|
SIGMA 21 (2025), 109, 8 pages arXiv:2406.18428
https://doi.org/10.3842/SIGMA.2025.109
Small Volume Bodies of Constant Width with Tetrahedral Symmetries
Andrii Arman a, Andriy Bondarenko b, Andriy Prymak a and Danylo Radchenko c
a) Department of Mathematics, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
b) Department of Mathematical Sciences, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
c) Université de Lille, CNRS, Laboratoire Paul Painlevé, F-59655 Villeneuve d'Ascq, France
Received June 04, 2025, in final form December 06, 2025; Published online December 21, 2025
Abstract
For every $n\ge 2$, we construct a body $U_n$ of constant width $2$ in $\mathbb{E}^n$ with small volume and symmetries of a regular $n$-simplex. $U_2$ is the Reuleaux triangle. To the best of our knowledge, $U_3$ was not previously constructed, and its volume is smaller than the volume of other three-dimensional bodies of constant width with tetrahedral symmetries. While the volume of $U_3$ is slightly larger than the volume of Meissner's bodies of width $2$, it exceeds the latter by less than $0.137\%$. For all large $n$, the volume of $U_n$ is smaller than the volume of the ball of radius $0.891$.
Key words: bodies of constant width; tetrahedral symmetry; Meissner's bodies.
pdf (636 kb)
tex (653 kb)
References
- Anciaux H., Guilfoyle B., On the three-dimensional Blaschke-Lebesgue problem, Proc. Amer. Math. Soc. 139 (2011), 1831-1839, arXiv:0906.3217.
- Arelio I., Montejano L., Oliveros D., Peabodies of constant width, Beitr. Algebra Geom. 64 (2023), 367-385, arXiv:2107.05769.
- Arman A., Bondarenko A., Nazarov F., Prymak A., Radchenko D., Small volume bodies of constant width, Int. Math. Res. Not. 2025 (2025), rnaf020, 7 pages, arXiv:2405.18501.
- Blaschke W., Konvexe Bereiche gegebener konstanter Breite und kleinsten Inhalts, Math. Ann. 76 (1915), 504-513.
- Bonnesen T., Fenchel W., Theorie der konvexen Körper, Springer, Berlin, 1974.
- Chakerian G.D., Groemer H., Convex bodies of constant width, in Convexity and its Applications, Birkhäuser, Basel, 1983, 49-96.
- Croft H.T., Falconer K.J., Guy R.K., Unsolved problems in geometry, Probl. Books in Math., Springer, New York, 1994.
- Gruber P.M., Schneider R., Problems in geometric convexity, in Contributions to Geometry, Birkhäuser, Basel, Mass., 1979, 255-278.
- Horváth A.G., On convex bodies that are characterizable by volume function. ''Old and recent problems for a new generation'': a survey, Arnold Math. J. 6 (2020), 1-20, arXiv:1908.03196.
- Kalai G., Some old and new problems in combinatorial geometry I: around Borsuk's problem, in Surveys in Combinatorics 2015, London Math. Soc. Lecture Note Ser., Vol. 424, Cambridge University Press, Cambridge, 2015, 147-174, arXiv:1505.04952.
- Kawohl B., Weber C., Meissner's mysterious bodies, available at https://www.swisseduc.ch/mathematik/geometrie/gleichdick/docs/meissner_mysterious_bodies.pdf.
- Kawohl B., Weber C., Meissner's mysterious bodies, Math. Intelligencer 33 (2011), 94-101.
- Lachand-Robert T., Oudet É., Bodies of constant width in arbitrary dimension, Math. Nachr. 280 (2007), 740-750.
- Lebesgue H., Sur le problème des aires, Bull. Soc. Math. France 31 (1903), 197-203.
- Martini H., Montejano L., Oliveros D., Bodies of constant width. An introduction to convex geometry with applications, Birkhäuser, Cham, 2019.
- Meissner E., Schilling F., Drei gipsmodelle von flachen konstanter breite, Z. Math. Phys. 60 (1912), 92-92.
- Roberts P., Spheroform with tetrahedral symmetry, available at https://www.xtalgrafix.com/Spheroform2.htm.
- Schneider R., Convex bodies: the Brunn-Minkowski theory, Encyclopedia Math. Appl., Vol. 151, Cambridge University Press, Cambridge, 2014.
- Schramm O., On the volume of sets having constant width, Israel J. Math. 63 (1988), 178-182.
|
|