Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 21 (2025), 100, 30 pages      arXiv:2506.02246      https://doi.org/10.3842/SIGMA.2025.100

Higher Symmetries in Twisted Eleven-Dimensional Supergravity

Fabian Hahner a, Natalie M. Paquette a and Surya Raghavendran bc
a) Department of Physics, University of Washington, 3910 15th Ave NE, Seattle, WA 98195, USA
b) Department of Mathematics, Yale University, P.O. Box 208283, New Haven, CT 06520, USA
c) School of Mathematics, University of Edinburgh, Peter Guthrie Tait Road, King's Buildings, Edinburgh, EH9 3FD, UK

Received July 09, 2025, in final form November 25, 2025; Published online December 03, 2025

Abstract
In supersymmetric theories, protected quantities can be reorganized into holomorphic-topological theories by twisting. Recently, it was observed by Jonsson, Kim and Young that residual super-Poincaré symmetries in certain twisted theories can receive higher corrections, turning them into $L_\infty$ algebras with non-strict actions on the twisted fields. In this note, we show that the same phenomenon occurs for the two admissible twists of eleven-dimensional supergravity. Along the way, we discuss in detail the connection between components of physical and twisted fields.

Key words: twisted supergravity; higher symmetry; $L_\infty$ algebra; topological-holomorphic field theory.

pdf (620 kb)   tex (45 kb)  

References

  1. Beem C., Ben-Zvi D., Bullimore M., Dimofte T., Neitzke A., Secondary products in supersymmetric field theory, Ann. Henri Poincaré 21 (2020), 1235-1310, arXiv:1809.00009.
  2. Beem C., Lemos M., Liendo P., Peelaers W., Rastelli L., van Rees B.C., Infinite chiral symmetry in four dimensions, Comm. Math. Phys. 336 (2015), 1359-1433, arXiv:1312.5344.
  3. Berkovits N., Towards covariant quantization of the supermembrane, J. High Energy Phys. 2002 (2002), no. 9, 051, 44 pages, arXiv:hep-th/0201151.
  4. Bomans P., Wu J., Unravelling the holomorphic twist: central charges, Comm. Math. Phys. 405 (2024), 290, 49 pages, arXiv:2311.04304.
  5. Budzik K., Gaiotto D., Kulp J., Williams B.R., Wu J., Yu M., Semi-chiral operators in 4d $\mathcal{N} = 1$ gauge theories, J. High Energy Phys. 2024 (2024), no. 5, 245, 69 pages, arXiv:2306.01039.
  6. Budzik K., Gaiotto D., Kulp J., Wu J., Yu M., Feynman diagrams in four-dimensional holomorphic theories and the Operatope, J. High Energy Phys. 2023 (2023), no. 7, 127, 38 pages, arXiv:2207.14321.
  7. Cederwall M., $D=11$ supergravity with manifest supersymmetry, Modern Phys. Lett. A 25 (2010), 3201-3212, arXiv:1001.0112.
  8. Cederwall M., ${\rm SL}(5)$ supersymmetry, Fortschr. Phys. 69 (2021), 2100116, 5 pages, arXiv:2107.09037.
  9. Cederwall M., Palmkvist J., $L_\infty$ algebras for extended geometry, J. Phys. Conf. Ser. 1194 (2019), 012021, 9 pages.
  10. Costello K., Holography and Koszul duality: the example of the $M2$ brane, arXiv:1705.02500.
  11. Costello K., M-theory in the omega-background and 5-dimensional non-commutative gauge theory, arXiv:1610.04144.
  12. Costello K., Notes on supersymmetric and holomorphic field theories in dimensions 2 and 4, Pure Appl. Math. Q. 9 (2013), 73-165, arXiv:1111.4234.
  13. Costello K., Gaiotto D., Twisted holography, J. High Energy Phys. 2025 (2025), no. 01, 087, 88 pages, arXiv:1812.09257.
  14. Costello K., Gwilliam O., Factorization algebras in quantum field theory. Vol. 1, New Math. Monogr., Vol. 31, Cambridge University Press, Cambridge, 2017.
  15. Costello K., Gwilliam O., Factorization algebras in quantum field theory. Vol. 2, New Math. Monogr., Vol. 41, Cambridge University Press, Cambridge, 2021.
  16. Costello K., Li S., Twisted supergravity and its quantization, arXiv:1606.00365.
  17. Costello K., Paquette N.M., Twisted supergravity and Koszul duality: a case study in $\rm AdS_3$, Comm. Math. Phys. 384 (2021), 279-339, arXiv:2001.02177.
  18. Cremmer E., Julia B., Scherk J., Supergravity theory in eleven-dimensions, Phys. Lett. B 76 (1978), 409-412.
  19. Cushing J., Moore G.W., Roček M., Saxena V., Superconformal gravity and the topology of diffeomorphism groups, arXiv:2311.08394.
  20. Del Zotto M., Oh J., Zhou Y., Evidence for an algebra of $G_2$ instantons, J. High Energy Phys. 2022 (2022), no. 8, 214, 57 pages, arXiv:2109.01110.
  21. Dimofte T., Niu W., Py V., Line operators in 3d holomorphic qft: meromorphic tensor categories and dg-shifted Yangians, arXiv:2508.11749.
  22. Eager R., Hahner F., Maximally twisted eleven-dimensional supergravity, Comm. Math. Phys. 398 (2023), 59-88, arXiv:2106.15640.
  23. Eager R., Saberi I., Walcher J., Nilpotence varieties, Ann. Henri Poincaré 22 (2021), 1319-1376, arXiv:1807.03766.
  24. Elliott C., Gwilliam O., Lotito M., Twists of superconformal algebra, arXiv:2403.19753.
  25. Elliott C., Safronov P., Topological twists of supersymmetric algebras of observables, Comm. Math. Phys. 371 (2019), 727-786, arXiv:1805.10806.
  26. Festuccia G., Seiberg N., Rigid supersymmetric theories in curved superspace, J. High Energy Phys. 2011 (2011), no. 6, 114, 23 pages, arXiv:1105.0689.
  27. Fiorenza D., Sati H., Schreiber U., Super-Lie $n$-algebra extensions, higher WZW models and super-$p$-branes with tensor multiplet fields, Int. J. Geom. Methods Mod. Phys. 12 (2015), 1550018, 35 pages.
  28. Gaberdiel M.R., Zwiebach B., Tensor constructions of open string theories. I. Foundations, Nuclear Phys. B 505 (1997), 569-624, arXiv:hep-th/9705038.
  29. Gaiotto D., Kulp J., Wu J., Higher operations in perturbation theory, J. High Energy Phys. 2025 (2025), no. 5, 230, 75 pages, arXiv:2403.13049.
  30. Garner N., Paquette N.M., Mathematics of String Dualities, Proc. of Sci. 403 (2023), PoS(TASI2021)007, 85 pages, arXiv:2204.01914.
  31. Garner N., Raghavendran S., Williams B.R., Enhanced symmetries in minimally twisted three-dimensional supersymmetric theories, Adv. Theor. Math. Phys. 29 (2025), 815-862, arXiv:2310.08516.
  32. Garner N., Raghavendran S., Williams B.R., Higgs and Coulomb branches from superconformal raviolo vertex algebras, Adv. Math. 482 (2025), 110566, 44 pages, arXiv:2310.08524.
  33. Giotopoulos G., Sati H., Schreiber U., The M-algebra completes the hierarchy of super-exceptional tangent spaces, Phys. Lett. B 860 (2025), 139199, 10 pages, arXiv:2024.13919.
  34. Gukov S., Nawata S., Saberi I., Stošić M., Suł kowski P., Sequencing BPS spectra, J. High Energy Phys. 2016 (2016), no. 3, 004, 160 pages, arXiv:1512.07883.
  35. Hahner F., Paquette N.M., Raghavendran S., Saberi I., in preparation.
  36. Hahner F., Raghavendran S., Saberi I., Williams B.R., Local superconformal algebras, arXiv:2410.08176.
  37. Hahner F., Saberi I., Eleven-dimensional supergravity as a Calabi-Yau twofold, Selecta Math. (N.S.) 31 (2025), 38, 34 pages, arXiv:2304.12371.
  38. Herderschee A., Maldacena J., Three point amplitudes in matrix theory, J. Phys. A 57 (2024), 165401, 21 pages, arXiv:2312.12592.
  39. Hull C.M., Generalised geometry for M-theory, J. High Energy Phys. 2007 (2007), no. 7, 079, 31 pages, arXiv:hep-th/0701203.
  40. Johansen A., Twisting of $N=1$ SUSY gauge theories and heterotic topological theories, Internat. J. Modern Phys. A 10 (1995), 4325-4357.
  41. Jonsson D.S.H., Kim H., Young C.A.S., Homotopy representations of extended holomorphic symmetry in holomorphic twists, J. Geom. Phys. 217 (2025), 105632, 16 pages, arXiv:2408.00704.
  42. Jurčo B., Kim H., Macrelli T., Saemann C., Wolf M., Perturbative quantum field theory and homotopy algebras, Proc. of Sci. 376 (2020), PoS(CORFU2019)199, 25 pages, arXiv:2002.11168.
  43. Jurčo B., Raspollini L., Sämann C., Wolf M., $L_\infty$-algebras of classical field theories and the Batalin-Vilkovisky formalism, Fortschr. Phys. 67 (2019), 1900025, 60 pages, arXiv:1809.09899.
  44. Lada T., Markl M., Strongly homotopy Lie algebras, Comm. Algebra 23 (1995), 2147-2161, arXiv:hep-th/9406095.
  45. Loday J.-L., Vallette B., Algebraic operads, Grundlehren Math. Wiss., Vol. 346, Springer, Heidelberg, 2012.
  46. Lopez-Arcos C., Vélez A.Q., $L_\infty$-algebras and the perturbiner expansion, J. High Energy Phys. 2019 (2019), no. 11, 010, 31 pages, arXiv:1907.12154.
  47. Macrelli T., Sämann C., Wolf M., Scattering amplitude recursion relations in Batalin-Vilkovisky-quantizable theories, Phys. Rev. D 100 (2019), 045017, 22 pages, arXiv:1903.05713.
  48. Nekrassov N., Four-dimensional holomorphic theories, Ph.D. Thesis, Princeton University, 1996, https://www.proquest.com/docview/304261334.
  49. Raghavendran S., Saberi I., Williams B.R., Twisted eleven-dimensional supergravity, Comm. Math. Phys. 402 (2023), 1103-1166, arXiv:2111.03049.
  50. Raghavendran S., Williams B.R., A holographic approach to the six-dimensional superconformal index, arXiv:2210.07910.
  51. Saberi I., Williams B.R., Twisted characters and holomorphic symmetries, Lett. Math. Phys. 110 (2020), 2779-2853, arXiv:1906.04221.
  52. Saberi I., Williams B.R., Superconformal algebras and holomorphic field theories, Ann. Henri Poincaré 24 (2023), 541-604, arXiv:1910.04120.
  53. Saberi I., Williams B.R., Twisting pure spinor superfields, with applications to supergravity, Pure Appl. Math. Q. 20 (2024), 645-701, arXiv:2106.15639.
  54. Smith G.R., Waldram D., M-theory moduli from exceptional complex structures, J. High Energy Phys. 2023 (2023), no. 8, 22, 36 pages, arXiv:2211.09517.
  55. Stelzig J., On the structure of double complexes, J. Lond. Math. Soc. (2) 104 (2021), 956-988, arXiv:1812.00865.
  56. Wang M., Williams B.R., Factorization algebras from topological-holomorphic field theories, arXiv:2407.08667.
  57. Zeng K., Twisted holography and celestial holography from boundary chiral algebra, Comm. Math. Phys. 405 (2024), 19, 109 pages, arXiv:2302.06693.
  58. Zwiebach B., Closed string field theory: quantum action and the Batalin-Vilkovisky master equation, Nuclear Phys. B 390 (1993), 33-152, arXiv:hep-th/9206084.

Previous article  Next article  Contents of Volume 21 (2025)