Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 22 (2026), 003, 11 pages      arXiv:2507.02831      https://doi.org/10.3842/SIGMA.2026.003

Trace Formulas for Deformed W-Algebras

Fabrizio Nieri ab
a) Dipartimento di Matematica ''Giuseppe Peano'', Università di Torino, Via Carlo Alberto 10, 10123 Torino, Italy
b) INFN, Sezione di Torino, Via Pietro Giuria 1, 10125 Torino, Italy

Received September 08, 2025, in final form January 04, 2026; Published online January 13, 2026

Abstract
We investigate trace formulas in $\varepsilon$-deformed W-algebras, highlighting a novel connection to the modular double of $\mathfrak{q}$-deformed W-algebras. In particular, we show that torus correlators in the additive (Yangian) setting reproduce sphere correlators in the trigonometric setup, possibly with the inclusion of a non-perturbative completion. From a dual perspective, this mechanism implements a gauge theoretic 2d$\to$3d uplift, where a circle direction in the world-sheet transmutes to a compact space-time direction in a non-trivial manner. We further discuss a unified picture of deformed W-algebras driven by trace formulas, suggesting a deeper algebraic layer related to the massive and massless form-factor approach to integrable QFT and 2d CFT.

Key words: deformed W-algebras; bosonization; trace formulas; supersymmetry; integrable form-factors.

pdf (460 kb)   tex (23 kb)  

References

  1. Aganagic M., Haouzi N., Kozçaz C., Shakirov S., Gauge/Liouville triality, Comm. Math. Phys. 405 (2024), 285, 28 pages, arXiv:1309.1687.
  2. Aganagic M., Haouzi N., Shakirov S., $A_n$-triality, arXiv:1403.3657.
  3. Alday L.F., Gaiotto D., Tachikawa Y., Liouville correlation functions from four-dimensional gauge theories, Lett. Math. Phys. 91 (2010), 167-197, arXiv:0906.3219.
  4. Awata H., Feigin B., Shiraishi J., Quantum algebraic approach to refined topological vertex, J. High Energy Phys. 2012 (2012), no. 3, 041, 34 pages, arXiv:1112.6074.
  5. Beem C., Dimofte T., Pasquetti S., Holomorphic blocks in three dimensions, J. High Energy Phys. 2014 (2014), no. 12, 177, 118 pages, arXiv:1211.1986.
  6. Bielli D., Gautam V., Torrielli A., A study of integrable form factors in massless relativistic ${\rm AdS}_2$, J. High Energy Phys. 2023 (2023), no. 6, 005, 28 pages, arXiv:2302.08491.
  7. Cheng M.C.N., Chun S., Feigin B., Ferrari F., Gukov S., Harrison S.M., Passaro D., 3-manifolds and VOA characters, Comm. Math. Phys. 405 (2024), 44, 76 pages, arXiv:2201.04640.
  8. Cheng M.C.N., Chun S., Ferrari F., Gukov S., Harrison S.M., 3d modularity, J. High Energy Phys. 2019 (2019), no. 10, 010, 93 pages, arXiv:1809.10148.
  9. Coman I., Pomoni E., Teschner J., Trinion conformal blocks from topological strings, J. High Energy Phys. 2020 (2020), no. 9, 078, 57 pages, arXiv:1906.06351.
  10. Delfino G., Mussardo G., Simonetti P., Correlation functions along a massless flow, Phys. Rev. D 51 (1995), 6620-6624, arXiv:hep-th/9410117.
  11. Feigin B., Hashizume K., Hoshino A., Shiraishi J., Yanagida S., A commutative algebra on degenerate $\mathbb{CP}^1$ and Macdonald polynomials, J. Math. Phys. 50 (2009), 095215, 42 pages, arXiv:0904.2291.
  12. Fendley P., Saleur H., Massless integrable quantum field theories and massless scattering in $1+1$ dimensions, in High Energy Physics and Cosmology (Trieste, 1993), ICTP Ser. Theoret. Phys., Vol. 10, World Scientific Publishing, River Edge, NJ, 1994, 301-332, arXiv:hep-th/9310058.
  13. Friedman E., Ruijsenaars S., Shintani-Barnes zeta and gamma functions, Adv. Math. 187 (2004), 362-395.
  14. Gaiotto D., $N=2$ dualities, J. High Energy Phys. 2012 (2012), no. 8, 034, 57 pages, arXiv:0904.2715.
  15. Hatsuda Y., Mariño M., Moriyama S., Okuyama K., Non-perturbative effects and the refined topological string, J. High Energy Phys. 2014 (2014), no. 9, 168, 41 pages, arXiv:1306.1734.
  16. Hollowood T., Iqbal A., Vafa C., Matrix models, geometric engineering and elliptic genera, J. High Energy Phys. 2008 (2008), no. 3, 069, 81 pages, arXiv:hep-th/0310272.
  17. Isachenkov M., Mitev V., Pomoni E., Toda 3-point functions from topological strings II, J. High Energy Phys. 2016 (2016), no. 8, 066, 48 pages, arXiv:1412.3395.
  18. Jeong S., Lee N., Bispectral duality and separation of variables from surface defect transition, J. High Energy Phys. 2024 (2024), no. 12, 142, 71 pages, arXiv:2402.13889.
  19. Jimbo M., Konno H., Miwa T., Massless $XXZ$ model and degeneration of the elliptic algebra $\mathcal{A}_{q,p}(\widehat{\rm sl}_2)$, in Deformation Theory and Symplectic Geometry (Ascona, 1996), Math. Phys. Stud., Vol. 20, Kluwer, Dordrecht, 1997, 117-138, arXiv:hep-th/9610079.
  20. Kimura T., Pestun V., Fractional quiver W-algebras, Lett. Math. Phys. 108 (2018), 2425-2451, arXiv:1705.04410.
  21. Kimura T., Pestun V., Quiver elliptic W-algebras, Lett. Math. Phys. 108 (2018), 1383-1405, arXiv:1608.04651.
  22. Kimura T., Pestun V., Quiver W-algebras, Lett. Math. Phys. 108 (2018), 1351-1381, arXiv:1512.08533.
  23. Lockhart G., Vafa C., Superconformal partition functions and non-perturbative topological strings, J. High Energy Phys. 2018 (2018), no. 10, 051, 42 pages, arXiv:1210.5909.
  24. Lodin R., Nieri F., Zabzine M., Elliptic modular double and 4d partition functions, J. Phys. A 51 (2018), 045402, 31 pages, arXiv:1703.04614.
  25. Lukyanov S., Free field representation for massive integrable models, Comm. Math. Phys. 167 (1995), 183-226, arXiv:hep-th/9307196.
  26. Lukyanov S., A note on the deformed Virasoro algebra, Phys. Lett. B 367 (1996), 121-125, arXiv:hep-th/9509037.
  27. Mironov A., Morozov A., Runov B., Zenkevich Y., Zotov A., Spectral duality between Heisenberg chain and Gaudin model, Lett. Math. Phys. 103 (2013), 299-329, arXiv:1206.6349.
  28. Mitev V., Pomoni E., Toda 3-point functions from topological strings, J. High Energy Phys. 2015 (2015), no. 6, 049, 47 pages, arXiv:1409.6313.
  29. Narukawa A., The modular properties and the integral representations of the multiple elliptic gamma functions, Adv. Math. 189 (2004), 247-267, arXiv:math.QA/0306164.
  30. Nedelin A., Nieri F., Zabzine M., $q$-Virasoro modular double and 3d partition functions, Comm. Math. Phys. 353 (2017), 1059-1102, arXiv:1605.07029.
  31. Nekrasov N.A., BPS/CFT correspondence: non-perturbative Dyson-Schwinger equations and qq-characters, J. High Energy Phys. 2016 (2016), no. 3, 181, 70 pages, arXiv:1512.05388.
  32. Nekrasov N.A., Shatashvili S.L., Supersymmetric vacua and Bethe ansatz, Nuclear Phys. B Proc. Suppl. 192 (2009), 91-112, arXiv:0901.4744.
  33. Nieri F., An elliptic Virasoro symmetry in 6d, Lett. Math. Phys. 107 (2017), 2147-2187, arXiv:1511.00574.
  34. Nieri F., Pasquetti S., Passerini F., 3d and 5d gauge theory partition functions as $q$-deformed CFT correlators, Lett. Math. Phys. 105 (2015), 109-148, arXiv:1303.2626.
  35. Nieri F., Zenkevich Y., Quiver ${\rm W}_{\epsilon_1,\epsilon_2}$ algebras of 4D $\mathcal{N}=2$ gauge theories, J. Phys. A 53 (2020), 275401, 43 pages, arXiv:1912.09969.
  36. Pasquetti S., Factorisation of $\mathcal{N}=2$ theories on the squashed 3-sphere, J. High Energy Phys. 2012 (2012), no. 4, 120, 16 pages, arXiv:1111.6905.
  37. Procházka T., $\mathcal{W}$-symmetry, topological vertex and affine Yangian, J. High Energy Phys. 2016 (2016), no. 10, 077, 72 pages, arXiv:1512.07178.
  38. Smirnov F.A., Form factors in completely integrable models of quantum field theory, Adv. Ser. Math. Phys., Vol. 14, World Scientific Publishing, River Edge, NJ, 1992.
  39. Torrielli A., A study of integrable form factors in massless relativistic ${\rm AdS}_3$, J. Phys. A 55 (2022), 175401, 54 pages, arXiv:2106.06874.
  40. Truax D.R., Baker-Campbell-Hausdorff relations and unitarity of ${\rm SU}(2)$ and ${\rm SU}(1,1)$ squeeze operators, Phys. Rev. D 31 (1985), 1988-1991.
  41. Wyllard N., $A_{N-1}$ conformal Toda field theory correlation functions from conformal $\mathcal{N}=2$ ${\rm SU}(N)$ quiver gauge theories, J. High Energy Phys. 2009 (2009), no. 11, 002, 22 pages, arXiv:0907.2189.
  42. Zamolodchikov A.B., Zamolodchikov A.B., Massless factorized scattering and sigma models with topological terms, Nuclear Phys. B 379 (1992), 602-623.

Previous article  Next article  Contents of Volume 22 (2026)