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Abstract. Vertex F -algebras are a deformation of the concept of an ordinary vertex algebra
in which the additive formal group law is replaced by an arbitrary formal group law F . The
main theorem of this paper constructs a Lie algebra from a vertex F -algebra – for the
additive formal group law, this extends Borcherds’ well-known construction for ordinary
vertex algebras. Our construction involves the new concept of an F -residue and some other
new algebraic concepts, which are deformations of familiar concepts for the special case of
an additive formal group law.
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1 Introduction and results

Vertex algebras, popularized in mathematics by Borcherds [1], provide an algebraic framework
for understanding two-dimensional conformal field theories and play a fundamental role in repre-
sentation theory. A feature of vertex algebras is that their axioms implicitly rely on the additive
formal group law F (z, w) = z+w. Vertex F -algebras, originally introduced by Li [12], generalize
vertex algebras by replacing the additive formal group by an arbitrary formal group law F (z, w).

A fundamental theorem of Borcherds [1], which has important applications to representation
theory, states that every vertex algebra determines a Lie algebra. The main result of this paper
extends this result and shows that every vertex F -algebra also determines a Lie algebra. How-
ever, the usual construction of the Lie bracket in the vertex algebra setting, via the residue of
the state-to-field correspondence, does not directly apply to vertex F -algebras. To overcome this
difficulty, we introduce a deformation of the concept of a residue, the F -residue ResFz=0. Estab-
lishing the Lie algebra structure in the generalized setting requires significantly more technical
work than in the classical case.

The following result is our main theorem, and it is proven in Section 4.3.

Theorem. Let (V,1,S, Y ) be a vertex F -algebra (see Definition 4.1). Then

[a, b] = ResFz=0 Y (a, z)bdz

defines a Lie bracket on the quotient V/
∑

n⩾1 S(n)(V ).

Besides the potential applications to representation theory, there is further motivation for
generalizing the concept of a vertex algebra stemming from enumerative geometry: recently,
Joyce [8, 9] has shown that vertex algebras play a central role in enumerative geometry, where the
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Lie algebra associated to the ordinary homology H∗(M) of a moduli stack M (for example, the
stack of perfect complexes over a projective variety). The Lie bracket is used to formulate wall-
crossing formulas of enumerative invariants. The study of enumerative invariants in generalized
homology E∗(M) is becoming increasingly popular (most notably, the theory of K-theoretic
enumerative invariants). For complex oriented generalized homology theories E∗ with formal
group law F , similar constructions show that E∗(M) is naturally a vertex F -algebra. Indeed,
in [4] the author and Gross proved that the generalized homology of an H-space (plus some
extra data) naturally has a vertex F -algebra structure. This extends Joyce’s construction to
generalized homology. While a comprehensive theory of wall-crossing has not yet been developed
for generalized enumerative invariants (for progress in the case of K-theory, see Liu [13]), it may
well be expected that the wall-crossing formula will use the Lie bracket constructed in this paper.

The proof of our main theorem, as well as a better understanding of vertex F -algebras, re-
quires the development of various deformations of familiar concepts (F -binomial coefficients,
F -delta distributions, F -residues, and F -hyperderivatives), developed in Section 3. These con-
structions, which appear to be new to the literature, provide the tools for generalizing results
for ordinary vertex algebras to vertex F -algebras. Section 2 reviews some background of formal
groups and establishes certain properties we will use later. In Section 4, we define vertex F -
algebras (our definition is equivalent to that of Li [12]), prove some meromorphicity properties,
and prove our main theorem.

We use the following notation.

� R a commutative ring with unit,

� R
[
z±1
]
the ring of Laurent polynomials,

� RJzK the ring of formal power series
∑∞

i=0 aiz
i,

� R
q
z±1

y
the abelian group of bilateral Laurent series

∑+∞
i=−∞ aiz

i (note that R
q
z±1

y
is not

a ring, but only has a partially defined product),

� R((z)) the ring of meromorphic series having a pole at 0.

2 Background on formal groups

All rings R are assumed to be commutative and unital. A formal group law over R is a formal
power series F (z, w) ∈ RJz, wK satisfying

F (z, w) = F (w, z) = z + w +O(zw), F (z, F (w, v)) = F (F (z, w), v). (2.1)

There is a unique inverse ι(z) = −z +O
(
z2
)
∈ RJzK such that F (z, ιz) = 0.

Remark 2.1. Our definition includes a choice of coordinate z for the formal group.

Example 2.2. Over R = Z[s], we have the formal group law

Fs(z, w) = z + w + s · zw. (2.2)

We view Fs as a family of group laws over the affine line. At s = 0, it specializes to the additive
group law Fa and at s = 1 to the multiplicative group law Fm. All polynomial formal group
laws are of the form (2.2), and other examples must involve infinite series.

Example 2.3. Over the ring of modular forms R = Z
[
1
2 , ϵ, δ

]
, we have the elliptic formal

group law

Fell(z, w) =
z
√
S(w) + w

√
S(z)

1− ϵz2w2
, S(z) = 1− 2δz2 + ϵz4.
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For ϵ = δ2 it specializes to the group law z+w
1+δzw (for δ = 1 equivalent to L-genus) and for ϵ = 0

it specializes to

z
√

1− 2δw2 + w
√
1− 2δz2

(for δ = −1/2 equivalent to Â-genus).

Example 2.4. Let p be a prime number and fix a positive power q = ph. Set ϕp(z) = z +∑
n⩾1 p

−nzq
n
. In [5], it is shown that

Fp(z, w) = ϕ−1
p (ϕp(z) + ϕp(w))

has integer coefficients and thus defines a formal group law over Z.

Using the notation Fm,n = ∂m+n

∂zm∂wnF for derivatives, the axioms imply

Fm,n(z, w) = Fn,m(w, z), Fm,0(z, 0) = F 0,m(0, z) = δm,1.

The associativity law is the most interesting axiom. By differentiating it, one obtains many
complicated identities, for example

F 0,1(z, w)F 1,0(0, w) = F 1,0(z, w)F 0,1(z, 0). (2.3)

Identities of this kind will be important later, so we now introduce a systematic method for
proving these based on Lazard’s theorem. We first discuss the invariant 1-form and the logarithm
of a formal group law.

The invariant differential of a formal group law F (z, w) is the unique 1-form

θF = pF (z)dz, pF (z) ∈ RJzK, (2.4)

satisfying pF (0) = 1, F ∗(θF ) = π∗1(θF ) + π∗2(θF ). Equivalently,

pF (F (z, w))
(
F 1,0(z, w)dz + F 0,1(z, w)dw

)
= pF (z)dz + pF (w)dw. (2.5)

Using this characterization of θF one verifies

−ι∗(θF ) = θF . (2.6)

One checks pF (z) = F 0,1(z, 0)−1, which is well-defined as F 0,1(z, 0) = 1 + · · · .
Suppose now that Q ⊂ R. Then every formal group law has a unique (formal) logarithm

ϕ ∈ RJzK satisfying

ϕ(F (z, w)) = ϕ(z) + ϕ(w), ϕ(0) = 0, ϕ′(0) = 1. (2.7)

Indeed, taking ∂/∂w of (2.7) and setting w = 0 we find that ϕ′(z)dz = θF is the invariant 1-form
which, since Q ⊂ R, has a primitive θF = dϕ. For this reason, we write pF (z) = ϕ′(z) with the
caveat that ϕ(z) is only defined if Q ⊂ R. The composition inverse ϕ−1(x) ∈ RJxK is called the
exponential.

Example 2.5. For s ̸= 0, the logarithm of Fs is s−1 log(1 + sz). For Fell, the logarithm is the
functional inverse of the indefinite elliptic integral

∫
S(z)−1/2dz.

Example 2.6. The logarithm in Example 2.4 is the series ϕ(z) defined there. For p = q, we
have

pF (z)
−1 = F 0,1(z, 0) =

1

ϕ′(z)
=

∞∏
k=1

1

1 + zpk
.

Hence the coefficient of zd in pF (z)
−1 is the sum of (−1)k over all partitions pn1 + · · ·+ pnk = d

into positive powers of the prime p.
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Using variables as coefficients defines the universal formal group law

FL =
∑

n,m⩾0

an,mz
nwm

over the Lazard ring L, the quotient of the polynomials Z[an,m] modulo all the relations contained
in (2.1). By construction, every formal group law F is obtained from FL by reduction of
coefficients F = u∗(FL) along a unique ring homomorphism u : L→ R.

Theorem 2.7 (Lazard [10]). L ∼= Z[p1, p2, . . . ] is a polynomial ring over the integers. In
particular, L is torsion-free.

This implies that it suffices to prove statements about formal group laws over the rationals,
where one may restrict to laws of the form

F (z, w) = ϕ−1(ϕ(z) + ϕ(w)). (2.8)

Using this method, (2.3) has a simple chain rule proof. Moreover, the following proposition
would be very difficult to prove without this new method.

Proposition 2.8. The series G(z, w) ∈ RJz, wK defined by

F (z, ιw) = G(z, w) · (z − w) (2.9)

is a unit and converges on the diagonal to

G(z, z) = ϕ′(z). (2.10)

Proof. The coefficients of G(z, w) in (2.9) satisfy a recursion which is easily solved inductively.
The main point is to prove (2.10) for the group law (2.8). Set

ψ(x) =
ϕ−1(x)

x
= 1 +O(x).

Then

G(z, w) =
ϕ−1(ϕ(z)− ϕ(w))

z − w
= ψ(ϕ(z)− ϕ(w)) · ϕ(z)− ϕ(w)

z − w
.

Substituting w = z, the first factor is ψ(0) = 1 and the second is ϕ′(z). ■

3 Formal calculus and F -residues

3.1 Bilateral and Laurent series

Let R
q
z±1
1 , . . . , z±1

n

y
be the space of bilateral Laurent series

f =
∑

i1,...,in∈Z
ai1,...,inz

i1
1 · · · zinn (3.1)

in variables z1, . . . , zn. This is an abelian group under addition, but the product is only partially
defined. The product of (3.1) with

g =
∑

j1,...,jn∈Z
bj1,...,jnz

j1
1 · · · zjnn
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is said to converge if each of the coefficients in

fg =
∑

k1,...,kn∈Z

( ∑
i1+j1=k1,...,in+jn=kn

ai1,...,inbj1,...,jn

)
zk11 · · · zknn

reduces to a sum with only finitely many non-zero terms. By [11, p. 24], this product is asso-
ciative if all products fg, gh, (fg)h, f(gh) converge and the triple product converges.

Similarly, we say that f(z, w) =
∑

i,j∈Z ai,jw
izj ∈ RJz, wK converges on the diagonal if each

of the coefficients in

f(z, z) =
∑
n∈Z

( ∑
i+j=n

ai,j

)
zn

reduces to a sum with only finitely many non-zero terms.

We say that (3.1) is a formal Laurent series if ai1,...,in = 0 for all but finitely many negative
indices. The subspace of formal Laurent series R((z1, . . . , zn)) is a ring since all products converge.
For f ∈ R((z1, . . . , zn)), we say also that f ismeromorphic in the variables z1, . . . , zn. We have the
subring RJz1, . . . , znK of formal power series which are also said to be holomorphic in z1, . . . , zn.
It is useful to underline holomorphic variables in some contexts below.

Remark 3.1. This generalizes to series with coefficients in an R-moduleM . Then R((z1, . . . , zn))
acts on M((z1, . . . , zn)). We leave this extension to the reader.

Proposition 3.2. Let f =
∑

n⩾N anz
n ∈ R((z)) with lowest coefficient aN ̸= 0. Then f is

invertible in R((z)) if and only if aN is invertible in R, with inverse in zNRJzK. In particular,
all integer powers fn ∈ R((z)) are defined in this case.

Proof. Suppose that aN is invertible and factor f = aNz
N (1 + zg) for g ∈ RJzK. Formally

applying Newton’s binomial theorem, we define

fn = anNz
nN (1 + zg)n = anN

∞∑
k=0

(
n

k

)
znN+kgk. (3.2)

Clearly, fn · fm = fn+m by the binomial identity
∑

j=k+ℓ

(
n
k

)(
m
ℓ

)
=
(
n+m
j

)
and fn ∈ znNRJzK.

Putting n = 1, m = −1, shows that f(z) is invertible. ■

3.2 Expansions

Expansion maps play a central role in modern formulations of vertex algebras, so we briefly
review them here.

Definition 3.3. Let (x1, . . . , xm), . . . , (z1, . . . , zn) be tuples of formal variables, where singleton
brackets will be dropped from the notation. We view the iterate Laurent series ring as a subset
of the space of bilateral series:

R((x1, . . . , xm)) · · · ((z1, . . . , zn)) ⊂ R
q
x±1
1 , . . . , x±1

m , . . . , z±1
1 , . . . , z±1

n

y
.

Let j(x1,...,xm),...,(z1,...,zn) be the natural inclusion of R((x1, . . . , xm, . . . , z1, . . . , zn)), the un-iterated
Laurent ring, into the ring R((x1, . . . , xm)) · · · ((z1, . . . , zn)). Moreover, let S(x1,...,xm),...,(z1,...,zn) ⊂
R((x1, . . . , xm, . . . , z1, . . . , zn)) be the multiplicative set consisting of those Laurent series whose
image under j(x1,...,xm),...,(z1,...,zn) is invertible in the iterated Laurent ring.
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The expansion map i(x1,...,xm),...,(z1,...,zn) is the localization of the map j(x1,...,xm),...,(z1,...,zn)

at S(x1,...,xm),...,(z1,...,zn) shown in the diagram

R((x1, . . . , xm, . . . , z1, . . . , zn)) R((x1, . . . , xm)) · · · ((z1, . . . , zn))

S−1
(x1,...,xm),...,(z1,...,zn)

R((x1, . . . , xm, . . . , z1, . . . , zn)).

j(x1,...,xm),...,(z1,...,zn)

i(x1,...,xm),...,(z1,...,zn)

Example 3.4. Let F (z, w) be a formal group law. The images of the series F (z, w), F (z, ιw),
F (ιz, w), ιF (z, w) in R((z))((w)) are invertible because their lowest coefficients are the units
z, ι(z) in R((z)). Therefore, F (z, w), F (z, ιw), F (ιz, w), ιF (z, w) are in Sz,w. Hence there are
well-defined integer powers

iz,wF (z, w)
n, iz,wF (ιz, w)

n, iz,wF (z, ιw)
n, iz,w(ιF (z, w))

n, ∀n ∈ Z,

which are elements of R((z))((w)) ⊂ R
q
z±1, w±1

y
. These are computed by first viewing F (z, w),

F (z, ιw), F (ιz, w), ιF (z, w) as elements of the iterated ring R((z))((w)) and then forming the
n-th power there.

Remark 3.5. For ordinary vertex algebras, the expansion maps R((z, w))[z−w]−1 → R((z))((w))
are defined on the localization by a single element z − w. For vertex F -algebras, it becomes
necessary to localize F (z, w), F (z, ιw), F (ιz, w), ιF (z, w). In the case of several variables, even
more complicated expressions in F must be localized (for example, in the proof of Proposi-
tion 3.19). Since these expressions are difficult to list systematically, we define the expansion
maps on the universal localization, for example, iz,w : S−1

z,wR((z, w)) → R((z))((w)).

We can also include holomorphic variables which we indicate by an underline. Note that
expansion maps preserve products,

i(x1,...,xm),...,(z1,...,zn)(fg) = i(x1,...,xm),...,(z1,...,zn)(f) · i(x1,...,xm),...,(z1,...,zn)(g).

Remark 3.6. The grouping of variables is important, because the algebra in R((z1))((z2))
and R((z2))((z1)) is different. For example, the elements iz1,z2(z1 ± z2)

n and iz2,z1(z1 ± z2)
n are

different in R
q
z±1
1 , z±1

2

y
when n < 0. Expansion maps specify the ring in which the algebraic

operations are performed. For holomorphic variables, the grouping is unimportant since

RJz1KJz2K = RJz2KJz1K = RJz1, z2K.

Hence iz1,z2 = iz2,z1 .

Note that R((z1, z2)) = R((z1))((z2)) ∩ R((z2))((z1)) is a proper intersection since, for example,∑∞
n=0 z

−n
1 zn2 ∈ R((z1))((z2)) \R((z1, z2)). On the intersection, we have

iz1,z2f = iz2,z1f, ∀f ∈ R((z1, z2)). (3.3)

In particular, R
q
z±1
1 , z±1

2

y
is an R((z1, z2))-module and expansions are linear,

iz1,z2(f · g) = f · iz1,z2(g), ∀f ∈ R((z1, z2)), g ∈ R
q
z±1
1 , z±1

2

y
. (3.4)

Remark 3.7. Traditionally, the expansion maps are combined with (3.2) and iz1,z2(z1 ± z2)
n

is defined as an explicit series. This places the emphasis on properties of binomial coefficients,
which are actually just laws of exponentiation.
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3.3 Filtrations

To determine which substitutions are well-defined, we will introduce topologies on iterate Laurent
rings. These will all be induced by filtrations.

Definition 3.8. A filtration on a ring A is a decreasing sequence of subgroups

· · · ⊃ A(n) ⊃ A(n+1) ⊃ · · · , n ∈ Z, (3.5)

such that 1 ∈ A(0) and A(n) ·A(m) ⊂ A(n+m). A filtration is said to be exhaustive if
⋃
A(n) = A

and separated if
⋂
A(n) = {0}. We will always assume that filtrations are separated.

There is a unique Hausdorff topology on a filtered ring for which addition and multiplication
are continuous and for which (3.5) is a fundamental system of neighborhoods of zero. This
topology is induced by the uniform structure given by the pseudometric

d(x, y) =


0 ⇐⇒ x− y ∈

⋂
n∈ZA(n),

2−n ⇐⇒ x− y ∈ A(n) \A(n+1),

+∞ ⇐⇒ x− y /∈
⋃

n∈ZA(n).

A filtered ring is said to be complete if it is complete as a uniform space. A morphism of filtered
rings is a ring homomorphism f : A → B such that f(A(n)) ⊂ B(n) for all n. Filtered maps are
uniformly continuous.

Example 3.9. Let a◁A be an ideal. The a-adic filtration on A is defined by A(n) = an for n > 0
and A(n) = A for n ⩽ 0. If a = (0), this is the trivial filtration on A, which induces the discrete
topology.

For example, AJzK carries the (z)-adic filtration where AJzK(n) = znAJzK for n ⩾ 0. We
also call the filtration on A((z)) defined by A((z))(n) = znAJzK for n ∈ Z the (z)-adic filtration,
although (z) is not an ideal in A((z)).

3.4 Substitutions

The following is the main technical result for defining substitutions. Parts (a)–(c) extend [2,
Chapter III, Section 2.6] to the case where A(0) ̸= A.

Proposition 3.10.

(a) Let A be a filtered ring. Then

A((z))(n) =
{∑

i∈Z
aiz

i
∣∣∣ ai ∈ A(n−i)

}
, n ∈ Z, (3.6)

defines a filtration on the Laurent ring A((z)). If A is separated, then so is A((z)) and the
power series ring AJzK is a closed subspace with filtration

AJzK(n) = A((z))(n) ∩AJzK. (3.7)

(2) If A is complete, then so are A((z)) and AJzK.

(3) If A(0) = A, then the polynomials A[z] are dense in AJzK and the Laurent polynomials
A
[
z±1
]
are dense in A((z)).



8 M. Upmeier

(4) (Universal properties) For each filtered morphism f : A → B into a complete ring B and
each invertible element b ∈ B(1), there is a unique filtered morphism f̄ : A((z)) → B
with f̄ |A = f and f̄(z) = b. Here A((z)) is given the filtration generated by (3.6) and
the (z)-adic filtration. Pictorially,

A((z)) B.

A

z 7→b

f
(3.8)

Similarly for multivariable Laurent rings A((z1, . . . , zn)) and also for power series rings,
where we drop the invertibility condition.

Proof. (a) It is easy to check that (3.6) defines a filtration of A((z)), which is separated if the
original filtration is so. Moreover, AJzK is a closed subspace.

(b) To prove that A((z)) is complete, let fn(z) =
∑

i∈Z ai,nz
i, n ∈ N, be a Cauchy sequence.

For each N , there is n0 such that for all n,m ⩾ n0 and i we have

∀n,m ⩾ n0 : ai,n − ai,m ∈ A(N−i). (3.9)

In particular, for each fixed i the sequence (ai,n)n∈N is Cauchy in A, hence converges to
some ai ∈ A. We may then take m→ ∞ in (3.9) and get

∀n ⩾ n0 : ai,n − ai ∈ A(N−i).

This proves that fn(z) →
∑

i∈Z aiz
i as n→ ∞.

(c) If A(0) = A, then we have azi ∈ AJzK(i) for any a ∈ A. Hence the truncation
∑N−1

i=0 aiz
i ∈

A[z] is in the A(N)-neighborhood of
∑∞

i=0 aiz
i, showing that the polynomials are dense. Similarly

for Laurent polynomials.
(d) We prove the universal property for AJzK. By the universal property of polynomial rings,

(f, b) uniquely induce a ring homomorphism

A[z] −→ B, z 7−→ b. (3.10)

First, put the trivial filtration on A. Then (3.10) is filtered for the (z)-adic topology since
b ∈ B(1). Since B is complete, we may extend to a filtered map f̄ on the completion AJzK.
Observe that f̄ is also automatically filtered for (3.6). Hence f̄ is filtered for the generated
filtration. Conversely, if f̄ is filtered for the generated filtration, then it is also filtered for the (z)-
adic filtration for which A[z] is dense. This proves uniqueness. Similarly for Laurent series. ■

Remark 3.11. If A(0) ̸= A, the polynomials A[x] are not dense in AJxK and the filtration in
the universal property differs from (3.7).

Applying (3.6) inductively starting with the trivial filtration on R, we obtain the complete
filtration on iterate Laurent rings R((x1)) · · · ((xm)), where to simplify notation we work in the
single variable case. For h(x1, . . . , xm), to be in positive complete filtration means that each
monomial occurring in h has strictly positive total degree. We also have the generated filtration
on R((x1)) · · · ((xm)), obtained by using the generated filtration inductively at each step.

Corollary 3.12. Let fi(y1, . . . , yn) ∈ R((y1)) · · · ((yn)), 1 ⩽ i ⩽ m, be invertible and in positive
complete filtration. There is a unique substitution morphism

|x±1
i →fi(y1,...,yn)±1 : R((x1)) · · · ((xm)) −→ R((y1)) · · · ((yn)), xi 7−→ fi(y1, . . . , yn),

taking the generated filtration to the complete filtration.
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Moreover, given gj(z1, . . . , zp) ∈ R((z1)) · · · ((zp)), 1 ⩽ j ⩽ n, invertible and in positive com-
plete filtration we have functoriality

|y±1
j →gi(z1,...,yp)±1 ◦ |x±1

i →fi(y1,...,yn)±1 = |x±1
i →hi(z1,...,zp)±1 ,

where hi(z1, . . . , zp) = fi(y1, . . . , yn)|y±1
j →gi(z1,...,yp)±1.

For example, there are mutually inverse bijections

R((v))((w)) −→ R((z))((w)), v 7−→ iz,wF (z, w), (3.11)

R((z))((w)) −→ R((v))((w)), z 7−→ iv,wF (v, ι(w)). (3.12)

Moreover, the universal property (3.8) yields a unique filtered morphism

R((v)) −→ R((z))((w)), v 7−→ iz,wF (z, w). (3.13)

Remark 3.13. For vertex algebras, one may restrict to substitutions in Laurent polynomials.
As a formal group law may involve infinitely many powers, this is no longer possible for vertex
F -algebras.

3.5 F -binomial coefficients

Let F (z, w) be a formal group law. As observed in Example 3.4, for all n ∈ Z there are well-
defined integer powers

iz,wF (z, w)
n, iz,wF (ιz, w)

n, iz,wF (z, ιw)
n, iz,w(ιF (z, w))

n.

Definition 3.14. The coefficients of the expansion iz,wF (z, w)
n are called the F-binomial coef-

ficients, so by definition

iz,wF (z, w)
n =

∑
i,j∈Z

(
n

i, j

)
F

ziwj , ∀n ∈ Z. (3.14)

Proposition 3.15. The F -binomial coefficients satisfy the following identities:(
n

i, j

)
F

= 0 if j < 0 or i+ j < n,(
n

i, 0

)
F

= δmi ,

(
n

i, j

)
F

=

(
n

j, i

)
F

if n ⩾ 0,(
m+ n

r, s

)
F

=
∑

i+k=r
j+ℓ=s

(
m

i, j

)
F

(
n

k, ℓ

)
F

.

Example 3.16. For the one-parameter group law (2.2), we have(
n

i, j

)
Fs

=

(
n

j

)(
j

i+ j − n

)
si+j−n.

In particular, for the additive group law (s = 0), we recover the ordinary binomial coefficients(
n
i,j

)
Fa

=
(
n
j

)
if i+ j = n and

(
n
i,j

)
Fa

= 0 else. For the multiplicative group law, put s = 1.
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3.6 F -delta distributions

Definition 3.17. The group law F -delta distribution is

z−1δF

(w
z

)
= iz,wF (z, ιw)

−1 − iw,zF (z, ιw)
−1.

Example 3.18. For the additive group law, we get the classical distribution

z−1δFa

(w
z

)
= iz,w(z − w)−1 − iw,z(z − w)−1 =

∑
n∈Z

wnz−n−1. (3.15)

More generally, for the one-parameter formal group law (2.2), we have

δFs

(w
z

)
= (1 + sw)

∑
n∈Z

wnz−n.

Proposition 3.19.

(a) The F-delta distribution is supported on the diagonal,

δF

(w
z

)
f(z) = δF

(w
z

)
f(w), ∀f ∈ R((z)). (3.16)

More generally, if f(z, w) ∈ R((z, w)) converges on the diagonal,

δF

(w
z

)
f(z, w) = δF

(w
z

)
f(w,w). (3.17)

(2) We have the F -Jacobi identity,

iz1,z2z
−1
0 δF

(
F (z1, ιz2)

z0

)
− iz2,z1z

−1
0 δF

(
F (z1, ιz2)

z0

)
= iz1,z0z

−1
2 δF

(
F (z1, ιz0)

z2

)
.

(3) We have

iz1,z0z
−1
2 δF

(
F (z1, ιz0)

z2

)
= iz2,z0z

−1
1 δF

(
F (z0, z2)

z1

)
.

Proof. (a) The identities (3.16) and (3.17) are well-known for the classical delta distribution.
By (2.9) and (3.4), the delta distributions are related by

δF

(w
z

)
= G(z, w)−1δFa

(w
z

)
. (3.18)

Therefore, (3.16) and (3.17) follow directly from the classical case.
(b) Formally, the first term of the Jacobi identity is the substitution

iz1,z2z
−1
0 δF

(
F (z1, ιz2)

z0

)
= z−1

0 δF

(
w

z0

) ∣∣∣
w±1→iz1,z2F (z1,ιz2)

±1
.

Expanding the definition of δF and using functoriality of substitution, this gives

iz1,z2z
−1
0 δF

(
F (z1, ιz2)

z0

)
= iz0,wF (z0, ιw)

−1
∣∣
w→iz1,z2F (z1,ιz2)

− iw,z0F (z0, ιw)
−1
∣∣
w±1→iz1,z2F (z1,ιz2)

±1

= iz0,(z1,z2)F (z0, ιz1, z2)
−1 − iz1,(z2,z0)F (z0, ιz1, z2)

−1.
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In the same way,

iz2,z1z
−1
0 δF

(
F (z1, ιz2)

z0

)
= iz0,(z2,z1)F (z0, ιz1, z2)

−1 − iz2,(z1,z0)F (z0, ιz1, z2)
−1,

iz1,z0z
−1
2 δF

(
F (z1, ιz0)

z2

)
= iz2,(z1,z0)F (z0, ιz1, z2)

−1 − iz1,(z0,z2)F (z0, ιz1, z2)
−1.

Observe that by (3.3) each term appears twice in the last three equations. Hence the terms
cancel in pairs, which proves the F -Jacobi identity.

(c) Notice that

iz2,z0z
−1
1 δF

(
F (z0, z2)

z1

)
= iz1,(z0,z2)F (z1, ιz0, ιz2)

−1 − iz2,(z0,z1)F (z1, ιz0, ιz2)
−1

can be multiplied by the holomorphic F (ιz0,z1,ιz2)
F (z0,ιz1,z2)

which may be exchanged with the expansion.
Hence

iz2,z0z
−1
1 δF

(
F (z0, z2)

z1

)
· F (ιz0, z1, ιz2)
F (z0, ιz1, z2)

= iz1,(z0,z2)F (z0, ιz1, z2)
−1 − iz2,(z0,z1)F (z0, ιz1, z2)

−1

(3.3)
= −iz1,z0z

−1
2 δF

(
F (z1, ιz0)

z2

)
.

Finally, using (3.16) put z1 = F (z0, z2) into
F (ιz0,z1,ιz2)
F (z0,ιz1,z2)

on the left to get 1. ■

By (3.17), we may put z = w in (3.18) and use (2.10) to get

δF

(w
z

)
ϕ′(z) = δFa

(w
z

)
. (3.19)

Observe here that ϕ′(z) = F 0,1(z, 0)−1 makes sense and (3.19) holds over an arbitrary ring R.
There is a proof of the F -Jacobi identity based on (3.19) and the Jacobi identity for the additive
group law, but we remind the reader that the proof of (2.10) used Lazard’s theorem. We have
given an elementary proof.

3.7 F -residues

Recall that the residue of a formal Laurent series f(z) =
∑
anz

n ∈ R
q
z±1

y
is defined as

Resz=0 f(z)dz = a−1. We have the identities (see [14, Chapter 13])

Resz=0 f
(n)(z)dz = 0,∀n ⩾ 1, Resz=0 f

′(z)g(z)dz = −Resz=0 f(z)g
′(z)dz,

Resw=0 f(h(w))h
′(w)dw = Resz=0 f(z)dz. (3.20)

Here f, g ∈ R
q
z±1

y
are formal Laurent series and h is a (holomorphic) formal power series

with h(0) = 0 and h′(0) ∈ R×.

This terminology can be extended to formal group laws F (z, w) as follows. Recall the in-
variant 1-form θF from (2.4). Then the F-residue is defined as ResFz=0 f(z)dz = Resz=0 f(z)θF .
Assuming the existence of a logarithm,

ResFz=0 f(z)dz = Resx=0 f(x)dx, where f(x) = f
(
ϕ−1(x)

)
. (3.21)

From (2.6), we have

ResFz=0 f(ι(z))dz = −ResFz=0 f(z)dz. (3.22)

From (3.19) combined with (3.15) and (3.16), we find

ResFz=0 z
−1δF

(w
z

)
dz = ResFw=0 z

−1δF

(w
z

)
dw = 1.
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3.8 F -hyperderivatives

Generalizing Hasse’s number-theoretic notion to formal group laws, define the F-hyperderivative
of f ∈ R((z)), SF

n f , n ⩾ 0, by expanding the substitution

iz,wf(F (z, w)) =
∑
n⩾0

(
SF
n f
)
(z)wn. (3.23)

Hence SF
n f(0) picks out the n-th coefficient of f , and we think of SF

n f as a substitute for
(n!)−1f (n)(z). One easily shows(

SF
0 f
)
(z) = f(z),

(
SF
1 f
)
(z)θF = f ′(z)dz, SF

n (λf + g) = λSn(f) + Sn(g),

SF
n (f · g) =

∑
i+j=n

SF
i (f) · SF

j (g), (3.24)

SF
mSF

n (f) = SF
n SF

m(f) =
∑
k⩾0

(
k

m, n

)
F

SF
k (f). (3.25)

For the additive group law, (3.25) implies
(
SFa
1

)◦n
= n! · SFa

n , which shows the importance of
considering higher hyperderivatives in the presence of torsion. Equation (3.25) follows from the
associativity of F .

Comparing (3.14) and (3.23), we find

SF
j (zm) =

∑
i∈Z

(
m

i, j

)
F

zi.

From this, we see that (3.25) implies∑
i∈Z

(
m

i, s

)
F

(
i

j, r

)
F

=
∑
i∈Z

(
m

i, r

)
F

(
i

j, s

)
F

=
∑
k⩾0

(
k

r, s

)
F

(
m

j, i

)
F

for all r, s,m, j ∈ Z.

Theorem 3.20. For all n ⩾ 1, we have

ResFz=0 SF
n f(z)dz = 0, (3.26)

ResFz=0 SF
n f(z) · g(z)dz = −

n∑
j=1

ResFz=0

[
SF
n−jf(z) · SF

j g(z)
]
dz. (3.27)

Proof. Summing (3.26) times wn over n, we see by (3.23) that it suffices to show

ResFz=0 iz,wf(F (z, w))dz = ResFz=0 f(z)dz.

We will apply the substitution rule (3.20) to the power series h(z) = F (z, w)−w with coefficients
in the ring RJwK. This corresponds to viewing w as a fixed constant. Putting dw = 0 in (2.5)
gives pF (F (z, w))F

1,0(z, w) = pF (z). Clearly, h(0) = 0 and h′(0) = F 1,0(0, w) = pF (w)
−1 is

a unit, so the hypotheses for (3.20) are satisfied. Applying this and unravelling the definition
gives

ResFz=0 iz,wf(F (z, w))dz = Resz=0 iz,wf(F (z, w))pF (z)dz

= Resz=0 iz,wf(F (z, w))pF (F (z, w))F
1,0(z, w)dz

= Resz=0 iz,wf(h(z) + w)pF (h(z) + w)h′(z)dz
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= Resv=0 iv,wf(v + w)pF (v + w)dv.

Let

g(z) = f(z)pF (z) =
∑
n∈Z

anz
n ∈ R((z)).

It remains to prove that

Resv=0 iv,wg(v + w)dv = Resz=0 g(z)dz,

which is a straight-forward computation

Resv=0 iv,wg(v + w)dv = Resv=0

∑
n,k∈Z

an

(
n

k

)
vn−kwkdv = a−1,

where we have used that
(

n
n+1

)
= 0 for n ̸= −1 and

(−1
0

)
= 1.

Finally, combining (3.24) with (3.26) gives (3.27). ■

Theorem 3.21. For all f ∈ R
q
x±1
0 , x±1

1 , x±1
2

y
such that the substitutions f(x1 − x2, x1, x2),

f(x0, x1, x1 − x0) converge in the algebraic sense,

Resx1=0Resx2=0 ix1,x2f(x1 − x2, x1, x2)dx2dx1

−Resx2=0Resx1=0 ix2,x1f(x1 − x2, x1, x2)dx1dx2

= Resx1=0Resx0=0 ix1,x0f(x0, x1, x1 − x0)dx0dx1. (3.28)

More generally,

ResFz1=0Res
F
z2=0 iz1,z2f(F (z1, ι(z2)), z1, z2)dz2dz1

−ResFz2=0Res
F
z1=0 iz2,z1f(F (z1, ι(z2)), z1, z2)dz1dz2

= ResFz1=0Res
F
z0=0 iz1,z0f(z0, z1, F (z1, ι(z0)))dz0dz1. (3.29)

Proof. It suffices to check (3.28) for f = xa0x
b
1x

c
2, where

ix1,x2f(x1 − x2, x1, x2) =
∑
k⩾0

(−1)k
(
a

k

)
xa+b−k
1 xc+k

2 ,

ix2,x1f(x1 − x2, x1, x2) =
∑
k⩾0

(−1)a+k

(
a

k

)
xb+k
1 xa+c−k

2 ,

ix1,x0f(x0, x1, x1 − x0) =
∑
k⩾0

(−1)k
(
c

k

)
xa+k
0 xb+c−k

1 .

Taking residues, we see that (3.28) reduces to the binomial identity

(−1)c−1

(
a

1− c

)
− (−1)a+b−1

(
a

1− b

)
= (−1)a−1

(
c

1− a

)
for all a+ b+ c+ 2 = 0.

It suffices to prove (3.29) for the universal formal group law, where we may assume (2.8).
In this case, we can use (3.21) to reduce (3.29) to (3.28) for the function f(x0, x1, x2), where
ϕ(zi) = xi, i = 0, 1, 2. ■
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4 Vertex F -algebras and their Lie algebras

4.1 Axioms

Definition 4.1. A vertex F -algebra over a formal group law F (z, w) ∈ RJz, wK consists of data
(V,1,S, Y ) as follows:

� an R-module V of states,

� a vacuum vector 1 ∈ V ,

� an R-linear F -shift operator

S(z) : V −→ V JzK, S(z)a =
∑
n⩾0

S(n)(a)zn, (4.1)

� an R-linear state-to-field correspondence

V ⊗R V −→ V ((z)), a⊗ b 7−→ Y (a, z)b,

Y (a, z)b =
∑
n∈Z

a(n)(b)z
−n−1, a(n)(b) = 0 for n≫ 0. (4.2)

The following axioms are required:

(1) Vacuum & creation: Y (a, z)1 is holomorphic for all a ∈ V and

Y (a, z)1|z=0 = a, Y (1, z) = idV . (4.3)

(2) F -translation covariance: for all a, b ∈ V , we have

Y (S(w)(a), z)b = iz,wY (a, F (z, w))b, S(z)1 = 1. (4.4)

In (4.4), we have used the substitution (3.13). Moreover, S(z) ◦ S(w) = S(F (z, w)),
S(0) = idV .

(3) Weak F -associativity: for all a, b, c ∈ V , there exists N ⩾ 0 with

F (z, w)NY (Y (a, z)b, w)c = F (z, w)N iz,wY (a, F (z, w))Y (b, w)c, (4.5)

using the substitution v 7→ F (z, w) from (3.11) on the right-hand side.

(4) Skew symmetry:

Y (a, z)b = S(z) ◦ Y (b, ι(z))a. (4.6)

Putting b = 1 into (4.6) and using (4.3) gives

Y (a, z)1 = S(z)a. (4.7)

Remark 4.2. The axioms are slightly redundant. For example, (4.4) implies (4.5) for b = 1.
On the other hand, we cannot deduce (4.4) from (4.5) unless we know a priori that both sides
of (4.4) are meromorphic in z, w. Hence (4.4) encodes a ‘meromorphicity’ property.

Remark 4.3. For an ordinary vertex algebra, one usually works with the translation operatorD,
see [11]. The shift operator then is S(z) = exp(zD).
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Remark 4.4. Huang [6] has given a geometric interpretation of ordinary vertex algebras in
terms of punctured Riemann spheres. For elliptic formal group laws, are vertex F -algebras
analogously interpreted over an elliptic curve?

The author thanks an anonymous referee for pointing out that, in Huang’s geometric inter-
pretation of ordinary vertex algebras, conformal invariance plays a crucial role. In the genus one
setting, an invariant construction requires not only the vertex algebra itself but also its modules
and intertwining operators, whose matrix coefficients need not be meromorphic. Full modular
invariance is presently established only in the C2-cofinite (rational) case due to Huang [7], and
more recently in certain C1-cofinite settings in work of Creutzig–McRae–Yang [3]. It therefore
remains unclear whether a theory of vertex F -algebras over an elliptic curve could satisfy such
invariance properties, although a formulation with weaker invariance (topological or birational)
might still be meaningful.

4.2 Meromorphicity

The meromorphicity assumption in (4.2) can be combined with other axioms to prove the mero-
morphicity of various operator products and compositions. These, in turn, imply further non-
trivial axioms. Here is a simple example of this principle.

Proposition 4.5. For all a, b ∈ V in a vertex F -algebra,

iz,wY (a, F (z, w)) ◦ S(w)b = S(w) ◦ Y (a, z)b. (4.8)

Proof. Putting c = 1 into (4.5) and using (4.7) shows

F (z, w)N
(
S(w) ◦ Y (a, z)b

)
= F (z, w)N

(
iz,wY (a, F (z, w)) ◦ S(w)b

)
(4.9)

for some N ⩾ 0. Since S(w) ◦ Y (a, z)b ∈ V ((z, w)) by (4.1) and (4.2) and Y (a, F (z, w))S(w)b ∈
V ((z, w)) by (4.4) and (4.2), we can embed equation (4.9) into V ((z))((w)), where F (z, w) is
invertible. Equation (4.8) follows. ■

Here is the fundamental meromorphicity property of vertex F -algebras.

Proposition 4.6. For each a, b, c ∈ V , both sides of (4.5) are a Laurent series pa,b,c(z, w) ∈
V ((z, w)). The formal fraction

fa,b,c(z, w) =
pa,b,c(z, w)

F (z, w)N
∈ V ((z, w))

[
F (z, w)−1

]
(4.10)

is independent of N . Under the homomorphisms iw,z and iz,w from V ((z, w))
[
F (z, w)−1

]
into

V ((w))((z)) and V ((w))((z)), respectively, we have

iw,zfa,b,c(z, w) = Y (Y (a, z)b, w)c, (4.11)

iz,wfa,b,c(z, w) = iz,wY (a, F (z, w))Y (b, w)c. (4.12)

Proof. Using (4.2), we find that

Y (Y (a, z)b, w)c =
∑

m,n∈Z

(
a(n)(b)

)
(m)

(c)z−n−1w−m−1

contains only finitely many negative powers of z. Moreover, for a fixed power of z, there are only
finitely many negative powers of w. Hence the left-hand side of (4.5) belongs to V ((w))((z)). By
definition of the substitution (3.11), the right-hand side of (4.5) belongs to V ((z))((w)). Hence
both sides of (4.5) are equal to a common series pa,b,c(z, w) ∈ V ((z, w)) in the intersection. If
we embed pa,b,c(z, w) into V ((w))((z)), we get F (z, w)NY (Y (a, z)b, w)c and the series F (z, w)
is invertible in V ((w))((z)), so we may rearrange and get (4.11). Similarly, we may embed
into V ((z))((w)) and rearrange to get (4.12). ■
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Proposition 4.7 (weak commutativity). For all a, b, c ∈ V in a vertex F -algebra there ex-
ists M ⩾ 0 with

F (z, ιw)MY (a, z)Y (b, w)c = F (z, ιw)MY (b, w)Y (a, z)c. (4.13)

We can replace F (z, ιw)M by (z − w)M in (4.13) as these differ by a unit (2.9). Hence our
vertex F -algebras satisfy also the axioms of Li [12].

Proof. Combining skew symmetry with F -translation covariance gives

Y (Y (a, z)b, w)c = iw,zY (Y (b, ιz)a, F (z, w))c.

By (4.11), we can reexpress this identity as

iz,wfa,b,c(z, w) = iz,wfb,a,c(ιz, F (z, w)) (4.14)

in the ring V ((z))((w)). Perform the substitution z → F (v, ιw) from (3.12) to get

iv,wfa,b,c(F (v, ιw), w) = iv,wfb,a,c(F (w, ιv), v). (4.15)

The same substitution applied to (4.12) leads to

iv,wfa,b,c(F (v, ιw), w) = Y (a, v)Y (b, w)c (4.16)

and exchanging v ↔ w, a↔ b gives

iw,vfb,a,c(F (w, ιv), v) = Y (b, w)Y (a, v)c. (4.17)

Since fb,a,c(F (w, ιv), v) = w−Npb,a,c(F (w, ιv), v) by (4.10) and pb,a,c(u, v) contains only finitely
many negative powers of u, there exists M ⩾ 0 such that F (w, ιv)Mfb,a,c(F (w, ιv), v) lies
in R((v, w)). From (3.3) we thus have

F (w, ιv)M iv,wfb,a,c(F (w, ιv), v) = F (w, ιv)M iw,vfb,a,c(F (w, ιv), v),

which, combined with (4.15)–(4.17), implies the result. ■

Proposition 4.8 (Jacobi identity). For all a, b in a vertex F -algebra,

iz1,z0z
−1
2 δF

(
F (z1, ιz0)

z2

)
Y (Y (a, z0)b, z2)

= iz1,z2z
−1
0 δF

(
F (z1, ιz2)

z0

)
Y (a, z1)Y (b, z2)

− iz2,z1z
−1
0 δF

(
F (z1, ιz2)

z0

)
Y (b, z2)Y (a, z1).

Proof. Let c ∈ V . In the notation of (4.10), set

ϕa,b,c(z0, z1, z2) =
pa,b,c(z0, z2)

zN1
.

Thus ϕa,b,c(z0, z1, z2) = fa,b,c(z0, z2) if F (z0, z2) = z1. We have

iz1,z2z
−1
0 δF

(
F (z1, ιz2)

z0

)
ϕa,b,c(z0, z1, z2)
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(3.16)
= iz1,z2z

−1
0 δF

(
F (z1, ιz2)

z0

)
fa,b,c(F (z1, ιz2), z2)

(4.16)
= iz1,z2z

−1
0 δF

(
F (z1, ιz2)

z0

)
Y (a, z1)Y (b, z2). (4.18)

In the same way, (4.17) implies

iz2,z1z
−1
0 δF

(
F (z1, ιz2)

z0

)
ϕa,b,c(z0, z1, z2)

= iz2,z1z
−1
0 δF

(
F (z1, ιz2)

z0

)
Y (b, z2)Y (a, z1).

The substitutions z → z0 and w±1 → iz1,z0F (z1, ιz0)
±1 in (4.11) give

iz1,z0fa,b,c(z0, F (z1, ιz0)) = iz1,z0Y (Y (a, z0)b, F (z1, ιz0))c.

Therefore,

iz1,z0z
−1
2 δF

(
F (z1, ιz0)

z2

)
ϕa,b,c(z0, z1, z2)

(3.16)
= iz1,z0z

−1
2 δF

(
F (z1, ιz0)

z2

)
fa,b,c(z0, F (z1, ιz0))

= iz1,z0z
−1
2 δF

(
F (z1, ιz0)

z2

)
Y (Y (a, z0)b, F (z1, ιz0))c. (4.19)

Now put (4.18)–(4.19) into the Jacobi identity of Proposition 3.19. ■

4.3 Construction of Lie bracket

Theorem 4.9. The formula

[a, b] = ResFz=0 Y (a, z)bdz (4.20)

defines a Lie bracket on the quotient V/
∑

n⩾1 S(n)(V ).

Proof. We first show that (4.20) descends to the quotient by proving

ResFz=0 Y
(
S(m)(a), z

)
bdz =

1

m!

dm

dwm

∣∣∣∣
w=0

ResFz=0 Y (S(w)(a), z)bdz = 0 (4.21)

for m ⩾ 1. This will also prove

Resz=0

(
Y (a, z)S(m)(b)

F 1,0(0, z)

)
dz ∈

∑
n⩾1

S(n)(V ),

since by (4.4), (4.8) we have

Y (a, z) ◦ S(w) = S(w) ◦ Y (a, F (z, ι(w))) = S(w) ◦ Y (S(ι(w))a, z)

=
∑
k,ℓ⩾0

S(k) ◦ Y
(
S(ℓ)(a), z

)
wkι(w)ℓ,

which expresses Y (a, z)S(m)(b) for m ⩾ 1 as a sum of terms with k ⩾ 1 or with ℓ ⩾ 1. The
terms with k ⩾ 1 belong to

∑
n⩾1 S(n)(V ), while the terms with ℓ ⩾ 1 are covered by (4.21).
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We show (4.21) by applying Theorem 3.20. Since

ResFz=0 Y (S(w)a, z)bdz = ResFz=0 Y (a, F (z, w))bdz =
∑
n⩾0

(
ResFz=0 SnY (a, z)b

)
wndz

= ResFz=0 Y (a, z)bdz,

the series is constant in w, as required.
Clearly the bracket is bilinear. We prove the Jacobi identity. Using the notation of Proposi-

tion 4.6, set fa,b,c(z, v, w) =
pa,b,c(z,w)

vN
. Then

iv,w[fa,b,c(z, v, w)|z→F (v,ι(w))] = Y (a, v)Y (b, w)c,

iw,v[fa,b,c(z, v, w)|z→F (v,ι(w))] = Y (b, w)Y (a, v)c.

On the other hand, putting w = F (v, ι(z)) into (4.14) implies the first step in

iv,z[fa,b,c(z, v, w)|w→F (v,ι(z))] = iv,z
pb,a,c(ι(z), v)

F (ι(z), v)N
(4.11)
= Y (Y (b, ιz)a, v)c.

Putting these calculations into the formula (3.29) for iterated F -residues with (z0, z1, z2) →
(z, v, w) and using (3.22) yields a version of the Jacobi identity

[a, [b, c]]− [b, [a, c]] = −[[b, a], c].

Assuming a trivial center (meaning that [d, c] = 0 for all c implies d = 0), this Jacobi identity
implies also the skew symmetry of the Lie bracket. In general, (4.1) and (4.6) imply

Y (a, z)b+
∑
n⩾1

S(n)(V ) = Y (b, ι(z))a+
∑
n⩾1

S(n)(V )

and then the skew symmetry follows from (3.22). ■

Remark 4.10. For ordinary homology, the moduli space of the quiver given by the Dynkin
diagram of a Lie algebra recovers the original Lie algebra. What happens in the case of elliptic
homology?

4.4 Example: Heisenberg vertex F -algebra

The simplest new examples are generated by a single vertex operator. These are the Heisenberg
vertex F -algebras. Define a central extension

0 −→ R −→ HF −→ R((t)) −→ 0

of the commutative Lie algebra R((t)) by the cocycle

c(f, g) = ResFz=0 SF
1 (f) · g = Resz=0 f

′g.

Notice (3.24) here. Set bn = tn. Then

[bn, bm] = nδn,−m, (4.22)

so we have obtained the ordinary Heisenberg Lie algebra except for having replaced C by the
ring R. Define the space of states V = R[b−1, b−2, . . . ]. Write 1 ∈ V for the constant series 1,
the vacuum. Define the vertex operator

b(z) =
∑
n∈Z

bnz
−n−1,
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where

bn : V −→ V, bn =

bn · (−) (n < 0),

n
∂

∂b−n
(n ⩾ 0).

These operators satisfy the commutation rules (4.22). We seek an F -translation operator

S(z) =
∑
n⩾0

S(n)zn, S(n) : V −→ V,

satisfying S(z)1 = 1 and [S(z), b(w)] = b(F (z, w)). These conditions actually determine S(z)
completely. Written in components,[

S(n), bm
]
= coefficient of wm in

(
S(n)
F b

)
(w).

This can be applied inductively to a state bj1 · · · bjk until we reach S(n)
1 = 0.
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Vol. 227, Birkhäuser, Boston, MA, 2004.

[12] Li H., Vertex F -algebras and their ϕ-coordinated modules, J. Pure Appl. Algebra 215 (2011), 1645–1662,
arXiv:1006.4126.

[13] Liu H., Equivariant K-theoretic enumerative invariants and wall-crossing formulae in abelian categories,
arXiv:2207.13546.

[14] Remmert R., Theory of complex functions, Grad. Texts in Math., Vol. 122, Springer, New York, 1991.

https://doi.org/10.1073/pnas.83.10.3068
https://doi.org/10.1016/j.aim.2022.108828
http://arxiv.org/abs/2202.05496
https://doi.org/10.1016/j.jpaa.2022.107019
https://doi.org/10.1016/j.jpaa.2022.107019
http://arxiv.org/abs/2022.10701
https://doi.org/10.1090/chel/375
https://doi.org/10.1007/978-1-4612-4276-5
https://doi.org/10.1142/S021919970500191X
http://arxiv.org/abs/math.QA/0303049
http://arxiv.org/abs/2111.04694
https://people.maths.ox.ac.uk/joyce/publ.html
https://doi.org/10.24033/bsmf.1462
https://doi.org/10.1007/978-0-8176-8186-9
https://doi.org/10.1016/j.jpaa.2010.10.001
http://arxiv.org/abs/1006.4126
http://arxiv.org/abs/2207.13546
https://doi.org/10.1007/978-1-4612-0939-3

	1 Introduction and results
	2 Background on formal groups
	3 Formal calculus and F-residues
	3.1 Bilateral and Laurent series
	3.2 Expansions
	3.3 Filtrations
	3.4 Substitutions
	3.5 F-binomial coefficient
	3.6 F-delta distributions
	3.7 F-residues
	3.8 F-hyperderivatives

	4 Vertex F-algebras and their Lie algebras
	4.1 Axioms
	4.2 Meromorphicity
	4.3 Construction of Lie bracket
	4.4 Example: Heisenberg vertex F-algebra

	References

