|
SIGMA 21 (2025), 108, 33 pages arXiv:2502.00254
https://doi.org/10.3842/SIGMA.2025.108
Even Hypergeometric Polynomials and Finite Free Commutators
Jacob Campbell a, Rafael Morales b and Daniel Perales c
a) Department of Mathematics, University of Virginia, VA, USA
b) Department of Mathematics, Baylor University, TX, USA
c) Department of Mathematics, University of Notre Dame, IN, USA
Received April 15, 2025, in final form December 06, 2025; Published online December 21, 2025
Abstract
We study in detail the class of even polynomials and their behavior with respect to finite free convolutions. To this end, we use some specific hypergeometric polynomials and a variation of the rectangular finite free convolution to understand even real-rooted polynomials in terms of positive-rooted polynomials. Then, we study some classes of even polynomials that are of interest in finite free probability, such as even hypergeometric polynomials, symmetrizations, and finite free commutators. Specifically, we provide many new examples of these objects, involving classical families of special polynomials (such as Laguerre, Hermite, and Jacobi). Finally, we relate the limiting root distributions of sequences of even polynomials with the corresponding symmetric measures that arise in free probability.
Key words: finite free probability; free commutator; genralized hypergeometric series; orthogonal polynomials.
pdf (647 kb)
tex (39 kb)
References
- Arizmendi O., Fujie K., Perales D., Ueda Y., $S$-transform in finite free probability, arXiv:2408.09337.
- Arizmendi O., Garza-Vargas J., Perales D., Finite free cumulants: multiplicative convolutions, genus expansion and infinitesimal distributions, Trans. Amer. Math. Soc. 376 (2023), 4383-4420, arXiv:2108.08489.
- Arizmendi O., Hasebe T., Sakuma N., On the law of free subordinators, ALEA Lat. Am. J. Probab. Math. Stat. 10 (2013), 271-291, arXiv:1201.0311.
- Arizmendi O., Perales D., Cumulants for finite free convolution, J. Combin. Theory Ser. A 155 (2018), 244-266, arXiv:1611.06598.
- Arizmendi O., Pérez-Abreu V., The $S$-transform of symmetric probability measures with unbounded supports, Proc. Amer. Math. Soc. 137 (2009), 3057-3066.
- Benaych-Georges F., Rectangular random matrices, related convolution, Probab. Theory Related Fields 144 (2009), 471-515, arXiv:math.OA/0507336.
- Billingsley P., Convergence of probability measures, 2nd ed., Wiley Ser. Probab. Statist. Appl. Probab. Statist., John Wiley & Sons, New York, 1999.
- Campbell A., Free infinite divisibility, fractional convolution powers, and Appell polynomials, arXiv:2412.20488.
- Campbell A., O'Rourke S., Renfrew D., Universality for roots of derivatives of entire functions via finite free probability, arXiv:2410.06403.
- Campbell J., Commutators in finite free probability I, arXiv:2209.00523.
- Driver K., Jordaan K., Zeros of ${}_3F_2\bigl(\begin{smallmatrix} -n,b,c\\ d,e\end{smallmatrix};z\bigr)$ polynomials, Numer. Algorithms 30 (2002), 323-333.
- Gribinski A., Rectangular finite free probability theory, Online talk at UC Berkeley Probabilistic Operator Algebra Seminar, April 24, 2023.
- Gribinski A., Marcus A.W., A rectangular additive convolution for polynomials, Comb. Theory 2 (2022), 16, 42 pages, arXiv:1904.11552.
- Grinshpan A.Z., Generalized hypergeometric functions: product identities and weighted norm inequalities, Ramanujan J. 31 (2013), 53-66.
- Hinz M., Młotkowski W., Multiplicative free square of the free Poisson measure and examples of free symmetrization, Colloq. Math. 119 (2010), 127-136.
- Koekoek R., Lesky P.A., Swarttouw R.F., Hypergeometric orthogonal polynomials and their $q$-analogues, Springer Monogr. Math., Springer, Berlin, 2010.
- Kornyik M., Michaletzky G., Wigner matrices, the moments of roots of Hermite polynomials and the semicircle law, J. Approx. Theory 211 (2016), 29-41, arXiv:1512.03724.
- Marcus A.W., Polynomial convolutions and (finite) free probability, arXiv:2108.07054.
- Marcus A.W., Spielman D.A., Srivastava N., Finite free convolutions of polynomials, Probab. Theory Related Fields 182 (2022), 807-848, arXiv:1504.00350.
- Marden M., Geometry of polynomials, 2nd ed., Math. Surveys, American Mathematical Society, Providence, RI, 1966.
- Martínez-Finkelshtein A., Morales R., Perales D., Zeros of generalized hypergeometric polynomials via finite free convolution: applications to multiple orthogonality, Constr. Approx., to appear, arXiv:2404.11479.
- Martínez-Finkelshtein A., Morales R., Perales D., Real roots of hypergeometric polynomials via finite free convolution, Int. Math. Res. Not. 2024 (2024), 11642-11687, arXiv:2309.10970.
- Mingo J.A., Speicher R., Free probability and random matrices, Fields Inst. Monogr., Vol. 35, Springer, New York, 2017.
- Młotkowski W., Sakuma N., Symmetrization of probability measures, pushforward of order 2 and the Boolean convolution, in Noncommutative Harmonic Analysis with Applications to Probability III, Banach Center Publ., Vol. 96, Institute of Mathematics of the Polish Academy of Sciences, Warsaw, 2012, 271-276.
- Nica A., Speicher R., Commutators of free random variables, Duke Math. J. 92 (1998), 553-592, arXiv:funct-an/9612001.
- Nica A., Speicher R., Lectures on the combinatorics of free probability, London Math. Soc. Lecture Note Ser., Vol. 335, Cambridge University Press, Cambridge, 2006.
- Olver F.W.J., Lozier D.W., Boisvert R.F., Clark C.W. (Editors), NIST handbook of mathematical functions, Cambridge University Press, Cambridge, 2010.
- Pérez-Abreu V., Sakuma N., Free infinite divisibility of free multiplicative mixtures of the Wigner distribution, J. Theoret. Probab. 25 (2012), 100-121, arXiv:0910.1199.
- Suffridge T.J., Starlike functions as limits of polynomials, in Advances in Complex Function Theory, Lecture Notes in Math., Vol. 505, Springer, Berlin, 1976, 164-203.
- Szegö G., Bemerkungen zu einem Satz von J.H. Grace über die Wurzeln algebraischer Gleichungen, Math. Z. 13 (1922), 28-55.
- Voiculescu D.V., Dykema K.J., Nica A., Free random variables, CRM Monogr. Ser., Vol. 1, American Mathematical Society, Providence, RI, 1992.
- Walsh J.L., On the location of the roots of certain types of polynomials, Trans. Amer. Math. Soc. 24 (1922), 163-180.
|
|