Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 21 (2025), 109, 8 pages      arXiv:2406.18428      https://doi.org/10.3842/SIGMA.2025.109

Small Volume Bodies of Constant Width with Tetrahedral Symmetries

Andrii Arman a, Andriy Bondarenko b, Andriy Prymak a and Danylo Radchenko c
a) Department of Mathematics, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
b) Department of Mathematical Sciences, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
c) Université de Lille, CNRS, Laboratoire Paul Painlevé, F-59655 Villeneuve d'Ascq, France

Received June 04, 2025, in final form December 06, 2025; Published online December 21, 2025

Abstract
For every $n\ge 2$, we construct a body $U_n$ of constant width $2$ in $\mathbb{E}^n$ with small volume and symmetries of a regular $n$-simplex. $U_2$ is the Reuleaux triangle. To the best of our knowledge, $U_3$ was not previously constructed, and its volume is smaller than the volume of other three-dimensional bodies of constant width with tetrahedral symmetries. While the volume of $U_3$ is slightly larger than the volume of Meissner's bodies of width $2$, it exceeds the latter by less than $0.137\%$. For all large $n$, the volume of $U_n$ is smaller than the volume of the ball of radius $0.891$.

Key words: bodies of constant width; tetrahedral symmetry; Meissner's bodies.

pdf (636 kb)   tex (653 kb)  

References

  1. Anciaux H., Guilfoyle B., On the three-dimensional Blaschke-Lebesgue problem, Proc. Amer. Math. Soc. 139 (2011), 1831-1839, arXiv:0906.3217.
  2. Arelio I., Montejano L., Oliveros D., Peabodies of constant width, Beitr. Algebra Geom. 64 (2023), 367-385, arXiv:2107.05769.
  3. Arman A., Bondarenko A., Nazarov F., Prymak A., Radchenko D., Small volume bodies of constant width, Int. Math. Res. Not. 2025 (2025), rnaf020, 7 pages, arXiv:2405.18501.
  4. Blaschke W., Konvexe Bereiche gegebener konstanter Breite und kleinsten Inhalts, Math. Ann. 76 (1915), 504-513.
  5. Bonnesen T., Fenchel W., Theorie der konvexen Körper, Springer, Berlin, 1974.
  6. Chakerian G.D., Groemer H., Convex bodies of constant width, in Convexity and its Applications, Birkhäuser, Basel, 1983, 49-96.
  7. Croft H.T., Falconer K.J., Guy R.K., Unsolved problems in geometry, Probl. Books in Math., Springer, New York, 1994.
  8. Gruber P.M., Schneider R., Problems in geometric convexity, in Contributions to Geometry, Birkhäuser, Basel, Mass., 1979, 255-278.
  9. Horváth A.G., On convex bodies that are characterizable by volume function. ''Old and recent problems for a new generation'': a survey, Arnold Math. J. 6 (2020), 1-20, arXiv:1908.03196.
  10. Kalai G., Some old and new problems in combinatorial geometry I: around Borsuk's problem, in Surveys in Combinatorics 2015, London Math. Soc. Lecture Note Ser., Vol. 424, Cambridge University Press, Cambridge, 2015, 147-174, arXiv:1505.04952.
  11. Kawohl B., Weber C., Meissner's mysterious bodies, available at https://www.swisseduc.ch/mathematik/geometrie/gleichdick/docs/meissner_mysterious_bodies.pdf.
  12. Kawohl B., Weber C., Meissner's mysterious bodies, Math. Intelligencer 33 (2011), 94-101.
  13. Lachand-Robert T., Oudet É., Bodies of constant width in arbitrary dimension, Math. Nachr. 280 (2007), 740-750.
  14. Lebesgue H., Sur le problème des aires, Bull. Soc. Math. France 31 (1903), 197-203.
  15. Martini H., Montejano L., Oliveros D., Bodies of constant width. An introduction to convex geometry with applications, Birkhäuser, Cham, 2019.
  16. Meissner E., Schilling F., Drei gipsmodelle von flachen konstanter breite, Z. Math. Phys. 60 (1912), 92-92.
  17. Roberts P., Spheroform with tetrahedral symmetry, available at https://www.xtalgrafix.com/Spheroform2.htm.
  18. Schneider R., Convex bodies: the Brunn-Minkowski theory, Encyclopedia Math. Appl., Vol. 151, Cambridge University Press, Cambridge, 2014.
  19. Schramm O., On the volume of sets having constant width, Israel J. Math. 63 (1988), 178-182.

Previous article  Next article  Contents of Volume 21 (2025)