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Abstract. Vertex F-algebras are a deformation of the concept of an ordinary vertex algebra
in which the additive formal group law is replaced by an arbitrary formal group law F. The
main theorem of this paper constructs a Lie algebra from a vertex F-algebra — for the
additive formal group law, this extends Borcherds’ well-known construction for ordinary
vertex algebras. Our construction involves the new concept of an F-residue and some other
new algebraic concepts, which are deformations of familiar concepts for the special case of
an additive formal group law.
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1 Introduction and results

Vertex algebras, popularized in mathematics by Borcherds [1], provide an algebraic framework
for understanding two-dimensional conformal field theories and play a fundamental role in repre-
sentation theory. A feature of vertex algebras is that their axioms implicitly rely on the additive
formal group law F'(z,w) = z+w. Vertex F-algebras, originally introduced by Li [12], generalize
vertex algebras by replacing the additive formal group by an arbitrary formal group law F'(z, w).

A fundamental theorem of Borcherds [1], which has important applications to representation
theory, states that every vertex algebra determines a Lie algebra. The main result of this paper
extends this result and shows that every vertex F-algebra also determines a Lie algebra. How-
ever, the usual construction of the Lie bracket in the vertex algebra setting, via the residue of
the state-to-field correspondence, does not directly apply to vertex F-algebras. To overcome this
difficulty, we introduce a deformation of the concept of a residue, the F-residue Resfzo. Estab-
lishing the Lie algebra structure in the generalized setting requires significantly more technical
work than in the classical case.

The following result is our main theorem, and it is proven in Section 4.3.

Theorem. Let (V,1,S8,Y) be a vertex F-algebra (see Definition 4.1). Then
[a,b] = Res!_, Y (a, 2)bdz
defines a Lie bracket on the quotient V// 3~ -, S (V).

Besides the potential applications to representation theory, there is further motivation for
generalizing the concept of a vertex algebra stemming from enumerative geometry: recently,
Joyce [8, 9] has shown that vertex algebras play a central role in enumerative geometry, where the
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Lie algebra associated to the ordinary homology H,(M) of a moduli stack M (for example, the
stack of perfect complexes over a projective variety). The Lie bracket is used to formulate wall-
crossing formulas of enumerative invariants. The study of enumerative invariants in generalized
homology E.(M) is becoming increasingly popular (most notably, the theory of K-theoretic
enumerative invariants). For complex oriented generalized homology theories F, with formal
group law F'; similar constructions show that E,(M) is naturally a vertex F-algebra. Indeed,
in [4] the author and Gross proved that the generalized homology of an H-space (plus some
extra data) naturally has a vertex F-algebra structure. This extends Joyce’s construction to
generalized homology. While a comprehensive theory of wall-crossing has not yet been developed
for generalized enumerative invariants (for progress in the case of K-theory, see Liu [13]), it may
well be expected that the wall-crossing formula will use the Lie bracket constructed in this paper.

The proof of our main theorem, as well as a better understanding of vertex F-algebras, re-
quires the development of various deformations of familiar concepts (F-binomial coefficients,
F-delta distributions, F-residues, and F-hyperderivatives), developed in Section 3. These con-
structions, which appear to be new to the literature, provide the tools for generalizing results
for ordinary vertex algebras to vertex F-algebras. Section 2 reviews some background of formal
groups and establishes certain properties we will use later. In Section 4, we define vertex F-
algebras (our definition is equivalent to that of Li [12]), prove some meromorphicity properties,
and prove our main theorem.

We use the following notation.

e R a commutative ring with unit,

R[zil] the ring of Laurent polynomials,

R[z] the ring of formal power series > oo, a;z’,

R[[zil]] the abelian group of bilateral Laurent series Z;OSOO a;z" (note that R[[zil]] is not
a ring, but only has a partially defined product),

R((z)) the ring of meromorphic series having a pole at 0.

2 Background on formal groups

All rings R are assumed to be commutative and unital. A formal group law over R is a formal
power series F'(z,w) € R[z,w] satisfying

F(z,w) = F(w,z) = z+w+ O(2w), F(z, F(w,v)) = F(F(z,w),v). (2.1)
There is a unique inverse 1(z) = —z + O(2?) € R[z] such that F(z,.z) = 0.
Remark 2.1. Our definition includes a choice of coordinate z for the formal group.
Example 2.2. Over R = Z[s], we have the formal group law

Fo(z,w)=z+w+s-zw. (2.2)

We view F as a family of group laws over the affine line. At s = 0, it specializes to the additive
group law F, and at s = 1 to the multiplicative group law F,,. All polynomial formal group
laws are of the form (2.2), and other examples must involve infinite series.

Example 2.3. Over the ring of modular forms R = Z[%,e,é}, we have the elliptic formal
group law

Fu(z,w) = = Sw) + wm’ S(z) =1—262% 4 2.

1 — ez2w?
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ztw

For € = 62 it specializes to the group law Tr5sw

it specializes to

21— 20w?2 + w1 — 2522

(for § = —1/2 equivalent to A-genus).

(for § = 1 equivalent to L-genus) and for € = 0

Example 2.4. Let p be a prime number and fix a positive power ¢ = p". Set Op(2) = 2+
> ps1 P 27" In [5], it is shown that

Fy(z,w) = ¢, (8p(2) + ¢p(w))

has integer coefficients and thus defines a formal group law over Z.

8'm+n

Using the notation F™" = 5755 F for derivatives, the axioms imply

F(zw) = F™(w,z),  F™0(2,0) = F™(0,2) = 6m,1.

The associativity law is the most interesting axiom. By differentiating it, one obtains many
complicated identities, for example

FOl(z,w)F0(0,w) = FM0(z,w)F%(z,0). (2.3)

Identities of this kind will be important later, so we now introduce a systematic method for
proving these based on Lazard’s theorem. We first discuss the invariant 1-form and the logarithm
of a formal group law.

The invariant differential of a formal group law F'(z,w) is the unique 1-form

O =pr(z)dz,  pr(z) € R[Z], (2.4)
satisfying pp(0) = 1, F*(0r) = 7 (6r) + 75(6F). Equivalently,
pr(F(z,w)) (F0(2,w)dz + F' (2, w)dw) = pp(z)dz + pr(w)dw. (2.5)

Using this characterization of 8 one verifies
—1*(0F) = Op. (2.6)

One checks pr(z) = F%1(2,0)7!, which is well-defined as F%!(z,0) =1+,
Suppose now that Q C R. Then every formal group law has a unique (formal) logarithm
¢ € R][z] satisfying

(F(z,w)) =d(2) +o(w),  ¢(0)=0,  ¢'(0)=1 (2.7)

Indeed, taking 9/0w of (2.7) and setting w = 0 we find that ¢'(z)dz = 6 is the invariant 1-form
which, since Q C R, has a primitive O = d¢. For this reason, we write pp(z) = ¢(z) with the
caveat that ¢(z) is only defined if Q C R. The composition inverse ¢p—'(z) € R[] is called the
exponential.

Example 2.5. For s # 0, the logarithm of Fy is s~!log(1 + sz). For F,j, the logarithm is the
functional inverse of the indefinite elliptic integral [ S(z)~'/2dz.

Example 2.6. The logarithm in Example 2.4 is the series ¢(z) defined there. For p = ¢, we
have

o0

-1 _ 10,1 _ 1 _ 1

Hence the coefficient of 2% in pr(z)~! is the sum of (—1)¥

into positive powers of the prime p.

over all partitions p™ +---4+p" =d
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Using variables as coeflicients defines the universal formal group law

Fr = E Apm 2" w™

n,m=0

over the Lazard ring L, the quotient of the polynomials Z[ay, »,] modulo all the relations contained
in (2.1). By construction, every formal group law F' is obtained from F7, by reduction of
coefficients F' = u,(F) along a unique ring homomorphism u: L — R.

Theorem 2.7 (Lazard [10]). L = Z[p1,p2,...] is a polynomial ring over the integers. In
particular, L is torsion-free.

This implies that it suffices to prove statements about formal group laws over the rationals,
where one may restrict to laws of the form

F(z,w) = ¢7H(g(2) + ¢(w)). (2.8)

Using this method, (2.3) has a simple chain rule proof. Moreover, the following proposition
would be very difficult to prove without this new method.

Proposition 2.8. The series G(z,w) € R[z,w] defined by

F(z,mw) = G(z,w) - (z —w) (2.9)
s a unit and converges on the diagonal to

G(z,2) = ¢'(2). (2.10)

Proof. The coefficients of G(z,w) in (2.9) satisfy a recursion which is easily solved inductively.
The main point is to prove (2.10) for the group law (2.8). Set

-1
ola) = = 14 0(e)
Then
¢ (p(2) — p(w)) _ 9(2) — d(w)
Gleyw) = TPy 4) — ) - PO
Substituting w = z, the first factor is ¢)(0) = 1 and the second is ¢'(z). [ |
3 Formal calculus and F'-residues
3.1 Bilateral and Laurent series
Let Rﬂzfd, ceey z,jfl]] be the space of bilateral Laurent series
f= Y a2t (3.1)
11 yeyin €L
in variables z1, ..., z,. This is an abelian group under addition, but the product is only partially

defined. The product of (3.1) with

_ R F
9= § : bjy,in 1 2"

j17---7anZ
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is said to converge if each of the coefficients in

_ k1 kn
fg= E ( E az‘l,-..,z‘nbjl,...,jn)zl 2y

k1ye..,kn€Z \i1+j1=k1,....in+jin=Fkn

reduces to a sum with only finitely many non-zero terms. By [11, p. 24], this product is asso-
ciative if all products fg, gh, (fg)h, f(gh) converge and the triple product converges.

Similarly, we say that f(z,w) =)
of the coefficients in

f(z,2) = Z( Z ai,j) 2"

neEZ \i+j=n

i jez ai jw'z? € R[z,w] converges on the diagonal if each

reduces to a sum with only finitely many non-zero terms.
We say that (3.1) is a formal Laurent series if a;, . ;, = 0 for all but finitely many negative

indices. The subspace of formal Laurent series R((z1, . . ., 2,)) is a ring since all products converge.
For f € R((#1,-..,2n)), we say also that f is meromorphic in the variables z1, ..., z,. We have the
subring Rz, ..., z,] of formal power series which are also said to be holomorphic in zq, ..., z,.

It is useful to underline holomorphic variables in some contexts below.

Remark 3.1. This generalizes to series with coefficients in an R-module M. Then R((z1, ..., 2y))
acts on M ((z1,...,2n)). We leave this extension to the reader.

Proposition 3.2. Let f = ) - yan2" € R((2)) with lowest coefficient ax # 0. Then f is
invertible in R((2)) if and only if ay is invertible in R, with inverse in 2z R[z]. In particular,
all integer powers f™ € R((z)) are defined in this case.

Proof. Suppose that ay is invertible and factor f = anz"(1 + zg) for g € R[z]. Formally
applying Newton’s binomial theorem, we define

v =a%z"N(1 + z9)" = ay Z <Z> ZMNHR R, (3.2)
k=0
Clearly, f- f™ = f""™ by the binomial identity Y ;_;,, (M) () = (") and f* € 2"V R[2].

J
Putting n = 1, m = —1, shows that f(z) is invertible. [

3.2 Expansions

Expansion maps play a central role in modern formulations of vertex algebras, so we briefly
review them here.

Definition 3.3. Let (z1,...,%m),...,(21,...,2,) be tuples of formal variables, where singleton
brackets will be dropped from the notation. We view the iterate Laurent series ring as a subset
of the space of bilateral series:

R(z1,. ., xm) - - (21,--+,2n)) C R[[xlil,...,x,inl,...,zlil,...,z,flﬂ.
Let J(zy,..wm)sns(21,020) D€ the natural inclusion of R((@1, ..., Zm, ..., 21,...,2,)), the un-iterated
Laurent ring, into the ring R((w1,...,Zm)) -+ (21, .., 25)). Moreover, let S, . 2.y, . (z1,.20) C
R(x1,-. ., Tmy---,21,---,2n)) be the multiplicative set consisting of those Laurent series whose

image under ji, . z..),...(s1,..,2n) 1S invertible in the iterated Laurent ring.
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The expansion map iz, . z.),.. (21,..,2,) 18 the localization of the map Jji, . ). (21,.020)

at S(cc1,...,xm),...,(Z1,...,zn) shown in the diagram
j(zl,m,zrn) ,,,,, (21504 zZn)
R(x1y. Ty ey 21yeens2n) —— R((x1,. . xm) - (21, - -+ 2n))
o
\L ,f”"””i(zl ..... Tm),---s (215-e0s zn,)
S(;llwam)W’(Zl,m’Zn)R((wl, e Ty ey 21y e ey Zn)-

Example 3.4. Let F(z,w) be a formal group law. The images of the series F'(z,w), F(z,w),
F(tz,w), tF(z,w) in R((2))(w)) are invertible because their lowest coefficients are the units
z,1(z) in R((z)). Therefore, F(z,w), F(z,w), F(1z,w), tF(z,w) are in S,,,. Hence there are
well-defined integer powers

iz wF (2, w)", iz wF (L2, w)", Lo F (2, Lw)"™, iz (LF (2, w))", Vn € Z,

which are elements of R((z))(w)) C R[z*',w*!]. These are computed by first viewing F(z, w),
F(z,ww), F(iz,w), tF(z,w) as elements of the iterated ring R((z))((w)) and then forming the
n-th power there.

Remark 3.5. For ordinary vertex algebras, the expansion maps R((z,w))[z —w]™! — R((2))(w))
are defined on the localization by a single element z — w. For vertex F-algebras, it becomes
necessary to localize F'(z,w), F(z,ww), F(1z,w), tF(z,w). In the case of several variables, even
more complicated expressions in F' must be localized (for example, in the proof of Proposi-
tion 3.19). Since these expressions are difficult to list systematically, we define the expansion
maps on the universal localization, for example, i : S5 R((z, w)) = R((2))(w)).

We can also include holomorphic variables which we indicate by an underline. Note that
expansion maps preserve products,

i(zl,...,wm),...,(zl,...,zn)(fg) = i(xl,...,zm),...,(zl,...,zn)(f) : i(xl,...,xm),...,(zl,”.,zn)(g)'

Remark 3.6. The grouping of variables is important, because the algebra in R((z1))((22))
and R((22))((z1)) is different. For example, the elements i, .,(z1 &+ 22)" and i,, ., (21 £+ 22)" are
different in R[[zfcl, zgtl]] when n < 0. Expansion maps specify the ring in which the algebraic
operations are performed. For holomorphic variables, the grouping is unimportant since

R[z][22] = Rlz2]lz1] = Rlz1, 22]-
Hence iélé2 = izwgl.

Note that R((z1,22)) = R((21))(22)) N R((22))((21)) is a proper intersection since, for example,
Yoo o212 € R(#1))(%2)) \ R((#1, 22)). On the intersection, we have

izl,zzf = iZQ,zl fa vf S R((Zl> 22))' (33)

In particular, R[[zfd, zQil]] is an R((z1, 22))-module and expansions are linear,

Qs (f9) = f iz m(9), V€ R(21.2), g€ R[,25"]. (3.4)

Remark 3.7. Traditionally, the expansion maps are combined with (3.2) and ., ., (21 £ 22)"
is defined as an explicit series. This places the emphasis on properties of binomial coefficients,
which are actually just laws of exponentiation.
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3.3 Filtrations

To determine which substitutions are well-defined, we will introduce topologies on iterate Laurent
rings. These will all be induced by filtrations.

Definition 3.8. A filtration on a ring A is a decreasing sequence of subgroups
) A(n) D) A(n+1) Doy n €z, (3.5)

such that 1 € Ay and A, - Ay C A(ngm)- A filtration is said to be ezhaustive if |J A,y = A
and separated if (| A,y = {0}. We will always assume that filtrations are separated.

There is a unique Hausdorff topology on a filtered ring for which addition and multiplication
are continuous and for which (3.5) is a fundamental system of neighborhoods of zero. This
topology is induced by the uniform structure given by the pseudometric

0 ==Y € ez Awm)s
dlz,y) =427" <= r-y€ An) \ Ans),
+00 ¢:$—y¢umz (n)-

A filtered ring is said to be complete if it is complete as a uniform space. A morphism of filtered
rings is a ring homomorphism f: A — B such that f(A,)) C B, for all n. Filtered maps are
uniformly continuous.

Example 3.9. Let a<A be an ideal. The a-adic filtration on A is defined by A(,) = a" for n > 0
and A,y = A for n < 0. If a = (0), this is the trivial filtration on A, which induces the discrete
topology.

For example, A[z] carries the (z)-adic filtration where A[z],) = 2"A[z] for n > 0. We
also call the filtration on A((z)) defined by A((2))(,) = 2" A[2] for n € Z the (2)-adic filtration,
although (z) is not an ideal in A((2)).

3.4 Substitutions

The following is the main technical result for defining substitutions. Parts (a)—(c) extend [2,
Chapter III, Section 2.6] to the case where Ay # A.

Proposition 3.10.

(a) Let A be a filtered ring. Then

<m—{§:%

€L

%eAn@} nez, (3.6)

defines a filtration on the Laurent ring A(z)). If A is separated, then so is A(z)) and the
power series ring A[z] is a closed subspace with filtration

A2y = A(2) () N A[2]. (3.7)

(2) If A is complete, then so are A((z)) and A[z].

(3) If Ay = A, then the polynomials Alz] are dense in A[z] and the Laurent polynomials
A[z%1] are dense in A((2)).
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(4) (Universal properties) For each filtered morphism f: A — B into a complete ring B and
each invertible element b € Byy), there is a unique filtered morphism f: A(2) — B
with fla=f and f(z) = b. Here A((z)) is given the filtration generated by (3.6) and
the (z)-adic filtration. Pictorially,

Il / | (3.8)

Similarly for multivariable Laurent rings A((z1,...,2n)) and also for power series rings,
where we drop the invertibility condition.

Proof. (a) It is easy to check that (3.6) defines a filtration of A((z)), which is separated if the
original filtration is so. Moreover, A[z] is a closed subspace.

(b) To prove that A((z)) is complete, let f,,(2) = > ;o7 ainz’, n € N, be a Cauchy sequence.
For each NV, there is ng such that for all n, m > ng and ¢ we have

VYn,m = ng: Aip — Qim € A(Nfi)~ (39)

In particular, for each fixed 7 the sequence (ajn)nen is Cauchy in A, hence converges to
some a; € A. We may then take m — oo in (3.9) and get

Vn >mng: ain —a; € An_y)-

This proves that f,,(z) = >,z aiz" as n — oo.

(c) If A(g) = A, then we have az’ € A[z] (i) for any a € A. Hence the truncation SN aizt e
Alz] is in the A(yy-neighborhood of 72 a;2*, showing that the polynomials are dense. Similarly
for Laurent polynomials.

(d) We prove the universal property for A[z]. By the universal property of polynomial rings,
(f,b) uniquely induce a ring homomorphism

Alz] — B, z +—>b. (3.10)

First, put the trivial filtration on A. Then (3.10) is filtered for the (z)-adic topology since
b€ B(y). Since B is complete, we may extend to a filtered map f on the completion A[z].
Observe that f is also automatically filtered for (3.6). Hence f is filtered for the generated
filtration. Conversely, if f is filtered for the generated filtration, then it is also filtered for the (z)-
adic filtration for which A[z] is dense. This proves uniqueness. Similarly for Laurent series. W

Remark 3.11. If A # A, the polynomials A[z] are not dense in Afx] and the filtration in
the universal property differs from (3.7).

Applying (3.6) inductively starting with the trivial filtration on R, we obtain the complete
filtration on iterate Laurent rings R((x1))- - (zm)), where to simplify notation we work in the
single variable case. For h(z1,...,x,), to be in positive complete filtration means that each
monomial occurring in h has strictly positive total degree. We also have the generated filtration
on R((x1))--- (zm)), obtained by using the generated filtration inductively at each step.

Corollary 3.12. Let fi(y1,-..,yn) € R(¥1) -+~ (yn)), 1 < i < m, be invertible and in positive
complete filtration. There is a unique substitution morphism

et gyt : BG@D) (@) — R0 - ()i > filyn,- - ).

taking the generated filtration to the complete filtration.
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Moreover, given gj(z1,...,%p) € R((21))---(2p)), 1 < j < n, invertible and in positive com-
plete filtration we have functoriality

O =
|yji1~>g¢(z1,...,yp)i1 ’ziil%fi(yh...,yn)il ’ziilﬁhi(zl,...,zp)il’
where hi(z1,...,2p) = fi(y1, ... ’y”)|yj-[1—>gi(zh...,yp)i1'
For example, there are mutually inverse bijections

R(v)(w) — R()(w), v izwF(z,w), (3.11)
R(2)(w) — R(w)(w), 2+ ivwF (v, ((w)). (3.12)

Moreover, the universal property (3.8) yields a unique filtered morphism
R(v) — R(2)(w),  vr—iz0F(z,w). (3.13)

Remark 3.13. For vertex algebras, one may restrict to substitutions in Laurent polynomials.
As a formal group law may involve infinitely many powers, this is no longer possible for vertex
F-algebras.

3.5 F-binomial coefficients

Let F(z,w) be a formal group law. As observed in Example 3.4, for all n € Z there are well-
defined integer powers

iz wF (2, w)", ek (L2, w)", izl (2, 0w)", G20 (LF (2, w))".

Definition 3.14. The coefficients of the expansion i, ., F(z,w)" are called the F-binomial coef-
ficients, so by definition

i wF (2, w)" = Z (n> PRI Vn € Z. (3.14)
F

3
i,jEZ »J

Proposition 3.15. The F-binomial coefficients satisfy the following identities:

<n> =0 ifj<0ori+j<n,
%)k

<7) o <@> :(7) ifn>0,
170 F ,Lv.] F jal F
a ]{;,f F.

(=2 ()

JjHl=s

Example 3.16. For the one-parameter group law (2.2), we have

(i), = G) i)
iii)e, \iJ\i+i-n

In particular, for the additive group law (s = 0), we recover the ordinary binomial coefficients

(l"j)Fa = (?) if i +j =n and (ZTZ)FG = 0 else. For the multiplicative group law, put s = 1.
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3.6 F'-delta distributions
Definition 3.17. The group law F'-delta distribution is

2 op <E> =1, wF(z, Lw)_1 — iy F (2, Lw)_l.
o w 2z

Example 3.18. For the additive group law, we get the classical distribution
_ w . _ . _ n—
() bl e - E

nez
More generally, for the one-parameter formal group law (2.2), we have
w
i ()= T
F\3 (1+ sw) Zw 2
nez
Proposition 3.19.
(a) The F-delta distribution is supported on the diagonal,

w

or (2) F(2) = 0r () ), ¥F € R().

More generally, if f(z,w) € R((z,w)) converges on the diagonal,
w w
o (2) £(z0) = 0 (Z) Flw,w).

(2) We have the F-Jacobi identity,

(3.15)

(3.16)

(3.17)

. _ F(z1,tz . _ F(z1,tz . _ F(z1,tz
Zzl,ézzo 15}7‘ <(12)> - ZZ27§120 16F <(12)> = zzhzozz 15F <(220)> .

20 20
(3) We have
) _ F(z1,tz ) _ F(zg,z
bza1,20%2 '6p <( 22 0)> = 12,2571 'op << ;)1 2)> .

Proof. (a) The identities (3.16) and (3.17) are well-known for the classical delta distribution.

By (2.9) and (3.4), the delta distributions are related by
YN = -1 w
5F<z)_G(z’w) 5Fa<z)'

Therefore, (3.16) and (3.17) follow directly from the classical case.
(b) Formally, the first term of the Jacobi identity is the substitution

. _ F(z1,1z _ w
ZZ1,§220 15F< ( 1 2)) =z 1(5]-7‘ <>

20 20

wi1%i21,£2F(21,L§2)i1'
Expanding the definition of dr and using functoriality of substitution, this gives

F(z1,t22)

. —1
= F Z0, LW -
20 ) 20,W. ( 05 7) ’Q*ﬂgl 129 F(Zl 7L§2)

- iwéoF(gO? Lw)_l ’

. —1
Lz1,2,%0 o <

wE =iz oo F(z1,029)F!

(3.18)

. -1 . 1
—ZZO’(Q@)F(ZO,LZLZQ) 7121’@2’&0)]7(20,%1,22) .
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In the same way,

F(z1,t22)

. -1 1,022 . -1 . -1

2,21 %0 6F < 20 = Zzoa(iwél)F(zo’ LZ1, Z2) - 122,(21&0)F(20’ Lz1; 22) )
F(z1,t20)

. —1 1, 0 . —1 . —1

22175022 6F <22 = ZZ27(§17§0)F(20, Lz, 22) — ZZ1,(§O,§2)F(207 Lz1, 2’2) .

Observe that by (3.3) each term appears twice in the last three equations. Hence the terms
cancel in pairs, which proves the F-Jacobi identity.
(c) Notice that

) _ F(z0, 22
G929 %1 15F <(’)

21

. -1 —1
) = zzl’(go,@)F(zl,Lzo,ng) — 1227(§07§1)F(21, 120, 122)

F(tz0,21,t22)
F(z0,t21,22)

can be multiplied by the holomorphic
Hence

. -1
222750’21 6F <

. 1 . 1
= ZZ17(§0£2)F(20, Lz1,22)" — 122’(50751)F(zo, 121, 22)

3.3) . _ F(z1,tz
(:) _Z21,§0Z2 1(SF < ( ;2 0)> .

which may be exchanged with the expansion.

F(20722) F(Lzojzl,bzz)
2 F(z0,121, 22)

Finally, using (3.16) put z; = F(29, 22) into Plzo.z1za) o) the left to get 1. [

F(zo,t21,22)

By (3.17), we may put z = w in (3.18) and use (2.10) to get
w

or (2)¢(2) =0m, (5)- (3.19)

Observe here that ¢'(z) = F%1(2,0)"! makes sense and (3.19) holds over an arbitrary ring R.
There is a proof of the F-Jacobi identity based on (3.19) and the Jacobi identity for the additive
group law, but we remind the reader that the proof of (2.10) used Lazard’s theorem. We have
given an elementary proof.

3.7 F-residues

Recall that the residue of a formal Laurent series f(z) = Y an2" € R[z%!] is defined as
Res,—o f(z)dz = a_1. We have the identities (see [14, Chapter 13])

Res,—o f(™(2)dz = 0,Vn > 1, Res.—o f/(2)g(2)dz = — Res.—o f(2)g'(2)dz,

Resy—o f(h(w))h (w)dw = Res.—¢ f(2)dz. (3.20)
Here f,g € R[[zil]] are formal Laurent series and h is a (holomorphic) formal power series
with h(0) =0 and h'(0) € R*.

This terminology can be extended to formal group laws F'(z,w) as follows. Recall the in-
variant 1-form fp from (2.4). Then the F-residue is defined as Res!_, f(2)dz = Res.—q f(2)0r.
Assuming the existence of a logarithm,

Resfzo f(2)dz = Resg—o f(x)dz, where f(x) = f((;ﬁfl(x)). (3.21)
From (2.6), we have
Res_ f(1(2))dz = — Resl_, f(2)dz. (3.22)

From (3.19) combined with (3.15) and (3.16), we find

Res!_ 2710 (%) dz = Rest_, 27 16p (%) dw = 1.
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3.8 F-hyperderivatives

Generalizing Hasse’s number-theoretic notion to formal group laws, define the F-hyperderivative
of f € R(2)), SE'f, n > 0, by expanding the substitution

izwf(F(zw) =Y (SFf)(2)w". (3.23)

n=0

Hence SE'£(0) picks out the n-th coefficient of f, and we think of SI'f as a substitute for
()1 f™)(2). One easily shows

(S57f)(2) = f(2), ( ?ﬂ@szf%@da SE 4 9) = ASu(f) + Sulg),

SE(f-9)=>_ SF(H-8f (), (3.24)
i+j=n
%ﬁmzﬂﬂmzzQﬁlﬁm. (3.25)
k=0 ’

For the additive group law, (3.25) implies (Sf ")On =n!- Sfa, which shows the importance of
considering higher hyperderivatives in the presence of torsion. Equation (3.25) follows from the
associativity of F.

Comparing (3.14) and (3.23), we find

Fr my _ m %
5 )_Z<i7j>pz.
i1EL
From this, we see that (3.25) implies
> (0 G) =2 000 =2 ()G
ZEZ< I T i€Z J» 8 k>0 \"8/F N R
for all r,s,m,j € Z.

Theorem 3.20. For alln > 1, we have

Res!_ SE f(2)dz =0, (3.26)

Resf_, SE f(2) ZResZ o[SEf(2) - Sf g(2)]d=. (3.27)

Proof. Summing (3.26) times w™ over n, we see by (3.23) that it suffices to show
Res! i, f(F(z,w))dz = Rest_ f(2)dz

We will apply the substitution rule (3.20) to the power series h(z) = F(z,w)—w with coefficients
in the ring RJw]. This corresponds to viewing w as a fixed constant. Putting dw = 0 in (2.5)
gives pp(F(z,w))F0(z,w) = pp(z). Clearly, h(0) = 0 and A'(0) = F5°(0,w) = pp(w)~! is
a unit, so the hypotheses for (3.20) are satisfied. Applying this and unravelling the definition
gives

Res 0tz wf(F(z,w))dz = Res,=q iz f(F

(
= Res,—0 izuf (F(
= Res,—0 iz (h(2)

w))pr(z)dz
z,w))pr(F(z,w)) F10(z,w)dz
+w)pp(h(z) + w)h (2)dz

2y
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= Resy—0 iy f(v + w)pr(v + w)dv.

Let

9(2) = f(2)pr(2) = Y anz" € R((2)).

neL

It remains to prove that
Resy=0 iywg(v +w)dv = Res,—g g(z)dz,

which is a straight-forward computation

Resy=0 iywg(v + w)dv = Resy—o Z an <Z> V" Fukde = a_y,
n,kEZ

where we have used that (nil) =0 for n # —1 and (Bl) =1.
Finally, combining (3.24) with (3.26) gives (3.27). |

Theorem 3.21. For all € R[[a:oﬂ,mfl,xéd]] such that the substitutions f(x1 — x2,x1,x2),
f(xo, 1,21 — o) converge in the algebraic sense,

Resz,—0 Resgo—0 2 20 f (21 — 2, 21, 22)d2odzy
— Resg,—0 Resy —0 @y 2, f(21 — 22, 21, 22)da1d2

= Resg, —0 Resgo=0 iz, 20 f (20, 1, 21 — 20)daodz. (3.28)
More generally,

Res?, g Rest, g iz 20 f (F (21, 0(22)), 21, 22)dzady
- Resﬁ;zo Resflzo Q29,2 f(F (21, (22)), 21, 22)dz1d 22

= Resflzo Resz)zo Q21 20 f (20, 21, F(21, t(20)))dzod 2. (3.29)

Proof. It suffices to check (3.28) for f = z8x%x§, where

. a —
le,ng(l‘l - Z‘Q,ﬂ?l,l‘Q) = Z(_l)k (k) x(f-i_b kx§+k7

k=0
) a _
ng,xlf(xl — X2,T1, ‘T2> = Z(_l)a+k (k)xl{+kx§+c ka
k>0
. c —
le,xof(x(b T1,T1 — 330) = Z(_l)k (k) x8+kxl{+c k'
k>0

Taking residues, we see that (3.28) reduces to the binomial identity

) -, ()

foralla+b+c+2=0.
It suffices to prove (3.29) for the universal formal group law, where we may assume (2.8).

In this case, we can use (3.21) to reduce (3.29) to (3.28) for the function f(zg,x1,22), where
d(z;) =, i =0,1,2. |
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4 Vertex F-algebras and their Lie algebras

4.1 Axioms

Definition 4.1. A vertex F-algebra over a formal group law F(z,w) € R[z,w] consists of data
(V,1,8,Y) as follows:

e an R-module V of states,
e a vacuum vector 1 € V,

e an R-linear F-shift operator

S(z):V—V[]  Skla=Y 8M(a):", (4.1)

n=0

e an R-linear state-to-field correspondence

VeorV — V(2)), a®b— Y(a,z)b,

Y(a,z)b= Z a(n)(b)z_"_l, amy(b) =0 for n > 0. (4.2)
nes

The following axioms are required:
(1) Vacuum & creation: Y (a,z)1 is holomorphic for all a € V' and

Y(a,z)1|,—0 = a, Y(1,2) =idy. (4.3)

(2) F-translation covariance: for all a,b € V', we have
Y (S(w)(a), 2)b=i,,Y (a, F(z,w))b, S(z)1 =1. (4.4)

In (4.4), we have used the substitution (3.13). Moreover, S(z) o S(w) = S(F(z,w)),
S(0) = idy.

(3) Weak F-associativity: for all a,b,c € V, there exists N > 0 with
F(z,w)NY (Y (a,2)b,w)c = F(z, w)NiZﬂUY(a, F(z,w))Y(b,w)c, (4.5)

using the substitution v — F'(z,w) from (3.11) on the right-hand side.
(4) Skew symmetry:

Y(a,z)b =8(2) oY (b,1(2))a. (4.6)

Putting b = 1 into (4.6) and using (4.3) gives
Y(a,2)1 = S(z)a. (4.7)

Remark 4.2. The axioms are slightly redundant. For example, (4.4) implies (4.5) for b = 1.
On the other hand, we cannot deduce (4.4) from (4.5) unless we know a priori that both sides
of (4.4) are meromorphic in z, w. Hence (4.4) encodes a ‘meromorphicity’ property.

Remark 4.3. For an ordinary vertex algebra, one usually works with the translation operator D,
see [11]. The shift operator then is S(z) = exp(zD).
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Remark 4.4. Huang [6] has given a geometric interpretation of ordinary vertex algebras in
terms of punctured Riemann spheres. For elliptic formal group laws, are vertex F-algebras
analogously interpreted over an elliptic curve?

The author thanks an anonymous referee for pointing out that, in Huang’s geometric inter-
pretation of ordinary vertex algebras, conformal invariance plays a crucial role. In the genus one
setting, an invariant construction requires not only the vertex algebra itself but also its modules
and intertwining operators, whose matrix coefficients need not be meromorphic. Full modular
invariance is presently established only in the Cs-cofinite (rational) case due to Huang [7], and
more recently in certain Ci-cofinite settings in work of Creutzig-McRae—Yang [3]. It therefore
remains unclear whether a theory of vertex F-algebras over an elliptic curve could satisfy such
invariance properties, although a formulation with weaker invariance (topological or birational)
might still be meaningful.

4.2 Meromorphicity

The meromorphicity assumption in (4.2) can be combined with other axioms to prove the mero-
morphicity of various operator products and compositions. These, in turn, imply further non-
trivial axioms. Here is a simple example of this principle.

Proposition 4.5. For all a,b € V in a vertex F-algebra,

izwY (a, F(z,w)) o S(w)b=8(w) oY (a, 2)b. (4.8)
Proof. Putting ¢ = 1 into (4.5) and using (4.7) shows

F(z,w)N(S(w) o Y (a,2)b) = F(z,w)" (i,4Y (a, F(z,w)) o S(w)b) (4.9)

for some N > 0. Since S(w) o Y(a, 2)b € V((z,w)) by (4.1) and (4.2) and Y (a, F(z,w))S(w)b €
V((z,w)) by (4.4) and (4.2), we can embed equation (4.9) into V((2))(w)), where F(z,w) is
invertible. Equation (4.8) follows. [

Here is the fundamental meromorphicity property of vertex F-algebras.

Proposition 4.6. For each a,b,c € V, both sides of (4.5) are a Laurent series pgp (2, w) €
V((z,w)). The formal fraction

Pab c(z w)

fabc(z w) F(Z U))N

€ V((zw)|F(z, w)_l] (4.10)

is independent of N. Under the homomorphisms iy, . and i.., from V((z,w))[F(z,w)™!] into
V((w)((2) and V(w))((2)), respectively, we have

(N zfa bc(z w) ( (a z)b,w)c, (4'11)
iz fape(2,0) =1;4,Y (a, F(z,w))Y (b,w)c. (4.12)
Proof. Using (4.2), we find that

Y (Y (a, 2)b, w)e = Z(a(n)(b))(m)(c)z_"_lw_m_l

mne”

contains only finitely many negative powers of z. Moreover, for a fixed power of z, there are only
finitely many negative powers of w. Hence the left-hand side of (4.5) belongs to V(w))((z)). By
definition of the substitution (3.11), the right-hand side of (4.5) belongs to V((z))(w)). Hence
both sides of (4.5) are equal to a common series p,p (2, w) € V((2,w)) in the intersection. If
we embed p,p.(2,w) into V(w))((2)), we get F(z,w)NY (Y (a,z)b,w)c and the series F(z,w)
is invertible in V((w))((z)), so we may rearrange and get (4.11). Similarly, we may embed
into V((2))((w)) and rearrange to get (4.12). [
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Proposition 4.7 (weak commutativity). For all a,b,c € V in a vertex F-algebra there ex-
ists M > 0 with

F(z,uw)MY (a,2)Y (b,w)e = F(z,cw)MY (b,w)Y (a, 2)c. (4.13)

We can replace F(z,uw)™ by (z —w)™ in (4.13) as these differ by a unit (2.9). Hence our
vertex F-algebras satisfy also the axioms of Li [12].

Proof. Combining skew symmetry with F-translation covariance gives

Y (Y(a, 2)b,w)c =iy, Y (Y (b, 12)a, F(z,w))c.
By (4.11), we can reexpress this identity as

iz fap,c(2, W) = iz fo,0,0(02, F(z,0)) (4.14)
in the ring V((2))(w)). Perform the substitution z — F(v,w) from (3.12) to get

tvw fabe(F (v, iw), w) = tywfoac(F(w, ), v). (4.15)
The same substitution applied to (4.12) leads to

tv,wfabe(F (v, w),w) =Y (a,v)Y (b,w)c (4.16)
and exchanging v <+ w, a <> b gives

twvfoa.c(F(w,w),v) =Y (b,w)Y(a,v)c. (4.17)

Since fp.q.c(F(w,w),v) = w Vpy o (F(w,w),v) by (4.10) and ppq .(u,v) contains only finitely
many negative powers of u, there exists M > 0 such that F(w,w)M f, . .(F(w,w),v) lies
in R((v,w)). From (3.3) we thus have

F(w, w)MZ'U,wfb’a’C(F(w, w),v) = F(w, Lv)Miw,vfbﬂ,c(F(w, w),v),
which, combined with (4.15)—(4.17), implies the result. [

Proposition 4.8 (Jacobi identity). For all a, b in a vertex F-algebra,

F(Zl’wo)) Y (Y(a,z20)b, z2)
z2

F(ZI’LZ2)> Y(a,z1)Y (b, z2)
20

F(z1,t29)
20

. —1
L21,20%9 5F<
, —1
= 21,2270 5F<

- iZQ,zlzaléF ( > Y(b, ZQ)Y(CL, Z]_).

Proof. Let ¢ € V. In the notation of (4.10), set

Pa,b,c\ 20, 22
¢a,b,c(20a 21, 22) = acZ(N7)‘
1

Thus ¢q p.c(20, 21, 22) = fabe(20,22) if F(20,22) = z1. We have

~15 <F(21, 122)

Yoy 202
1,2270 20

> Gap.c(20, 21, 22)
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3.16 F(z1,tz
( = %z1,Z2ZO 15F <(:02)> fa,b,c(F(Zla LZQ)a 22)
4.16 F(z1,t2
L el ((;)2)> Y (a,21)Y (b, 22). (4.18)
In the same way, (4.17) implies
. _ F(z1,tz
129,212 15F <(12)> ¢a,b,c<207 21, 22)
20
F
R e R (]
0
The substitutions z — zo and w¥l — i, . F(21,120)*! in (4.11) give
izl,zofa,b,c(ZOa F(Zly LZO)) — izl,ZOY(Y(aa ZO)ba F(Zly LZO))C'
Therefore,
. _ F(z1,tz
iz1,20% OF <( : 0)> Pab,c(20, 21, 22)
22
3.16 F(z1,tz
( — %ZLZOZQ 1(SF <(220)> fa,b,c(zﬁa F(Zla LZO))
F
=iy 202 OF (@) Y (Y (a, 20)b, F(z1, 120))c. (4.19)
Now put (4.18)—(4.19) into the Jacobi identity of Proposition 3.19. |
4.3 Construction of Lie bracket
Theorem 4.9. The formula
[a,b] = Res!_, Y (a, 2)bdz (4.20)
defines a Lie bracket on the quotient V// 3~ -, SMW).
Proof. We first show that (4.20) descends to the quotient by proving
P (m) 1 dm P
Resi_o Y (8" (a), z)bdz = 1 dum Res,_o Y (S(w)(a), z)bdz =0 (4.21)
w=0
for m > 1. This will also prove
ReSZ:[) <W>dz € ;S
since by (4.4), (4.8) we have
¥(a,2) 0 S(w) = S(w) 0 Y(a, F(z,(w))) = S(w) 0 ¥ (S((w))a 2)
= Z S o Y(S(f)(a), z)ka(w)Z,
k,£>0
which expresses Y (a, 2)S) (b) for m > 1 as a sum of terms with k& > 1 or with £ > 1. The

terms with k& > 1 belong to >~ -, S (V), while the terms with £ > 1 are covered by (4.21).
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We show (4.21) by applying Theorem 3.20. Since

Res!_, Y (S(w)a, 2)bdz = Res!_, Y (a, F(z,w))bdz = Z(Resﬁ;o S,Y (a,z)b)w"dz

n=0

= Res!_, Y (a, 2)bdz,

the series is constant in w, as required.
Clearly the bracket is bilinear. We prove the Jacobi identity. Using the notation of Proposi-
tion 4.6, set fupc(z,v,w) = p“b;ilsz’w) Then

iv,w[fa,b,c(z, v, w) |z—>F(U,L(w))] = Y((I, U)Y(bv w)C>
iw,v[fa,b,c(z7 v, w) |z—>F(v,L(w))] = Y(b7 w)Y(a’ U)C.
On the other hand, putting w = F(v,¢(z)) into (4.14) implies the first step in

. . pb,a,c(b(z)u U) (4.11)
Zv,z[fa,b,c(za U, w)|w—>F(y,L(z))] = Zv,zW = Y(Y(ba LZ)(I, U)C'

Putting these calculations into the formula (3.29) for iterated F-residues with (2, z1,22) —
(z,v,w) and using (3.22) yields a version of the Jacobi identity

[a7 [b7 CH - [b7 [a7 C]] = _[[b’ a]v C]'

Assuming a trivial center (meaning that [d,c] = 0 for all ¢ implies d = 0), this Jacobi identity
implies also the skew symmetry of the Lie bracket. In general, (4.1) and (4.6) imply

Y(a,2)b+Y SMV)=Y(buz)a+y SM(V)

n=1 n=1
and then the skew symmetry follows from (3.22). [

Remark 4.10. For ordinary homology, the moduli space of the quiver given by the Dynkin
diagram of a Lie algebra recovers the original Lie algebra. What happens in the case of elliptic
homology?

4.4 Example: Heisenberg vertex F-algebra

The simplest new examples are generated by a single vertex operator. These are the Heisenberg
vertex F-algebras. Define a central extension

0— R— Hr — R(t) — 0
of the commutative Lie algebra R((t)) by the cocycle
c(f,9) = Resi_oS{ (f) - g = Res.—o f'g.
Notice (3.24) here. Set b, = t". Then
[br, b ] = 10y, —m, (4.22)

so we have obtained the ordinary Heisenberg Lie algebra except for having replaced C by the
ring R. Define the space of states V' = R[b_1,b_a,...]. Write 1 € V for the constant series 1,
the vacuum. Define the vertex operator

b(z) = Z bpz "L

nel
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where
bp: V—1V, b, = 0

These operators satisfy the commutation rules (4.22). We seek an F-translation operator

S(z) = ZS(")Z", S v —v,
n=0

satisfying S(z)1 = 1 and [S(z),b(w)] = b(F(z,w)). These conditions actually determine S(z)
completely. Written in components,

(S ") by | = coefficient of w™ in (S}n) b) (w).
This can be applied inductively to a state bj, - - - bj, until we reach S (") = 0.
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