|
SIGMA 21 (2025), 103, 13 pages arXiv:2504.06197
https://doi.org/10.3842/SIGMA.2025.103
Orthogonal Polynomials with Complex Densities and Quantum Minimal Surfaces
Giovanni Felder a and Jens Hoppe b
a) Department of Mathematics, ETH Zurich, 8092 Zurich, Switzerland
b) Technische Universität Braunschweig, Germany
Received September 01, 2025, in final form November 26, 2025; Published online December 07, 2025
Abstract
We show that the discrete Painlevé-type equations arising from quantum minimal surfaces are equations for recurrence coefficients of orthogonal polynomials for indefinite hermitian products. As a consequence, we obtain an explicit formula for the initial conditions leading to positive solutions.
Key words: orthogonal polynomials; quantum minimal surfaces; random matrices; Painlevé equations.
pdf (380 kb)
tex (19 kb)
References
- Aptekarev A.I., Novokshenov V.Yu., Asymptotics of solutions of the discrete Painlevé I equation, Math. Notes 116 (2024), 1170-1182.
- Arnlind J., Choe J., Hoppe J., Noncommutative minimal surfaces, Lett. Math. Phys. 106 (2016), 1109-1129, arXiv:1301.0757.
- Arnlind J., Hoppe J., Huisken G., Multi-linear formulation of differential geometry and matrix regularizations, J. Differential Geom. 91 (2012), 1-39, arXiv:1009.4779.
- Arnlind J., Hoppe J., Kontsevich M., Quantum minimal surfaces, arXiv:1903.10792.
- Bleher P.M., Kuijlaars A.B.J., Orthogonal polynomials in the normal matrix model with a cubic potential, Adv. Math. 230 (2012), 1272-1321, arXiv:1106.6168.
- Clarkson P.A., Dzhamay A.V., Hone A.N.W., Mitchell B., Special solutions of a discrete Painlevé equation for quantum minimal surfaces, Theoret. and Math. Phys. 224 (2025), 1359-1397, arXiv:2503.14436.
- Connes A., Dubois-Violette M., Noncommutative finite-dimensional manifolds. I. Spherical manifolds and related examples, Comm. Math. Phys. 230 (2002), 539-579, arXiv:math.QA/0107070.
- Cornalba L., Taylor IV W., Holomorphic curves from matrices, Nuclear Phys. B 536 (1999), 513-552, arXiv:hep-th/9807060.
- Eisenhart L.P., Minimal surfaces in Euclidean four-space, Amer. J. Math. 34 (1912), 215-236.
- Elbau P., Random normal matrices and polynomial curves, arXiv:0707.0425.
- Elbau P., Felder G., Density of eigenvalues of random normal matrices, Comm. Math. Phys. 259 (2005), 433-450, arXiv:math.QA/0406604.
- Herscovich E., Solotar A., Representations of Yang-Mills algebras, Ann. of Math. 173 (2011), 1043-1080, arXiv:0807.3974.
- Hoppe J., Quantum theory of a massless relativistic surface, Ph.D. Thesis, MIT, 1982, http://hdl.handle.net/1721.1/15717.
- Hoppe J., On $M$-algebras, the quantisation of Nambu-mechanics, and volume preserving diffeomorphisms, Helv. Phys. Acta 70 (1997), 302-317, arXiv:hep-th/9602020.
- Hoppe J., Another view on the shape equation for strings, arXiv:2009.05013.
- Hoppe J., Quantum states from minimal surfaces, arXiv:2502.18422.
- Ishibashi N., Kawai H., Kitazawa Y., Tsuchiya A., A large-$N$ reduced model as superstring, Nuclear Phys. B 498 (1997), 467-491, arXiv:hep-th/9612115.
- Its A., Discrete Painlevé equations and orthogonal polynomials, in Symmetries and Integrability of Difference Equations, London Math. Soc. Lecture Note Ser., Vol. 381, Cambridge University Press, Cambridge, 2011, 139-159.
- Kommerell K., Riemannsche Flächen im ebenen Raum von vier Dimensionen, Math. Ann. 60 (1905), 548-596.
- Olver F.W.J., Olde Daalhuis A.B., Lozier D.W., Schneider B.I., Boisvert R.F., Clark C.W., Miller B.R., Saunders B.V., Cohl H.S., McClain M.A. (Editors), NIST digital library of mathematical functions, Release 1.2.4 of 2025-03-15, https://dlmf.nist.gov/.
- Riser R., Universality in gaussian random normal matrices, arXiv:1312.0068.
- Teodorescu R., Bettelheim E., Agam O., Zabrodin A., Wiegmann P., Normal random matrix ensemble as a growth problem, Nuclear Phys. B 704 (2005), 407-444, arXiv:hep-th/0401165.
- Tokihiro T., Grammaticos B., Ramani A., From the continuous $\rm P_V$ to discrete Painlevé equations, J. Phys. A 35 (2002), 5943-5950.
- Wiegmann P.B., Zabrodin A., Conformal maps and integrable hierarchies, Comm. Math. Phys. 213 (2000), 523-538.
|
|