌n is found by modifying the RH problem satisfied by Yn in three
ways:



22 T. Trogdon

� Replace ρ(x) with

ρ(x)
P∏

j=1

(x− cj)
2. (3.3)

� Include the jump

Y̌+
n (z) = Y̌−

n (z)

[
1 0

− r̃j
z−cj

1

]

on the positively-oriented boundary of Ξj .

� Replace the asymptotics at infinity with Y̌n(z)z
−(n−P )σ3 = I+O

(
z−1
)
, z → ∞.

Then Theorem 2.6 holds if one makes the new definition

F♮(x, y) = H♮(x, y)

[∏P
j=1(z − cj) 0

0
∏P

j=1(z − cj)
−1

]
,

H♮(x, y) =



[
1 0

±f ♯
j (x, y)/ωj(z) 1

]
, z ∈ Ωj,±,[

1 0
r̃j

z−cj
1

]
, z ∈ Ξj ,

I, otherwise,

ρ is replaced with (3.3) and n is replaced with n−P . Similarly, Theorem 3.1 holds if one makes
the new definition

F♯(x, y) = H♮(x, y)

[∏P
j=1(z − cj) 0

0
∏P

j=1(z − cj)
−1

]
,

H♮(x, y) =



[
1 0

±f ‡
j (x, y)/ωj(z) 1

]
, z ∈ Ω′

j,±,[
1 0
r̃j

z−cj
1

]
, z ∈ Ξj ,

I, otherwise,

ρ is replaced with (3.3) and n is replaced with n− P .

4 Asymptotics of recurrence coefficients
and estimating optimal errors

While asymptotics of the polynomials themselves are directly available using the above calcu-
lations, we are primarily interested in the asymptotics of the associated recurrence coefficients.
The recurrence coefficients (an(µ))n≥0 and (bn(µ))n≥0, bn(µ) > 0, are the coefficients in the
relation

p−1(x;µ) := 0, p0(x;µ) = 1,

xpn(x;µ) = bn(µ)pn+1(x;µ) + an(µ)pn(x;µ) + bn−1(µ)pn−1(x;µ).
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If we write

Yn(z;µ) =
(
I+Y(1)

n (µ)z−1 +O
(
z−2
))
zσ3n, Y(1)

n (µ) =

[
y11(n;µ) y12(n;µ)
y21(n;µ) y22(n;µ)

]
,

we have

pn(z;µ) = ℓn(µ)πn(z;µ) = ℓn(µ)
(
zn + y11(n;µ)z

n−1 + · · ·
)
,

cn(z;µ) = − 1

2πi
ℓn(µ)

2zn + · · · = y12(n;µ)z
n + · · · .

Equating coefficients in the recurrence, gives

ℓn(µ) = bn(µ)ℓn+1(µ), ℓn(µ)y11(n;µ) = bn(µ)ℓn+1(µ)y11(n+ 1;µ) + an(µ)ℓn(µ).

And therefore

bn(µ) =
ℓn+1(µ)

ℓn(µ)
, bn(µ)

2 =
y12(n+ 1;µ)

y12(n;µ)
, an(µ) = y11(n;µ)− y11(n+ 1;µ).

In Theorem 2.6 or Theorem 3.1, we have as z → ∞

Tn(x, y) =
(
I+T(1)

n z−1 +O
(
z−2
))
Gn(z), Gn(z) = I+G(1)

n z−1 +O
(
z−2
)

for T
(1)
n → 0. Then using that

g(z) = log c+ log z + g1z
−1 +O

(
z−2
)
,

we have

eng(z)σ3 = cnσ3znσ3
(
I+ ng1σ3z

−1 +O
(
z−2
))
,

Yn(z;µ) = c−nσ3
(
I+

[
G(1)

n +T(1)
n

]
z−1 +O

(
z−2
))(

I+ ng1σ3z
−1 +O

(
z−2
))
cnσ3znσ3

=
(
I+

[
c−nσ3

[
G(1)

n +T(1)
n

]
cnσ3 + ng1σ3

]
z−1 +O

(
z−2
))
znσ3 .

This gives the expansion

Y(1)
n (µ) = c−nσ3

[
G(1)

n +T(1)
n

]
cnσ3 + ng1σ3.

If we set

G(1)
n =

[
g11(n;µ) g12(n;µ)
g21(n;µ) g22(n;µ)

]
,

we have

an(µ) = g11(n;µ)− g11(n+ 1;µ)− g1 +O
(
T(1)

n

)
,

bn(µ)
2 =

g12(n+ 1;µ) + O
(
T

(1)
n

)
g12(n;µ) + O

(
T

(1)
n

) .

To compare our error estimates to the true errors, we consider a single interval [a1, b1] =
[−1, 1], g = 0. We use α1 = β1 = 1/2,

h1(x) =

{
1, −1 ≤ x ≤ 0,

1 + xγ(1 + x)−1/2, 0 ≤ x ≤ 1.
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Figure 4. A comparison of the recurrence coefficients when γ = 3/2. The observed discrepancy between

the recurrence coefficients and their known asymptotics appears to be O
(
n−γ−1

)
.

Figure 5. A comparison of the recurrence coefficients when γ = 2. The observed discrepancy between

the recurrence coefficients and their known asymptotics appears to be O
(
n−γ−1

)
.

Then, if one uses the Gauss–Jacobi quadrature rules (xj , wj), (yj , vj) such that

∫ 1

−1
p(x)

√
1− x2 dx =

n∑
j=1

p(xj)wj ,

∫ 1

0
p(x)xγ

√
1− x dx =

n∑
j=1

p(yj)vj ,

for all polynomials p of degree less than 2n, the inner product can be approximated well because∫ 1

−1
f(x)g(x)

√
1− x2h1(x) dx =

n∑
j=1

f(xj)g(xj)wj +
n∑

j=1

f(yj)g(xj)vj ,

when f and g are polynomials of degree less than or equal to n− 1. This implies the recurrence
coefficients can be generated exactly (up to roundoff). The ideal algorithm is the RKPWmethod
as outlined in [25] which has O

(
n2
)
complexity. In Figures 4 and 5, we provide evidence that

error term in the asymptotics of the recurrence coefficients is O
(
n−γ−1

)
whereas our method,

and that of Yattselev [41], using q = ∞ predicts O(n−γ log n). We do note that, while potentially
indicative, this density is piecewise analytic. A more exotic density might be needed to see the
rate predicted by Yattselev, but running computations in such a case will likely be its own
entirely separate challenge.
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5 Conclusions and outlook

The main open problem here is to obtain error bounds that reflect the true rates demonstrated
in Figures 4 and 5. It is also unknown how close to optimal the rate we have obtained for the
general Jacobi-type case is.

It is also of interest to see if these deformations, at least in some way, could be helpful in
computing the recurrence coefficients as was done in [6, 35, 36], potentially enabling compu-
tations with optimal complexity. We also anticipate using the asymptotics discussed here in
perturbation theory à la [17] for random matrices that have anomalous edge/bulk behavior.

A The g-function

In this appendix, we define what is commonly called the external Green’s function with pole
at infinity [39], or rather the analytic function whose real part is this Green’s function, and
determine some essential properties. This construction can be also be found in [2]. Specifically,
we find a function g that satisfies

(a) g′(z) = 1/z +O
(
1/z2

)
as z → ∞,

(b) g′+(z), g
′
−(z) ∈ iR on [aj , bj ],

(c)
∫ aj+1

bj
g′(z) dz = 0, j = 1, 2, . . . , g.

The following construction can be found in [17]. Set7

g′(z) =
Qg(z)

R(z)
, where R(z)2 =

g+1∏
j=1

(z − aj)(z − bj), (A.1)

where Qg is a monic polynomial of degree g. The coefficients for Qg, Qg(z) =
∑

ℓ αℓz
ℓ, are found

by solving the linear system, which enforces (c)

∫ aj+1

bj

g−1∑
ℓ=0

αk
zℓ

R(z)
dz = −

∫ aj+1

bj

zg

R(z)
dz, j = 1, 2, . . . , g.

This system is uniquely solvable due to abstract theory, see Appendix D.

Then set

g(z) =

∫ z

a1

g′(z′) dz′, z ̸∈ [a1,∞), (A.2)

where the path of integration is taken to be a straight line.

The following properties then hold:

(i) αℓ ∈ R for every ℓ,

(ii) g+(z) + g−(z) = 0, z ∈ (aj , bj),

(iii) g+(z)− g−(z) =: ∆j ∈ iR is constant on [bj , aj+1], and

(iv) Re g(z) is strictly positive on any closed subset of R \
⋃

j [aj , bj ].

7See Appendix D for the definition of R(z).
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We will need to characterize the last property more quantitatively. Consider the function

ϕ(z) = z +
√
z − 1

√
z + 1.

It follows that ϕ(z) is a conformal mapping from C \ [−1, 1] to the exterior of the unit disk. It
can also be shown that

log |ϕ(z)| = Re

∫ z

−1

dz′√
z′ − 1

√
z′ + 1

.

Then for a < b, set M(z; a, b) = 2
b−a

(
z − b+a

2

)
and we establish the following in Appendix C.5.

Proposition A.1. For every ϵ > 0 sufficiently small, there exist γ, γ′ > 0 such that if aj − ϵ ≤
x ≤ bj + ϵ and |y| ≤ ϵ, then

eRe g(z) ≥ |ϕ(M(z; aj , bj))|γ and eRe g(z) ≤ |ϕ(M(z; aj , bj))|γ
′
.

Define the vector ∆ = (∆j)
g
j=1. We now define conformal maps in the neighborhood of each

endpoints aj , bj . Specifically, define for j = 1, 2, . . . , g,

φ(z; aj) =

(∫ z

aj

g′(z′) dz′

)2

, φ(z; bj) =

(∫ z

bj

g′(z′) dz′

)2

. (A.3)

The following is immediate.

Lemma A.2. For each j = 1, 2, . . . , g+1, φ(z; aj) (resp. φ(z; bj)) is a conformal mapping from
a neighborhood of aj (resp. bj) to a neighborhood of the origin. For ϵ sufficiently small, and
0 < s < ϵ, φ(aj + s; aj) < 0 and φ(bj − s; bj) < 0.

B Extension operator

In this appendix, we define an extension operator ♯ that will take a sufficiently smooth function
defined on the interval [a, b] and extend it to the complex plane suitably. Let b̂(x) be a smooth
function satisfying

b̂(x) =

{
0, x < 1,

1, x > 2,

that is monotonic on the interval [1, 2]. Set

bτ (x; c) = b̂(|x− c|/τ), 0 < τ < (b− a)/8. (B.1)

Then consider b̃(x) = bτ (x; a)bτ (x; b). We use b and b̃ to define an extension of a function
m : [a, b] → R. We assume m is κ times differentiable with its (κ + 1)-th derivative existing
almost everywhere. Define the Taylor extension

m(x, y) =

κ∑
ℓ=0

m(ℓ)(x)

ℓ!
(iy)ℓ, x ∈ [a, b],

and the Taylor approximations

m(z; c) =
κ∑

ℓ=0

m(ℓ)(c)

ℓ!
(z − c)ℓ, c = a, b.
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For 0 < θ1 < θ2 < π/2, construct an infinitely smooth function that for θ ∈ [−π/2, π/2]
satisfies

β̃(θ) =

{
0, −θ1 ≤ θ ≤ θ1,

1, |θ| > θ2.

Then extend β̃(θ) to the entirety of interval [−π, π] using an even reflection about θ = π/2.
Then, one obtains a function on the unit circle in the obvious way β̂(z) = β̃(θ), z = eiθ, which
then extends to a function on C \ {0} β(x, y) = β̂(z/|z|). The extension is then defined as8

m♯(x, y) = (1− bτ (|y|; 0))[b̃(x)m(x, y)

+ (1− bτ (x; a))(1− β(x− a, y))m(x, y) + β(x− a, y)(1− bτ (x; a))m(z; a)

+ (1− bτ (x; b))(1− β(x− b, y))m(x, y) + β(x− b, y)(1− bτ (x; b))m(z; b)].

We now verify the following properties of m♯:

(1) m♯(x, y) extends to be continuous for a ≤ x ≤ b, y ∈ R,
(2) for a ≤ x ≤ b, m♯(x, 0) = m(x),

(3) for c = a, b, |z − c| < τ ,

m♯(x, y) = m(z; a), θ2 < | arg(z − a)| < π/2,

m♯(x, y) = m(z; b), θ2 < | arg(b− z)| < π/2,

(4) for a ≤ x ≤ b and |y| ≤ τ , ∥∂m♯(·, y)∥L∞([a,b]) ≤ Cκ∥m∥Cκ,1([a,b])|y|κ, for some Cκ > 0.

B.1 Verification of the properties

The following lemma will assist in the verification above properties.

Lemma B.1. Suppose f ∈ Cκ,1(I), where I is an open interval containing x = 0. Then for
x ∈ I,∣∣∣∣∣∣

κ∑
j=0

f (j)(x)

j!
(iy)j −

κ∑
j=0

f (j)(0)

j!
(x+ iy)j

∣∣∣∣∣∣ ≤ C∥f∥Cκ,1(I)

κ+1∑
j=1

|x|j |y|κ+1−j

for a constant C that only depends on I and κ.

Proof. We use Taylor’s theorem with remainder to write

f (j)(x) =

κ−j∑
ℓ=0

f (j+ℓ)(0)

ℓ!
xℓ +Rj(x),

where |Rj(x)| ≤ Mj supξ∈I
∣∣f (κ+1)(ξ)

∣∣|x|κ−j+1. Then, the binomial theorem gives

κ∑
j=0

f (j)(x)

j!
(iy)j =

κ∑
j=0

f (j)(0)

j!
(x+ iy)j +

κ∑
j=0

Rj(x)(iy)
j

j!
,

and the claim follows. ■
8Here m(x, y) is only defined for x ∈ [a, b], but because the b̃(x) = 0 for |x− a| < τ, |x− b| < τ , this naturally

extends to |z − c| < τ , c = a, b.



28 T. Trogdon

B.1.1 Property (1)

The only points where continuity does not follow immediately is z = a, b. So, for |z − a| < τ we
have

m♯(x, y) = (1− β(x− a, y))m(x, y) + β(x− a, y)m(z; a).

We then write, using Lemma B.1,

m♯(x, y) = m(z; a) + (1− β(x− a, y))Pk+1(x− a, y),

where Pk+1(x, y) is bounded by a homogeneous polynomial of degree k + 1 in x and y. With
the definition m♯(a, 0) := m(a; a), continuity follows. Similar considerations hold near z = b.

B.1.2 Property (2)

For a + 2τ ≤ x ≤ b − 2τ , we have bτ (x; a) = bτ (x; b) = 1 giving m♯(x, 0) = m(x, 0) = m(x).
Then for a ≤ x ≤ a+ 2τ , we have bτ (x; b) = 1 and

m♯(x, 0) = bτ (x; a)m(x, 0) + (1− bτ (x; a))m(x, 0).

A similar calculation follows near x = b.

B.1.3 Property (3)

By definition, for |z − a| < τ and θ2 < | arg(z − a)| < π/2, we find that m♯(x, y) = m(z; a). The
same calculation follows near x = b.

B.1.4 Property (4)

We first note that, in general, for almost every x

2∂m(x, y) =

κ∑
ℓ=0

m(ℓ+1)(x)

ℓ!
(iy)ℓ −

κ∑
ℓ=1

m(ℓ)(x)

(ℓ− 1)!
(iy)ℓ−1 =

m(κ+1)(x)

κ!
(iy)κ.

So, we immediately have the property we desire for z such that a+2τ ≤ x ≤ b−2τ , when b̃(x) = 1.
Then for |z − a| ≤ 2τ and −θ1 < arg(z − a) < θ1

m♯(x, y) = m(x, y)(1− b̃(x)) +m(x, y)b̃(x).

We again immediately have the desired property.
Now, consider 0 < |z − a| ≤ τ and | arg(z − a)| ≥ θ1. Then b̃(x) = 0 and we have

m♯(x, y) = (1− β(x− a, y))m(x, y) + β(x− a, y)m(z; a).

Since ∂m(z; a) = 0, we find

2∂m♯(x, y) = (2− 2β(x− a, y))∂m(x, y) + 2∂β(x− a, y) [m(z; a)−m(x, y)] .

The first term admits a bound of the desired type using previous considerations. We use
Lemma B.1 to bound

|m(z; a)−m(x, y)| ≤ C∥m∥Cκ,1([a,b])

k+2∑
ℓ=1

|x− a|ℓ|y|k−ℓ+1.
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And because | arg(z − a)| ≥ θ1, we find

|m(z; a)−m(x, y)| ≤ C ′∥m∥Cκ,1([a,b])|y|k+1.

It remains to bound ∂β.
Then we compute

∂xβ(x, y) = ∂xβ̂

(
x+ iy√
x2 + y2

)
= −β̂′(z/|z|) iy

z̄|z|
,

∂yβ(x, y) = ∂yβ̂

(
x+ iy√
x2 + y2

)
= β̂′(z/|z|) ix

z̄|z|
.

For some A > 1, A−1|y| ≤ |x| ≤ A|y| whenever | arg(z − a)| ≥ θ1. This then implies that

A−2y2 ≤ x2 ≤ A2y2,
(
A−2 + 1

)
y2 ≤ x2 + y2 ≤

(
A2 + 1

)
y2.

So, within this sector, we have
∣∣ ix
z̄|z|
∣∣ ≤ C|y|−1,

∣∣ iy
z̄|z|
∣∣ ≤ C|y|−1, for a constant C > 0. Therefore,

for a new constant C ′, we have

|∂xβ(x, y)| ≤ C ′|y|−1, |∂yβ(x, y)| ≤ C ′|y|−1.

The remaining case of τ ≤ |z − a| ≤ 2τ and | arg(z − a)| ≥ θ1 can be established analogously by
using b̃(x) = bτ (x; a) and therefore

m♯(x, y) = m(x, y) + (1− bτ (x; a))β(x− a, y)(m(z; a)−m(x, y)).

This establishes property (4), with a τ -independent constant for |y| ≤ τ .

C Construction and estimation of local parametrices

We first define the classical Bessel parametrix (σ = 2π/3)

PBessel(ξ;α) =



[
Iα
(
2ξ1/2

)
i
π Kα

(
2ξ1/2

)
2πiξ1/2 I′α

(
2ξ1/2

)
−2ξ1/2K′

α

(
2ξ1/2

)] , arg ξ ∈ (−σ, σ),[
1
2 H

(1)
α

(
2(−ξ)1/2

)
1
2 H

(2)
α

(
2(−ξ)1/2

)
πξ1/2H

(1)
α

′(
2(−ξ)1/2

)
πξ1/2H

(2)
α

′(
2(−ξ)1/2

)] e 1
2
απiσ3 , arg ξ(σ, π),[

1
2 H

(2)
α

(
2(−ξ)1/2

)
−1

2 H
(1)
α

(
2(−ξ)1/2

)
−πξ1/2H

(2)
α

′(
2(−ξ)1/2

)
πξ1/2H

(1)
α

′(
2(−ξ)1/2

)]
×e−

1
2
απiσ3 , arg ξ ∈ (−π,−σ).

Here Iα, Kα, H
(2)
α and H

(1)
α are the modified Bessel and Hankel functions [32]. From [28], we

have the following.
The function PBessel satisfies the following jump conditions

P+
Bessel(ξ;α) = P−

Bessel(ξ;α)JBessel(ξ;α), ξ ∈ Γ1 ∪ Γ2 ∪ Γ3,

JBessel(ξ;α) =



[
1 0

eαπi 1

]
, ξ ∈ Γ1,[

0 1

−1 0

]
, ξ ∈ Γ2,[

1 0

e−απi 1

]
, ξ ∈ Γ3,
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where contours are oriented in the direction of decreasing modulus. The asymptotics at the
origin are given by the following three cases. If α > 0,

PBessel(ξ;α) =



O

[
|ξ|α/2 |ξ|−α/2

|ξ|α/2 |ξ|−α/2

]
, | arg ξ| < 2π/3,

O

[
|ξ|−α/2 |ξ|−α/2

|ξ|−α/2 |ξ|−α/2

]
, 2π/3 < | arg ξ| < π,

as ξ → 0.

If α = 0, then

PBessel(ξ;α) = O

[
log |ξ| log |ξ|
log |ξ| log |ξ|

]
, as ξ → 0.

And if α < 0,

PBessel(ξ;α) = O

[
|ξ|α/2 |ξ|α/2
|ξ|α/2 |ξ|α/2

]
, as ξ → 0.

We also remark that detPBessel = 1 (see [32, 10.28.2]) so that asymptotics for the inverse
of PBessel can be easily inferred. We also have

PBessel(n
2ξ;α) =

[
1
2

(
1
πn

)1/2
ξ−1/4e2nξ

1/2 i
2

(
1
πn

)1/2
ξ−1/4e−2nξ1/2

i(πn)1/2ξ1/4e2nξ
1/2

(πn)1/2ξ1/4e−2nξ1/2

]
×
(
I+O

(
n−1|ξ|−1/2

))
, n → ∞.

We rewrite this in a more convenient form

PBessel

(
n2ξ;α

)
= (πn)−

1
2
σ3ξ−

1
4
σ3EBessel

(
n2ξ
)
e2nξ

1/2σ3 ,

EBessel

(
n2ξ;α

)
= E+O

(
n−1|ξ|−1/2

)
, E =

[
1
2

i
2

i 1

]
. (C.1)

These asymptotics apply for all ξ with | arg ξ| < π. Furthermore, the asymptotics remain valid
up to the boundary, arg ξ = ±π.

Now set, following [27],

W (z; aj) = e−iπ(αj+βj)/2(z − bj)
αj/2
→ (z − aj)

βj/2
→ f(z; aj)

−1/2,

W (z; bj) = (z − bj)
αj/2(z − aj)

βj/2f(z; bj)
−1/2.

The last factor in each line can be seen to be analytic in a neighborhood of z = aj , bj , respectively,
with the choice of the principal branch. For c = aj , bj , set ρ(z; c) = ωj(z)/f(z; c), and we have
for

W±(z; bj) = e±iπαj/2ρ(z; bj)
1/2, bj − ϵ < z < bj ,

W±(z; aj) = e∓iπβj/2ρ(z; aj)
1/2, aj < z < aj + ϵ, (C.2)

so that for appropriate choices of z

W+(z; bj)W
−(z; bj) = ρ(z; bj), W+(z; aj)W

−(z; aj) = ρ(z; aj).
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Then for c = aj , bj , γ = βj , αj , respectively, set

Pn(z; c) = An(z; c)Qn(z; c), Qn(z; c) = PBessel

(
n2φ(z; c)

4
; γ

)
W (z; c)−σ3e−ng(z)σ3 ,

where An(z; c) is to be determined.
We recall that

φ(z; c) =

(∫ z

c
g′(z′) dz′

)2

.

And for Im z > 0,

g(z) =

∫ bj

a1

g′+(z
′) dz′ +

∫ z

bj

g′(z′) dz′ =

j∑
ℓ=1

∫ bℓ

aℓ

g′+(z
′) dz′ +

∫ z

bj

g′(z′) dz′

=
∆j

2
+

∫ z

bj

g′+(z
′) dz′.

Similarly, for Im z < 0, we have

g(z) = −∆j

2
+

∫ z

bj

g′(z) dz′.

Next, using the principal branch we consider φ(z; bj)
1/2. As φ(z; bj) is injective for |z − bj | < ϵ,

we conclude that φ(z; bj)
1/2 can only fail to be analytic for z ≤ bj . Because φ(z; bj) is positive

for z > bj the same is true of φ(z; bj)
1/2. And then we consider

∫ z
bj
g′(z′) dz′, z > bj . It can be

shown that the monic polynomial Qg(z) in the (A.1) must have a root in each interval (bj , aj+1).
From this, it follows that g′(bj + ϵ′) > 0 for ϵ′ > 0 sufficiently small. Then

φ(z; bj)
1/2 =

∫ z

bj

g′(z′) dz′.

And therefore

φ(z; bj)
1/2 =

{
g(z)− ∆j

2 , |z − bj | < ϵ, Im z > 0,

g(z) +
∆j

2 , |z − bj | < ϵ, Im z < 0.

We repeat these calculations for φ(z; aj) and find that with the convention that ∆0 = 0 = ∆g+1

φ(z; aj)
1/2 =


g(z)− ∆j−1

2
, |z − aj | < ϵ, Im z > 0,

g(z) +
∆j−1

2
, |z − aj | < ϵ, Im z < 0.

For |z − aj | = ϵ, we have Im z ̸= 0,

Pn(z; aj) = An(z; aj)

(
2

πn

) 1
2
σ3

φ(z; aj)
− 1

4
σ3EBessel

(
n2φ(z; aj)

4
;βj

)
× e−(sign Im z)n

2
∆j−1σ3W (z; aj)

−σ3 .

And for |z − bj | = ϵ, we have Im z ̸= 0,

Pn(z; bj) = An(z; bj)

(
2

πn

) 1
2
σ3

φ(z; bj)
− 1

4
σ3EBessel

(
n2φ(z; bj)

4
;αj

)
× e−(sign Im z)n

2
∆jσ3W (z; bj)

−σ3 .
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We set

An(z; aj) = Gn(z)W (z; aj)
σ3e(sign Im z)n

2
∆j−1σ3E−1

(
2

πn

)− 1
2
σ3

φ(z; aj)
1
4
σ3 ,

An(z; bj) = Gn(z)W (z; bj)
σ3e(sign Im z)n

2
∆jσ3E−1

(
2

πn

)− 1
2
σ3

φ(z; bj)
1
4
σ3 .

In the following appendices, we discuss the behavior of the parametrix near bj leaving the
calculations near aj to the reader.

C.1 The jumps of Qn near bj

We then compute, for example, for bj − ϵ < z < bj

Q+
n (z; bj) =

[
lim
ϵ↓0

PBessel

(
n2φ(z − iϵ; bj)

4
;αj

)][
0 1
−1 0

]
ρ(z; bj)

−σ3W−(z; bj)
σ3eng

−(z)σ3

= Q−
n (z; bj)

[
0 ρ(z; bj)

−1/ρ(z; bj) 0

]
.

Then for bj < z < bj + ϵ,

Q+
n (z; bj) = PBessel

(
n2φ(z; bj)

4
;αj

)
W+(z; bj)

−σ3e−ng+(z)σ3

= PBessel

(
n2φ(z; bj)

4
;αj

)
W−(z; bj)

−σ3e−ng−(z)σ3e−n∆jσ3

= Q−
n (z; bj)e

−n∆jσ3 .

For z ∈ Σbj ,1,

Q+
n (z; bj) = Q−

n (z; bj)

[
1 0

eiαjπW (z; bj)
−2e−2ng(z) 1

]
.

From (C.2), it follows that W+(z; bj)
2 = eiαjπρ(z; bj), so that eiαjπW+(z; bj)

−2 can be seen to
be the analytic continuation of 1/ρ(z; bj) to the upper-half plane

Q+
n (z; bj) = Q−

n (z; bj)

[
1 0

e−2ng(z)f ♯
j (x, y)/ωj(z) 1

]
, z ∈ Σbj ,1.

Then because e−iαjπW−(z; bj)
−2 can be seen to be the analytic continuation of 1/ρ(z; bj) to the

lower-half plane

Q+
n (z; bj) = Q−

n (z; bj)

[
1 0

e−2ng(z)f ♯
j (x, y)/ωj(z) 1

]
, z ∈ Σbj ,3.

C.2 The jumps of vec An near bj

We then need to analyze the analyticity and jump behavior of An. We note that it is immediate
that An is analytic off the real axis. For bj < z < bj + ϵ,

A+
n (z; bj) = G+

n (z)W (z; bj)
σ3e

n
2
∆jσ3E−1

(
2

πn

)− 1
2
σ3

φ(z; bj)
1
4
σ3

= G−
n (z)W (z; bj)

σ3e−
n
2
∆jσ3E−1

(
2

πn

)− 1
2
σ3

φ(z; bj)
1
4
σ3 = A−

n (z; bj).
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Then for bj − ϵ < z < bj since φ(z; bj) is conformal and real-valued on the real axis,

lim
ϵ↓0

φ(z ± iϵ; bj)
1/4 = e±iπ/4|φ(z; bj)|1/4.

Thus

lim
ϵ↓0

φ(z + iϵ; bj)
1/4 =: φ(z; bj)

1/4
+ = iφ(z; bj)

1/4
− := lim

ϵ↓0
φ(z − iϵ; bj)

1/4.

Then we compute

A+
n (z; bj) = G−

n (z)

[
0 ρ(z)

−1/ρ(z) 0

]
ρ(z; bj)

σ3W−(z; bj)
−σ3e

n
2
∆jσ3

×E−1

(
2

πn

)− 1
2
σ3

iσ3

(
φ(z; bj)

1
4
−

)σ3

.

To simplify this expression, we first note that for y ̸= 0,[
0 y

−1/y 0

]
=

[
0 1
−1 0

]
y−σ3 ,

and [
0 1
−1 0

]
yσ3E−1

(
i√
2

)σ3

= y−σ3

[
0 1
−1 0

] [
1 − i

2
−i 1

2

](
i√
2

)σ3

= y−σ3E−12−σ3/2,

and therefore

A+
n (z; bj) = G−

n (z)

(
ρ(z)

ρ(z; bj)

)σ3

W−(z; bj)
σ3e−

n
2
∆jσ3E−1

(
2

πn

)− 1
2
σ3
(
φ(z; bj)

1
4
−

)σ3

= A−
n (z; bj)Ψ

+(z)−σ3E

(
ρ(z)

ρ(z; bj)

)σ3

E−1Ψ+(z)σ3 ,

Ψ(z) =

(
2

πn

)− 1
2
σ3

φ(z; bj)
1
4
σ3 .

C.3 The jumps of vec Pn near bj

For all but one contour near bj , the jump of Pn is precisely the same as that of Qn (and therefore
the same as Sn) because An is analytic. So, it remains to consider bj − ϵ < z < bj

P+
n (z; bj) = A+

n (z; bj)Q
+
n (z; bj) = A+

n (z; bj)Q
−
n (z; bj)

[
0 ρ(z; bj)

−1/ρ(z; bj) 0

]
= A−

n (z; bj)Ψ
+(z)−σ3E

(
ρ(z)

ρ(z; bj)

)σ3

E−1Ψ+(z)σ3Q−
n (z; bj)ρ(z; bj)

σ3

[
0 1
−1 0

]
= P−

n (z; bj)Q
−
n (z; bj)

−1Ψ+(z)−σ3E

(
ρ(z)

ρ(z; bj)

)σ3

×E−1Ψ+(z)σ3Q−
n (z; bj)ρ(z; bj)

σ3

[
0 1
−1 0

]
.
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C.4 Local estimates

We have the following estimates which we state in a series of lemmas.

Lemma C.1. Suppose |z − bj | < ϵ, z ∈ Ωj,+ ∪ Ωj,−. If |αj | > 0, then

∥Qn(z; bj)W (z; bj)
σ3∥ = O

(
n|αj ||z − bj |−|αj |/2

)
, n2(z − bj) → 0.

If αj = 0, then

∥Qn(z; bj)W (z; bj)
σ3∥ = O(log n|z − bj |), n2(z − bj) → 0.

Also, Re g(z) = O
(
|z − bj |1/2

)
, z → bj.

Lemma C.2. The function

An(z; c)

(
2

πn

) 1
2
σ3

is uniformly bounded in both z and n for |z − c| < ϵ, c = aj , bj. The same holds for its inverse.

To prove this lemma we use the following lemma9 of [17, Lemma A.2] which shows that
eG(z)σ3W (z; bj)

σ3 is bounded in a neighborhood of z = bj .

Lemma C.3. If k ≥ 0, for some ϵ > 0, and for every j = 1, 2, . . . , g + 1, we have

G(z) = −αj

2
log(z − bj)−

βj
2

log(aj − z) +Rj(z), dist(z, [aj , bj ]) ≤ ϵ,

where Rj(z) is a uniformly bounded function for dist(z, [aj , bj ]) ≤ ϵ.

Proof of Lemma C.2. By Lemma C.3, it follows that eG(z)σ3W (z; bj)
σ3 is bounded in a neigh-

borhood of z = bj . And then one can show, as is classically used the derivation of the local solu-
tions [28], that if ρ(z) is replaced with ρ(z; bj) in the definition of G(z) for, say, bj −2ϵ < z < bj ,
then An(z; bj) is analytic for |z − bj | < ϵ as the singular factors produce weaker-than-pole
singularities. Thus, the actual An(z; bj) is a bounded perturbation of this analytic approxima-
tion. The theta function terms that contribute to Qn are uniformly bounded, and the claim
follows. ■

Lemma C.4. Suppose |z − bj | < ϵ, z ∈ Ωj,+ ∪ Ωj,−. For any c < C = C(n), C ≪ n2, for
sufficiently large n, there exists a constant D such that if c ≤

∣∣n2(bj − z)
∣∣ ≤ C, then

∥Ψ(z)σ3∥ ≤ DC1/4, ∥An(z; bj)∥ ≤ DC1/4, ∥Qn(z; bj)W (z; bj)
σ3∥ ≤ DC1/2.

Proof. We have for |z − bj | ≤ ϵ and some d ∈ R, D′ > 0,

|φ(z; bj)− d(z − bj)| ≤ D′|z − bj |2,
|n2φ(z; bj)| −

∣∣dn2(z − bj)
∣∣ ≤ (n4D′|z − bj |2)n−2 ≤ D′C2/n2.

So |d|/C − D′C2/n2 ≤ |n2φ(z; bj)| ≤ |d|C + D′C2/n2, and the bound on Ψ(z)σ3 follows
for n sufficiently large. It follows from previous arguments that An(z; bj)Ψ(z)−σ3 is bounded
for |z − bj | < ϵ as n → ∞. The claim then follows for An(z; bj). Then, for Qn(z; bj)W (z; bj)

σ3

factors of W (z; bj)
σ3 cancel. Then if C = O(1), we have from Lemma C.1 eng(z) = O(1),

and PBessel

(
n2 φ(z;bj)

4

)
= O(1) uniformly for z in the range. Now, let C ′ > 0 be sufficiently

9The proof in [17] was for αj = βj = 1/2 but the same calculations hold in general.
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large, but an absolute constant, so that the entry-wise bound from (C.1) holds for |n2ξ| ≥ C ′.
And then for n2|z − bj | ≥ 2C ′, there exists n sufficiently large so that

∣∣n2 φ(z;bj)
4

∣∣ ≥ C ′, and
for C ′ ≤

∣∣n2(z − bj)
∣∣ ≤ C, we have

∥Ψ(z)σ3Qn(z; bj)W (z; bj)
σ3∥ ≤ D.

The last claim follows from the estimates on Ψ. ■

Lemma C.5. Suppose |z − bj | < ϵ, z ∈ Ωj,+ ∪ Ωj,−. Then as
∣∣n2(bj − z)

∣∣→ ∞

∥An(z; bj)Qn(z; bj)W (z; bj)
σ3∥ = O

(
|z − bj |−1/4

)
,∥∥W (z; bj)

−σ3Qn(z; bj)
−1Ψ(z)−σ3E− e(sign Im z)n

2
∆jσ3

∥∥ = O
(
n−1|z − bj |−1/2

)
,∥∥E−1Ψ(z)σ3An(z; bj)

−1
∥∥ = O

(
|z − bj |−1/4

)
.

Proof. For the first claim, we can write

An(z; bj)Qn(z; bj)W (z; bj)
σ3 = Gn(z)W (z; bj)

σ3e(sign Im z)n
2
∆jσ3E−1EBessel

×
(
n2φ(z; bj)

4
;αj

)
e−(sign Im z)n

2
∆jσ3 .

The claim then follows from the asymptotics of EBessel and the fact that, from Lemma C.3,
Gn(z)W (z; bj)

σ3 has quarter-root singularities.
Then we write

E−1Ψ(z)σ3Qn(z; bj)W (z; bj)
σ3e(sign Im z)n

2
∆jσ3 = I+O

(
n−1|z − bj |−1/2

)
,

from which the second claim follows. The last claim follows analogously. ■

C.5 Proof of Proposition A.1

We first consider y > 0 and aj ≤ x ≤ bj . We write

g′(z) =
1

√
z − aj

√
z − bj

r(z),

where r(z) is analytic in a neighborhood of [aj , bj ] and is positive on [aj , bj ]. We have

Re g(z) = −
∫ y

0
Im g′(x+ iy′) dy′.

Similarly, using M in (3.1),

log |ϕ(M(z; aj , bj))| = −
∫ y

0
Im

dy′√
x+ iy′ − bj

√
x+ iy′ − aj

.

We write r(z) = h(x, y) + ig(x, y), where h and g are real valued. From Taylor’s theorem,

h(x+ iy) = h(x) + ∂yh(x, ξ1)y, g(x+ iy) = ∂yg(x, ξ2)y,

for 0 < ξ1, ξ2 < y, or, rather that |h(x + iy) − h(x)| ≤ C|y|, |g(x + iy)| ≤ C|y|. Then we have
that

Im g′(x+ iy) = h(x+ iy) Im
1√

x+ iy − bj
√

x+ iy − aj

+ g(x+ iy)Re
1√

x+ iy − bj
√

x+ iy − aj
.
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We then claim that∣∣∣∣∣Re
√
y√

x+ iy − bj
√

x+ iy − aj

∣∣∣∣∣ ≤ C ′.

Indeed,

√
y

|x+ iy − bj |1/2|x+ iy − aj |1/2
=

1(
(x− bj)2/y2 + 1

)1/4(
(x− aj)2 + y2

)1/4
≤ 1(

(x− aj)2 + y2
)1/4 .

And we find that∣∣∣∣∣Re
√
y√

x+ iy − bj
√

x+ iy − aj

∣∣∣∣∣ ≤ min

{
1(

(x− aj)2 + y2
)1/4 , 1(

(x− bj)2 + y2
)1/4

}

≤ 2

(bj − aj)1/2
.

This results in, for c′ ≥ h(x+ iy) ≥ c,

c′ Im
1√

x+ iy − bj
√
x+ iy − aj

+ C ′′√y ≥ Im g′(x+ iy)dy

≥ c Im
1√

x+ iy − bj
√
x+ iy − aj

− C ′′√y,

c′ log |ϕ(M(z; aj , bj))|+
2C ′′

3
y3/2 ≥

∫ y

0
Im g′(x+ iy) dy

≥ c log |ϕ(M(z; aj , bj))| −
2C ′′

3
y3/2.

We then claim for 0 < y < γ and aj ≤ x ≤ bj , that there exists c′′ > 0 such that

I(x, y) = Im
1√

x+ iy − bj
√
x+ iy − aj

≥ c′′.

Indeed, if this were not the case, then there would exist a convergent sequence (xn, yn)n≥1 such
that I(xn, yn) → 0. And we must have that (xn, yn) → (aj , 0) or (xn, yn) → (bj , 0). But neither
can occur as I(xn, yn) → +∞. This implies

log |ϕ(M(z; aj , bj))| ≥ c′′y, −y3/2 ≥ −
√
y

c′′
log |ϕ(M(z; aj , bj))|.

And therefore(
c′ +

√
y
2C ′′

3c′′

)
log |ϕ(M(z; aj , bj))| ≥

∫ y

0
Im g′(x+ iy)dy

≥
(
c′ −√

y
2C ′′

3c′′

)
log |ϕ(M(z; aj , bj))|,

from which the claim follows. Similar considerations work for Im y < 0, establishing the claim
for aj ≤ x ≤ bj . Continuity of the ratio Re g(z)/ log |ϕ(M(z; aj , bj))| near aj , bj allows the
desired bound to hold in neighborhoods of aj , bj , completing the proof.
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D Hyperelliptic Riemann surfaces

Classic references for what follows are [5, 9, 16]. Much of what follows here was closely adapted
from that in [18]. Using the intervals [aj , bj ], 1 ≤ j ≤ g+1, we define a Riemann surface by the
zero locus of

w2 −
g+1∏
j=1

(z − aj)(z − bj) =: w2 − P2g+2(z)

in C2. Then define the analytic function

R : Ĉ → C, R(z)2 = P2g+2(z), R(z)z−g−1 → 1, as z → ∞,

where

Ĉ = C \
g+1⋃
j=1

[aj , bj ].

A Riemann surface Γ is built by joining two copies of Ĉ; see Figure 6. The Riemann surface
has a canonical set of cycles, a homology basis. For a cartoon of these a-cycles and b-cycles see
Figure 6. We have a natural projection operation π : Γ → C defined by π((z, w)) = z and its
right-inverses π−1

j (z) =
(
z, (−1)j+1R(z)

)
, j = 1, 2.

· · ·a1� b1� a2� b2� a3� bg � ag+1� bg+1�

a1 a2 ag

b1 b2 bg

Figure 6. An illustration of the Riemann surface Γ.

It is well-known that (see [9], for example) a basis for holomorphic differentials on Γ is given by

dνj =
zj−1

R(z)
dz, j = 1, 2, . . . , g + 1.

Then define the g × g matrix of periods A = (Aij) by Aij =
∮
ai
dνj . Note that if c =[

c1 c2 · · · cg
]T

= A−1ej for the standard basis vector ej , then∮
ai

g∑
k=1

ck dνk =

g∑
k=1

ckAik = eTi Ac = eTi ej = δij .

A basis of normalized differentials is then given by
dω1

dω2
...

dωg

 = 2πiA−1


dν1
dν2
...

dνg

 .

These satisfy
∮
ai
dωj = 2πiδij . The fact that the matrix A is invertible follows from abstract

theory [9].
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Define

u(z) =

(∫ z

a1

dωj

)g

j=1

, z ̸∈ R,

where, for the sake of concreteness, the path of integration is taken to be a straight line con-
necting a1 to z. We can treat u as both a function u(z) on Ĉ and as a function u(P ) on Γ.
Then u(P ) is a single-valued analytic function on the Riemann surface Γ provided Γ is cut
along the cycles {a1, . . . , ag, b1, . . . , bg}, making it simply connected. Another important fact is

for z ∈ Ĉ, u
(
π−1
1 (z)

)
= −u

(
π−1
2 (z)

)
.

The associated Riemann matrix of b periods is given by

τ = (τij) =

(∫
bj

dωi

)
1≤i,j≤g

.

It follows, see [9], that τ is symmetric, real and negative definite. The vector k of Riemann
constants is defined componentwise via

kj =
2πi + τjj

2
− 1

2πi

∑
ℓ̸=j

∮
aℓ

uj dωℓ, j = 1, 2, . . . , g.

The associated theta function is defined by

θ(z; τ ) =
∑
m∈Zg

exp

(
1

2
(m, τm) + (m, z)

)
, z ∈ Cg,

where (a,b) = aTb. We have

θ(z+ 2πiej ; τ ) = θ(z; τ ), θ(z+ τej ; τ ) = exp

(
−1

2
τjj − zj

)
θ(z; τ ).

A divisor D =
∑

j njPj is a formal sum of points {Pj} on the Riemann surface Γ. The Abel
map of a divisor is defined via A(D) =

∑
j nju(Pj).

We construct an important function that will have piecewise constant jump conditions. Set

Θ(z;d;v) = Θ(z) :=

[
θ (u(z) + v − d; τ )

θ (u(z)− d; τ )

θ (−u(z) + v − d; τ )

θ (−u(z)− d; τ )

]
, z ̸∈ R. (D.1)

The first component function is nothing more than θ(u(P )+v−d;τ )
θ(u(P )−d;τ ) restricted to the first sheet.

The same is true for the second component function on the second sheet. The vector v is a free
parameter. Then consider

u+(z) + u−(z) =

(
2

j−1∑
k=1

∫ ak+1

bk

dωℓ

)g

ℓ=1

=

(
j−1∑
k=1

∮
ak

dωℓ

)g

ℓ=1

= 2πiN, z ∈ [aj , bj ],

for a vector N of zeros and ones. Then we compute

u+(z)− u−(z) =

(
2

j∑
k=1

∫ bk

ak

dωℓ

)g

ℓ=1

=

(∮
bj

dωℓ

)g

ℓ=1

= τej , z ∈ [bj , aj+1].

Directly using this relation, it follows that, for z ∈ [bj , aj+1],

θ (±u+(z) + v − d; τ )

θ (±u+(z)− d; τ )
=

θ (±u−(z)± τej + v − d; τ )

θ (±u−(z)± τej − d; τ )
= e∓vj

θ (±u−(z) + v − d; τ )

θ (±u−(z)− d; τ )
.
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On the interval (−∞, a1), u
+(z) = u−(z). And on (bg+1,∞),

u+(z)− u−(z) =

(∮
C
dωj

)g

j=1

,

where C is a clockwise-oriented simple contour that encircles [a1, bg+1]. Because all the differen-
tials dωj are of the form P (z)/R(z) where P is a degree g − 1 polynomial and R(z)/zg+1 → 1
as z → ∞, it follows that

∮
C dωj = 0. Thus, ignoring any poles Θ may have, we find that Θ

satisfies the following jump conditions:

Θ+(z) =



Θ−(z)

[
0 1

1 0

]
, z ∈ (aj , bj),

Θ−(z)

[
e−vj 0

0 evj

]
, z ∈ (bj , aj+1),

Θ−(z), z ∈ (−∞, a1) ∪ (bg+1,∞).

Also, note that since u(∞) is finite, Θ is analytic at infinity.
Next, we must understand the poles of Θ. It is known that (see [9], for example) if for

D = P1 + · · · + Pg, θ(u(P ) −A(D) − k) is not identically zero,10 then, counting multiplicities,
θ(u(P )−A(D)−k), has g zeros on Σ. These zeros are then given by the points in the divisor D.
Consider the function

γ(z) =

g+1∏
j=1

(
z − bj
z − aj

)1/4

,

analytic on C \
⋃

j [aj , bj ], with γ(z) ∼ 1, z → ∞. It can be shown that γ − γ−1 has a single

root zj in (bj , aj+1) for j = 1, 2, . . . , g, while γ+γ−1 does not vanish on C\
⋃

j [aj , bj ]. So, define
two divisors

D1 =

g∑
j=1

π−1
1 (zj), D2 =

g∑
j=1

π−1
2 (zj).

From [21] (see also [37, Lemma 11.10]), these divisors are nonspecial so that the θ functions we
consider do not vanish identically.

Note that for d1 := A(D1) + k, the function z 7→ θ(u(z) − d1; τ ) has zeros at zj , while the
function z 7→ θ(−u(z) − d1; τ ) is non-vanishing. Similarly, for d2 := A(D2) + k, the function
z 7→ θ(−u(z)− d2; τ ) has zeros at zj , while the function z 7→ θ(u(z)− d2; τ ) is non-vanishing.

Following [14], consider

L(z;v) =


(
γ(z)+γ(z)−1

2

)
Θ1(z;d2;v)

(
γ(z)−γ(z)−1

2i

)
Θ2(z;d2;v)(

γ(z)−1−γ(z)
2i

)
Θ1(z;d1;v)

(
γ(z)+γ(z)−1

2

)
Θ2(z;d1;v)

 , (D.2)

which is analytic in C \
⋃

j [aj , bj ], with a limit as z → ∞ and satisfies the jumps

L+(z;v) =



L−(z;v)

[
0 1

−1 0

]
, z ∈ (aj , bj),

L−(z;v)

[
e−vj 0

0 evj

]
, z ∈ (bj , aj+1),

L−(z;v), z ∈ (−∞, a1) ∪ (bg+1,∞).

10This holds if D is nonspecial.
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This follows because γ+(z) = iγ−(z) for z ∈ (aj , bj) and therefore

γ+(z) +
(
γ(z)−1

)+
= i
(
γ−(z)−

(
γ(z)−1

)−)
,

γ+(z)−
(
γ(z)−1

)+
= i
(
γ−(z) +

(
γ(z)−1

)−)
.

It is important to note that (D.2) was first used in [14] and subsequently by many, see [11, 13, 16],
for example.

E Estimates of some exponential integrals

In this appendix, we discuss how to estimate integrals of the form∫
Eρ(a,b)

|z − a|−γ |z − b|−γ
∣∣e−mg(z)

∣∣dA(z),
Eρ = {z | |z +

√
z + 1

√
z − 1| < ρ}, ρ > 1,

Eρ(a, b) = M−1(Eρ), M−1(z) = M−1(z; a, b) =
b− a

2
x+

b+ a

2
,

as m → ∞. From Proposition A.1, it follows that we can consider, for a new m,

Im :=

∫
Eρ

∣∣z2 − 1
∣∣−γ |ϕ(z)|−m dA(z).

We then set z = 1/2
(
w + w−1

)
for 1 < |w| < ρ and change variables. We have

dA(z) =
1

4

∣∣w2 − 1
∣∣2

|w|4
dA(w).

To finish the change of variables, we note that

φ(z) = w, z2 − 1 =

[
1

2

(
w − w−1

)]2
= w−2

[
1

2

(
w2 − 1

)]2
.

Therefore,

Im =

∫
1<|w|<ρ

|w|2γ−4−m22γ−2
∣∣w2 − 1

∣∣2−2γ
dA(w).

For γ ≤ 1, we have Im = O
(
m−1

)
, and therefore∫

Eρ(a,b)
|z − a|−γ |z − b|−γ |e−mg(z)| dA(z) = O

(
m−1

)
. (E.1)

Now, suppose 0 ≥ 2− 2γ = −σ > −1. We write w = ρeiθ and θ ∈ [−π/2, π/2], following [41],
write

|w − 1| =
√
(ρ− 1)2 + 4ρ sin2(θ/2) ≥ C[(ρ− 1) + |θ|],

for some C > 0. Consider∫ ρ

1

∫ π/2

−π/2
ρ−m|w − 1|−σ dρ dθ ≤ C−σ

∫ ρ

1
ρ−m

(∫ π/2

−π/2

dθ

((ρ− 1) + |θ|))σ

)
dρ.

For σ < 1, the θ integral produces a continuous function of ρ. Since it therefore must be bounded,
we can conclude the integral is O

(
m−1

)
. This argument can then be used for w in the right

and left half-planes separately, bounding |w ± 1|−σ ≤ 1 for ±Rew ≥ 0 to also conclude (E.1)
for γ < 3/2.
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