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Abstract. In this paper, we study the irreducibility of L{(g)G/—moduleS on the spaces
of intertwining operators in the branching problem of reductive Lie algebras, and construct
a family of finite-dimensional irreducible U ( g)G/-modules using the Zuckerman derived func-
tors. We provide criteria for the irreducibility of U (g)G,—modules in the cases of general-
ized Verma modules, cohomologically induced modules, and discrete series representations.
We treat only discrete decomposable restrictions with certain dominance conditions (quasi-
abelian and in the good range). To describe the U (g)c*w—rmodules7 we give branching laws
of cohomologically induced modules using ones of generalized Verma modules when K’ acts
on K/Lk transitively.
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1 Introduction

The purpose of this paper is to study an algebraic structure on the spaces of intertwining
operators in the branching problem of reductive Lie algebras. We consider the irreducibility of
U (g)Gl-modules on the spaces, and construct a family of finite-dimensional irreducible ¢ (g)G/—
modules using the Zuckerman derived functors. This work is based on a part of the author’s
Ph.D. thesis.

Let G be a connected reductive algebraic group over C and G’ a connected reductive sub-
group of G. For an irreducible g-module V' and an irreducible g’-submodule V' of Vg, the al-
gebra U(g)¢" of G/-invariants in the universal enveloping algebra U(g) acts on Homgy (V', V|y).
It is a classical result that if V|y is completely reducible and locally finite, then the U/ (g)G/—
module is irreducible (see, e.g., [6, §4.2]). This is corresponding to the case of the branching
problem of real Lie groups and compact subgroups. In this paper, we essentially treat the case
of non-compact subgroups.

In general, the U (g)G/—module may not be irreducible. Some branching laws in the context of
the theta lifting give typical examples (see Example 5.22). On the other hand, we have shown
in [14, Theorem 7.18 and its corollaries] that the module has finite length if V and V' are realized
as holonomic Z-modules on the full flag varieties. For example, V and V' are objects in the
BGG category O, or Harish-Chandra modules. Moreover, we have treated a similar I/ (g)Gl—
module Homg/(V|g/, %4 ) and its cohomological version. We concentrate on the i (g)G/—moduIe
Homgy (V’, V|g/) in this paper.

We will consider generalized Verma modules, cohomologically parabolically induced modules
and discrete series representations. We give criteria for the irreducibility of the ¢/(g)% -module
for such modules.
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We shall explain why we study ¢/ (g)“'-modules. Recently, explicit realizations of intertwining
operators (symmetry breaking operators) in the branching problem are computed by many
researchers, e.g., [27, 28, 29]. Under some good setting, the operators are represented by special
functions. The computations use concrete realizations of representations and operators, and the
operators are obtained from good differential equations and good geometric structures.

To understand the goodness of intertwining operators, we consider algebraic structures on the
Hom space. For example, if Homgy (Vl’ W ]g/) ~ Homgy (VZ', Val g/), then we may expect that there
is some relation between intertwining operators in the two different Hom spaces. Alternatively,
if U (g)Gl acts on the Hom space irreducibly, then we may consider that the algebra U (g)Gl
controls the branching law well. In fact, we will show in Theorem 5.38 that the supremum of
the multiplicities is equal to a ring-theoretic invariant of U (g)Gl, called the PI degree.

We shall state the main results in this paper. Let G be a connected semisimple algebraic
group over C and G’ a connected reductive subgroup of G. Let q be a parabolic subalgebra of g
such that ¢’ := g’ N q is a parabolic subalgebra of g’. Suppose that q has a Levi decomposition
q = [ & u such that ¢’ has a Levi decomposition ¢ = (INg) @ (ung’). Set ' = [Ng and
v :=ung’. We consider a generalized Verma module ind§(F’) induced from a finite-dimensional
irreducible [F-module F', letting u act on F trivially.

In general, the restriction indf(F’)|y may be complicated. To study the space Homy (V’ VI g/),
we need admissibility and complete reducibility and assume two conditions, i.e., weakly g'-
compatible and quasi-abelian. See Definitions 2.14 and 5.11. If q is weakly g’-compatible,
then ind§(F')|y is discretely decomposable and [-admissible (or equivalently g'-admissible).
If, in addition, q is quasi-abelian with respect to g’, then ind§(F")[y with F' in the good range is
completely reducible.

The weak g’-compatibility is a generalization of the g’-compatibility defined in [24]. If (g, g’)
is a symmetric pair corresponding to an involution 8 of g, the notions are equivalent to the
f-stability. The notion of quasi-abelian parabolic subalgebras is defined in [8, p. 109] for sym-
metric (g,g’). Our definition is a straightforward generalization of theirs. For example, if
[un(g’)*,w] =0, then q is quasi-abelian.

Fix Cartan subalgebras t’ of [ and t of [ such that t' C t. We denote by A(W,t) the set of all
non-zero weights in a t-module W, and by p(u) half the sum of roots in A(u,t). Suppose that q
is weakly g’-compatible and quasi-abelian with respect to g’.

The following theorem will be proved in Theorem 5.17 and Corollary 5.18. Without the
quasi-abelian property, criteria for the irreducibility of U (g)Gl—modules are given in corollaries
of Theorem 5.4.

Theorem 1.1. Let F' be a finite-dimensional irreducible l-module with infinitesimal character
A €t in the good range, i.e.,

Re(A + p(u), a) <0, Vo € AT (u,t).
Then

L. ind§(F)|y is a direct sum of irreducible g'-modules of the form indﬂj(F’) with finite-
dimensional irreducible I'-module F' in the good range.

2. The U(g)% -module Homg (indﬁj(F'),indg(Fﬂg/) is zero or irreducible for any irreducible
finite-dimensional I'-module F’,

Remark 1.2. The multiplicity in ind(F)[y can be computed from the irreducible decomposi-
tion of a locally finite I'-module. See Proposition 2.16.

The first assertion of Theorem 1.1 was proved in [8, Lemma 3.1] when F|y is irreducible
and (g, g’) is a symmetric pair. If (g, ) is a symmetric pair, then ind3(F) is isomorphic to the
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underlying Harish-Chandra module of a holomorphic discrete series representation. In this case,
the first assertion of Theorem 1.1 was proved in [21, Theorem 7.4] and [24].

Using the Zuckerman derived functor, we obtain a similar result to Theorem 1.1 for cohomo-
logically induced modules. Let 6 be an involution of g fixing g’. Let K be a connected reductive
algebraic group with the Lie algebra g’ such that (g, K) is a pair (see Definition 2.1). Suppose
that q and [ are -stable. Write K’, Lx and L’ for the analytic subgroups with the Lie algebras
tNng, tNland ¢ NI respectively. Then Lk (resp. L) is a Levi subgroup of K (resp. K').

For a finite-dimensional irreducible (I, L )-module F', we set

Ll (F) = RTY (ind3(F)),

where R® FfK is the S-th Zuckerman derived functor and S := dim(u N €). Then Eﬁ, g(F) is an
irreducible (g, K)-module if F is in the good range. See [16] for the cohomologically induced
modules.

The following theorem is proved in Theorem 5.27. See Theorems 5.20 and 5.31 for (holomor-
phic) discrete series representations.

Theorem 1.3. Assume that K' acts on K/Ly transitively. Let F be a finite-dimensional
irreducible (I, Li)-module in the good range.

1. EﬂS(F)|g/7K/ is a direct sum of irreducible (g', K')-modules of the form Eﬁ:S(F’) with
finite-dimensional irreducible (U, Ly )-module F' in the good range.

2. For any finite-dimensional irreducible ([’, L’K) -module F' in the good range, RSFEI induces
K
an isomorphism

Homg’,L'K (indﬁl(F/)7indg(F)|g/,L/K) i> H0m9/7K/ (Eﬁ’,S(F/)’ﬁﬁ,S(F)lgvi/)

of U(g)%"-modules, and each U(g)%-module Homy for (Cﬁ;’S(F’), ,Cﬂ’s(F) g/, K7) is irreducible
or zero.

Discretely decomposable restrictions of cohomologically induced modules (A4()), in partic-
ular) are studied by many researchers. T. Kobayashi initiated the theory of discretely decom-
posable restrictions and gave examples of branching laws of cohomologically induced modules
in [17, 18, 19, 20]. Y. Oshima gave in [34, 35] an abstract formula of the branching laws like
generalized Blattner’s formula using the theory of Z-modules, and computed all the branch-
ing laws of Aq(A\) with character X in the weakly fair range when (g, g’) is a symmetric pair.
See [35, Corollaries 5.7 and 5.8, and Section 8] for the case in which K’ acts on K/Lg transi-
tively. We refer the reader to [25] for the recent advances of the branching problem.

As an example of Theorem 1.3, we will deal with the case of discrete series representations
and symmetric (g,g’) in Theorem 5.31. In the case, the branching laws were computed by
several methods, e.g., transfer of K-types [7], orbit method [3, 41], reproducing kernel [32, 33],
the Radon—Penrose transform [40] (including Aq())). Note that our method is purely algebraic.

To show Theorems 1.1 and 1.3, we construct 4 (g) -modules isomorphic to the U(g)< -
modules Homg 1/ (indﬁZ(F "), ind§ (F) |y 11 ) using the Zuckerman derived functor. Retain the
above notation g,¢’,q,q’,.... Then (¢’ & g,A(G’)) is a pair, where A: G' — G’ x G is the
diagonal embedding. Set S := dim(u’). Write L’ for the analytic subgroup of G’ with the Lie
algebra ['.

A (¢ ® g, A(G'))-module is completely reducible as a A(G’)-module. Hence the functor

Mod(g' @ g, A(G")) 3 V = VAE) € Mod (U(9)%)
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is exact and sends irreducible objects to irreducible ones or zero. See Section 2.1. Therefore,
what we should do is to construct irreducible (g’ & g, A(G’))-modules. We will use classical
methods to do so, e.g., the Zuckerman derived functors, the translation functors.

For a finite-dimensional '-module F’, we denote by Ofl,l (F') the full subcategory of the relative
BGG category (’)g, whose object V satisfies that V ® F’ lifts to an L’-module. The following
theorem is proved in Theorem 4.1 and Corollary 4.2.

Theorem 1.4. Let F' be a finite-dimensional irreducible [-module with infinitesimal character
A € t" satisfying

W¢{071’2""}7 VaGA(u,f)-

Then the functor

’ A(G! .
OS(F) > M = RSTLT) (M @ ind}(F)) € Mod(g' @ g, A(G"))
18 fully faithful and exact, and preserves submodules lattices. In particular, it sends irreducible
objects to irreducible ones.

If (g,¢) is not a symmetric pair, a (g,%)-module with some finiteness properties is called
a generalized Harish-Chandra module, and studied in [37, 38] and their sequels. Cohomologically
induced modules are treated in the papers. In our setting, (g,€) is the pair (g’ & g, A(g’)).
To show Theorem 1.4, we need this special structure.

Notation and convention

In this paper, any algebra except Lie algebras is unital, associative and over C. Any alge-
braic group is defined over C and any Lie algebra is finite-dimensional. For an algebra A
(resp. a pair (g, K)), we denote by Mod(A) (resp. Mod(g, K)) the category of A-modules (resp.
(g, K)-modules).

We express real Lie groups and their Lie algebras by Roman letters and corresponding German
letters with subscript (-)g, and express complex Lie groups (or affine algebraic groups) and their
Lie algebras by Roman letters and corresponding German letters, respectively. Similarly, we
express the complexification of a real Lie algebra by the same German letter as that of the real
form without any subscript. For example, the Lie algebras of real Lie groups Gr, Kr and Hg
are denoted as ggr, g and hr with complexifications g, € and b, respectively.

For a t-module V' of a commutative Lie algebra t, we denote by A(V,t) the (multi)set of all
non-zero weights in V. We write V,, for the weight space of a weight o € t*. We express half
the sum of roots (or positive roots in some context) in A(V,t) by p(V).

For a G-set X of a group G, we write X for the subset of all G-invariant elements in X. We
use similar notation for the set of all vectors annihilated by a Lie algebra g (resp. an element X)
as V9 (resp. 78 ) The coordinate ring of an affine variety X is denoted by O(X).

2 Preliminary

In this section, we recall several fundamental notions about (g, K )-modules, generalized Verma
modules and Zuckerman derived functors.
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2.1 (g, K)-module

We recall the notion of (g, K)-modules. Let G be an affine algebraic group over C. A linear
action of G on a vector space V is said to be rational if the action is locally finite and any
finite-dimensional subrepresentation is a representation of an algebraic group. In the case, V is
called a G-module. If G is reductive, any G-module is completely reducible.

Let us recall the definitions of pairs (g, K) and (g, K)-modules. In this paper, we treat only
the case of connected reductive K. We refer the reader to [16, Chapter I] for the general case.

Definition 2.1. Let g be a finite-dimensional complex Lie algebra and K a connected reductive
algebraic group such that € is a subalgebra of g. We say that (g, K) is a pair if the adjoint action
of £ on g lifts to a rational action of K. A pair (h, L) is said to be a subpair of (g, K) if b is
a subalgebra of g and L is a connected reductive subgroup of K.

Definition 2.2. Let (g, K) be a pair and V' a g-module. We denote by V; the sum of all
finite-dimensional €-submodules, and by Vi the sum of all £-submodules that lift to K-modules.
We say that V' is a (g, K)-module if V = V.

Clearly, Vi is a (g, K)-module. Since we have assumed that K is connected, the K-action
on a (g, K)-module V is uniquely determined by the g-action.

Let (g, K) be a pair and V a (g, K)-module. Then V| is completely reducible and ¢(g)* acts
naturally on V. Since £ acts on V¥ trivially, the U(g)¥-action factors through (U(g)/U(g)€)* ~
U(g)5/(U(g)e)X. Tt is well-known that if V is irreducible, then the (g)*-module V¥ is irre-
ducible or zero. See [6, Theorem 4.2.1].

Proposition 2.3. Let (g, K) be a pair. The functor
Mod(g, K) 3 V = V € Mod((U(g) /U(g)8)")

1s exact and sends irreducible objects to irreducible ones or zero. In particular, the length of
U(g)/U())" -module VX is less than or equal to that of V for any V € Mod(g, K).

It may be hard to study (U(g)/U(g)t)*-modules directly. Using Proposition 2.3, we re-
duce many problems of (U(g)/U(g)¢)*-modules to those of (g, K)-modules. The following
(¢' ® g, A(G'))-module case is important for us.

Let G be a connected affine algebraic group and G’ a connected reductive subgroup of G.
Then (g’ © g, A(G")) is a pair, where A: G’ — G’ x G is the diagonal embedding.

Proposition 2.4. (U(g' @ g)/U(g @ g)A(g")2 ) is naturally isomorphic to U(g)® as a C-
algebra.

Proof. Identify U(g @ g) with U(g') ® U(g). Then the isomorphism is given by
U@ > X = 1o X + U ®9)Ad) € U @ 0)/Ud © g)Ad)>D.

In face, the map is bijective by ¢’ ® g = A(g') ® g and the Poincaré-Birkhoff-Witt theorem, and
the linear map is a homomorphism of C-algebras because it is given as the composition of the
following natural maps:

U — Uy ®g)* ) - uU(g @ a)* @ /U @ g)A(g) )
~ (U(g @ 9)/U(d ® g)A(g) . m
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The two algebras U(g)% and (U(g' @ g)/U(g' © g)A(g")*(F) act naturally on Homy (V', V)
for a g-module V and a g’-module V’. The action of U(g)%" is give by

(X-9)()=X-9(), XelUlg), ¢ecHomyV' V),

and the action of (U(g' @ g)/U (g’ ® g)A(g'))2(E) is induced from that of the U (g’ @ g)>(":
<<ZA2 ® B¢> : 90> ()= ZBM(tAi ),
Z A @ Bi eU(g ®9)7, ¢ € Homy (V',V)
It is easy to see that the two actions coincide under the isomorphism in Proposition 2.4.

2.2 Translation functor

Our purpose in this paper is to show the irreducibility of some (g’ & g, A(G’))-modules. We will
reduce the problem to the case of enough large infinitesimal characters. To do so, we need the
translation functor. We refer the reader to [16, Chapter VIIJ.

Let g be a finite-dimensional complex reductive Lie algebra. Fix a Cartan subalgebra t of g
and denote by Wg the Weyl group of g. We identify Z(g) with ¢/(t)"V¢ via the Harish-Chandra
isomorphism. Then characters of Z(g) are parametrized by elements in t*/Wg. When we say
that x € t*/W¢ is an infinitesimal character, x is identified with a homomorphism Z(g) — C
and Ker(x) is a maximal ideal of Z(g). For A € t*, we denote by [A] the corresponding infinites-
imal character in t*/W, and for a subcategory C of Mod(g), we denote by Cpy (or Cy) the full
subcategory of C consisting of objects with the generalized infinitesimal character [A].

For a g-module V' and an infinitesimal character x € t*/Wg, set

P, (V) :={veV|Ker(x)"v=0,3ne N}

Note that n can depend on v. Then P, (V') is a g-submodule of V', and called the primary com-
ponent with the infinitesimal character y. When V is the direct sum of all primary components,
we say that the direct sum decomposition is the primary decomposition. The following fact is
a direct consequence of [16, Proposition 7.20]. For a g-module V', we say that V is locally finite
Z(g)-module if Z(g)v is finite-dimensional for any v € V.

Fact 2.5. Any locally Z(g)-finite g-module has the primary decomposition.

We shall recall the translation functor. Let p € t* be an algebraically integral weight of g.
Let F(u) be a finite-dimensional irreducible g-module with the extreme weight p. For a g-
module V' with an generalized infinitesimal character [\] € t*/W¢, set

TYH(V) = Py (F(p) @ V).

Then Py, (F(p) ® V) is a g-module with the generalized infinitesimal character [A + p].

Note that F(u) ® V' is Z(g)-finite by Kostant’s theorem [16, Theorem 7.133], and hence
TYTH(V) is a direct summand of F(u) © V. This implies that T is an exact functor from
Mod(g)(y to Mod(g)(r+,- The functor is called the translation functor.

The translation functor preserves the irreducibility under some assumption. To state the
facts, we shall recall the notion of integrally dominant weights. Fix a Borel subalgebra b of g
containing t. Let A" denote the set of positive roots determined by b.
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Definition 2.6. Let A\ € t. We say that X regular if (A\,a) # 0 for all &« € AT. We say that A
is integrally dominant with respect to b if

2(\, )
(o, @)

Z{-1,-2,...}, Va € AT,

A is said to be integrally anti-dominant with respect to b if
2(\, @)

(. ¢ {1,2,...}, Yo e AT,

It is well-known that T)/\\ s a good functor (e.g., isomorphism) on several good categories.
We only need results about g-modules of finite length. For the following fact, see [16, Corol-
lary 7.209] and its proof. Let Mod(g) denote the category of g-modules of finite length.

Fact 2.7. Let X € t* be a regular integrally dominant weight and p € t* an algebraically integral
weight. Suppose that A + u is regular integrally dominant. Then T ;‘ th gives an equivalence of
categories from Mod(g)x to Modf(g)\+u, and a quasi-inverse is given by Ti‘#—u‘

2.3 Discrete decomposability

Our main concern in this paper is discretely decomposable restrictions of g-modules. We recall
the notion of the discrete decomposability. We refer the reader to [20, 24] for the details.
Let g be a finite-dimensional complex reductive Lie algebra.

Definition 2.8. Let V be a g-module. We say that V is discretely decomposable if V has an
exhaustive g-module filtration 0 = Vi C V4 C --- such that any V; has finite length. Moreover,
if all V; are in a subcategory C of Mod(g), we say that V is discretely decomposable in C.

By definition, a discretely decomposable g-module is locally Z(g)-finite. Hence the following
proposition is a consequence of Fact 2.5.

Proposition 2.9. A discretely decomposable g-module has the primary decomposition.

2.4 Generalized Verma module

This section contains a brief summary of generalized Verma modules. We refer the reader to [10].
For the branching problem part, see [24].

Let g be a finite-dimensional complex reductive Lie algebra. Fix a semisimple element H € g
such that ad(H) has only real eigenvalues. [(H), u(H) and u(H) denote the sums of eigenspaces
of ad(H) with zero, positive and negative eigenvalues, respectively. Then q(H) := [(H) ® u(H)
is a parabolic subalgebra of g. Similarly, write q(H) := [((H) @ u(H) for the opposite parabolic
subalgebra. If H is clear from the context, we omit ‘(H)’ part as [, u and q.

Fix a Cartan subalgebra t of | and write W, for the Weyl group of I. Then we have H € t.
For a finite-dimensional completely reducible t-module V', we denote by A(V,t) (or A(V)) the
(multi)set of all non-zero weights in V. We write p(u) for half the sum of all roots in A(u, t).

We shall recall generalized Verma modules. Let F' be an [-module. Set

ind§(F) == U(g) Qu(q) T,

where we consider F' as a g-module letting u act on F' trivially. In this paper, we use this
extension without mention. It is well-known that if ' has an infinitesimal character [A] € t*/W7,
then indf(F) has the infinitesimal character [A + p(u)]. If F' is a finite-dimensional irreducible
[-module, ind3(F) is called a generalized Verma module. In this case, indf(F") is a highest weight
module with respect to some Borel subalgebra contained in g.

The relative BGG category O denoted by Of is defined as follows (see [10, Section 9]). O is
the full subcategory of Mod(g) whose object V' satisfies the following conditions:
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1. V is finitely generated as a g-module.
2. V| is locally finite and completely reducible.

3. The action of u on V is locally nilpotent.

Then any generalized Verma module indg (F) is an object of the category Of. It is well-known
that any object in Of has finite length and hence Z(g)-finite.

A generalized Verma module may be reducible in general. The following result provides
a criterion for the irreducibility of a generalized Verma module (see, e.g., [10, Theorem 9.12]).

Fact 2.10. Let F' be an irreducible finite-dimensional [-module with infinitesimal character [\] €
t* /W1, satisfying

2(A + p(u), @)

(v, @)

Z1{1,2,..}, VaeA@,t).

Then the generalized Verma module indg(F') is irreducible.

Remark that the assumption of Fact 2.10 implies that A + p(u) is integrally anti-dominant
for some Borel subalgebra contained in q. The image of a generalized Verma module by the
translation functor is also a generalized Verma module under a dominance condition (see [16,
Theorem 7.237]).

Fact 2.11. Let F' be a finite-dimensional [-module with infinitesimal character [\ € /Wy,
and u € t* an algebraically integral weight. Suppose that there exists a Borel subalgebra b of g
containing t such that A + p(u) and X\ + u + p(u) are regular integrally dominant for b. Then
there exists a g-module isomorphism

M pit-p(u) /- - A+
T ;(u)p(” (ind¢(F)) = ind (T (F)).

We recall the notion of standard filtrations in [10, Section 9.8].

Definition 2.12. Let V be a g-module. We say that an exhaustive filtration 0 =V C V; C ---
of V is a standard filtration in OF if each successive quotient V;1/V; is isomorphic to a generalized
Verma module ind§(F).

If the parabolic subalgebra q is clear from the context, we simply say that 0=V, C V3 C ---
is a standard filtration. We do not assume that a standard filtration is finite. We give a funda-
mental property of the standard filtration.

Proposition 2.13. Let V be a g-module with a standard filtration 0 =Vy C Vi C ---.

1. For any object W € Og, V @ W has an erhaustive filtration such that gr(V @ W) has
a standard filtration.

2. If each successive quotient Vii1/V; is irreducible, then V' is completely reducible and iso-
morphic to gr(V).

Proof. The first assertion is clear from the natural isomorphism ind§(-) ® W ~ind§(- @ W)
and that W has a g-module filtration whose successive quotients are irreducible and finite-
dimensional.

To prove the second assertion, we can assume that V has finite length. In fact, if each V; is
completely reducible, then V' is completely reducible because V is a sum of irreducible submod-
ules. Since EXt}Dg (M,N) =0 for any two irreducible generalized Verma modules M and N
(see [10, Theorem'3.3 (d)]), the assertion follows by induction on the length. [ |
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We consider the branching problem of a generalized Verma module. For simplicity, suppose
that g is semisimple. Let g’ be a reductive subalgebra of g. We recall the notion of g’-compatible
parabolic subalgebras in the sense of [24], and define its generalization.

Definition 2.14. Let q be a parabolic subalgebra of g. We say that q is g’'-compatible if there
exists H € g’ such that q = q(H). We say that q is weakly g’'-compatible if q contains a g'-
compatible parabolic subalgebra q(H) C g and has a Levi decomposition q = [ @& u such that

aH)ng =qng, (H)Ng=INd,

wH)Nng =ung’, wH)Ng =ung, (2.1)
where u is the nilpotent radical of the opposite parabolic subalgebra @ determined by the Levi
decomposition q = [ H u.

Formulas (2.1) mean that ¢, [, u and u have direct sum decompositions compatible with
g=g¢ @ (¢)". Remark that if (g,¢’) is a symmetric pair defined by an involution 6, then q is
weakly g’-compatible if and only if q is #-stable, and they are equivalent to that q is g’-compatible
by [16, Proposition 4.76].

Example 2.15. Let g = sl(3,C) and set

a 0 b 1 0 0
g = 0 0 O0]labceCy, H=10 0 0
c 0 —a 0 0 -1

Then q(H) is a Borel subalgebra of g, and every parabolic subalgebra of g containing q(H) is
weakly g’-compatible. Moreover, any g’-compatible parabolic subalgebra of g is either a Borel
subalgebra or g itself.

Let q = [® u be a weakly g’-compatible parabolic subalgebra of g containing q(H), H € ¢'.
Set

l=1ng, wi=ung, w=ung, qg=laov. (2.2)

Then ¢’ is a parabolic subalgebra of g'. /
An important fact is that any object of (’)f, is discretely decomposable as a g’-module in (’)g,
(see [24, Proposition 3.8]). By the same proof as in [42, Lemma 6.4.4], we obtain the following.

Proposition 2.16. Let F' be a finite-dimensional irreducible [-module. Then indg(F)|y has
a standard filtration 0 = Vo C Vi C -+ satisfying

gr(V) ~ indﬁ, (F & S(u/w)),
where W/W is regarded as a q'-module by letting v act on w/u trivially.

Since g/q is a quotient of g/q(H) ~ u(H), any eigenvalue in g/q of H is negative. This
implies that any eigenspace in ind3(F) ~ S(g/q) ® F' of H is finite-dimensional. From H € [
and this, ind3(F) is [-admissible, that is, the multiplicity of any irreducible I-module is finite.
The following proposition is well-known if (g, g’) is a symmetric pair. The proof is the same as
the symmetric pair case. For the notation (-)y in the proposition, see Definition 2.2.

Proposition 2.17. Let F' be a finite-dimensional irreducible [-module. Then ind§(F) is I'-
admissible. If, in addition, ind3(F) is irreducible, then (indg(F)*)y is isomorphic to ind%(F*)
as a g-module.

Proof. The first assertion is shown in the above. For the second assertion, assume that ind(F)
is irreducible. Since ind§(F) is [-admissible, we have (ind$(F)*), = (ind§(F)*),. Since ind§(F)
is irreducible, (indg(F )*)[ is an irreducible highest weight module and the highest weight is
the same as that of indg(F*). This shows the assertion. [
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2.5 Zuckerman derived functor

Here we review the Zuckerman derived functor. We will use the Zuckerman derived functor in two
ways. One is to construct cohomologically induced module, e.g., discrete series representations.
The other is to study ¢(g)® -modules.

Let (g, K) be a pair with reductive g, and M a connected reductive subgroup of K. Recall
that, for a (g, M)-module V, Vi is the sum of all (¢, M)-submodules that lift to K-modules.
Then Vi is a (g, K)-module, and the functor Mod(g, M) > V — Vi € Mod(g, K) is left exact.
For i € N, we denote by RT'Y, the right derived functor of the functor (-)x. The functor RS,
is called the i-th Zuckerman derived functor.

The functor can be constructed explicitly as follows. We refer the reader to [2, Section I1.8].
Let V be a (g, M)-module and i € N. Consider the cohomology group H'(¢, M; O(K)®V). Here
O(K) is the coordinate ring and the (¢, M )-cohomology is taken via the tensor product of the
right regular action on O(K) and the action on V. Then the left regular action on O(K) induces
a rational K-action on H'(¢, M; O(K) ® V). Moreover, it is known that H(¢, M; O(K) ® V)
admits a (g, K)-module structure and it is isomorphic to R'T'E (V). See [2, Proposition 1.8.2].
The following commutative diagram characterizes the U(g)-action:

U(g) ® R (V) ———= RT (V)

J/ RITK

. T m .
RTE W(g) © V) "™ pirk (v),

where m’s are the multiplication maps and U(g) is regarded as a (g, K)-module via the adjoint
action. See [42, Lemma 6.3.1]. From this and Proposition 2.3, we have the following proposition.

Proposition 2.18. Let V be a (g, M)-module. Then there exists a natural U(g)" -module iso-
morphism RTE (VK ~ Hi(¢, M; V). In particular, the length of H'(€, M; V) is bounded by that
of RITE.(V) from above.

Remark 2.19. The /(g)®-module structure on H(¢, M; V) is induced from that on V. Indeed,
the multiplication X-: V. — V by X € U(g)¥ is a (¢, M)-homomorphism, and H'(¢, M;") is
a functor on the category of (£, M)-modules.

We summarize fundamental results about the Zuckerman derived functor. We refer the reader
to [16, Theorems 2.103 and 5.21, and the proof of Theorem 7.237].

Fact 2.20. Let V be a (g, M )-module.

1. If V has an infinitesimal character x, then R‘Tﬁ(\/’) has the infinitesimal character .

2. Let W be a (g, K)-module. Then there exists a natural isomorphism
RTE (V)W ~ RTE (Vo w).
3. RiF]\K/[ commutes with the translation functors T;‘Jr” if o is an extreme weight of a finite-
dimensional irreducible (g, K)-module.

Lemma 2.21. Let V be a (g, M)-module with an exhaustive filtration 0 = Vo C V4 C ---
If RTE.(V;) = 0 for any j, then RITY.(V) =0 holds.

Proof. Recall that the cohomology H'(t,M;V ® O(K))(~ RTY,(V)) is computed by the
standard complex

C" == Homp (A'(¢/m),V ® O(K))
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with d: C* — C*™!. Let w € C* such that dw = 0. Then Im(w) is contained in V; ® O(K)
for some j. Hence, by assumption, there exists w’ € C*~! such that dw’ = w. This shows the
assertion. |

We shall state a part of an algebraic analogue of the Borel-Weil-Bott theorem [16, Corol-
lary 4.160]. Let (g, G) be a pair. Note that g is reductive since G is reductive. Let q = [ @D u be
a parabolic subalgebra of g and fix a Cartan subalgebra t C [. Write L for the analytic subgroup
in G with the Lie algebra [. Then L is a Levi subgroup of G.

Fix a set AT (I, t) of positive roots in A(l,t) and put At (g, t) := AT([,t) UA(u,t). Write p(u)
for half the sum of roots in A(u,t). Set S := dim(u).

Fact 2.22. Let F' be an irreducible (I, L)-module with infinitesimal character [A].
1. R°TY¢ (indg(F)) is zero or irreducible.
2. ROTY¢ (indg(F)) # 0 if and only if
(A + p(u), o) <0, Vo € A(u, t).

3. If an irreducible (I, L)-module F' satisfies
RSTE (indd(F)) ~ R°TE (indd(F")) # 0,
then F ~ F"' holds.

Remark 2.23. The fact is the case ¢ = S of [16, Corollary 4.160], that is,
A, t)| =S5 = |[{ae AT (u,t) | (A + p(u), ) <0}].

This condition corresponds to that of 2 in the fact. R°T¢ (indg(F )) in the fact corresponds
to Ilg (qu,f (.FE"LL(Z))). In our case, qu:LL (]-"S’LL(Z)) is ind3(F"), and the functor Il is isomorphic
to RST¢ by the Zuckerman duality [16, Corollary 3.7].

3 Cohomological induction

In this section, we consider cohomologically induced (g, K)-modules. We deal with a vanishing
theorem and irreducibility. The results are well-known if (g,£) is a symmetric pair. We give
proofs for the results in the general setting to make this paper self-contained even though the
proofs are essentially the same as the symmetric case, e.g., [42, Section 6].

3.1 Vanishing theorem

Let (g,K) be a pair with semisimple g. Let q = [ @& u be a weakly ¢-compatible parabolic
subalgebra of g containing q(H), H € g’. See Definition 2.14. Set

g :=1NE, ug =unt, U =unt, g =[x B uk.

Then qg is a parabolic subalgebra of €. Let q and gz denote the opposite parabolic subalgebras
of q and qg, respectively. Let Ly denote the analytic subgroup in K with the Lie algebra [,
which is a Levi subgroup of K. Put S := dim(ug).

We shall consider cohomologically induced modules R'TF, (ind$(F)). When (g,t) is a sym-
metric pair, such modules are classical and well studied. See, e.g., [16] and [42, Section 6]. In
the context of generalized Harish-Chandra modules, R'T'f, (ind§(F)) is studied in [37, 39]. The
following fact is fundamental. See [42, Lemma 6.4.2].
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Fact 3.1. Let M be a (¢, Li)-module with a standard filtration (see Definition 2.12). Then
R’TfK (M) vanishes for any i < S.

The following proposition is used in Lemma 4.3.

Proposition 3.2. Let M be a (¢, Lx)-module with an exhaustive filtration such that gr(M) has
a standard filtration. Then RiFfK(M) =0 holds for any i < S.

Proof. The assertion follows from Lemma 2.21 and Fact 3.1. [ |

We recall a vanishing theorem and existence of a cyclic subspace. Our proofs are essentially
the same as in [42, Section 6].

Proposition 3.3. Let F' be an irreducible finite-dimensional (I, Li)-module. Then we have
RTE, (indd(F)) =0, Vi<S§.

Moreover, if ind3(F) is irreducible, then
RTE, (indd(F)) =0,  Vi#S.

Proof. The first assertion is a direct consequence of Proposition 2.16 and Fact 3.1.
Assume that indf(F’) is irreducible and fix i € N. By Proposition 2.17, we have

(ind§(F)*),, =~ indg(F™).
By the duality [16, Corollary 3.7], there exists an isomorphism
(RTE (ind§(F))") o > R*57TF, (indd(F*)).
Using the first assertion for RQS_dI’fK (ind%(F*)), we have
(RTE, (ind}(F)) )k ~ R*7'TF, (indd(F*) =0 if25—i< 8.
This shows the second assertion. |

3.2 Cyclic subspace

We shall construct a cyclic subspace in the Zuckerman derived functor module under some
dominance condition. Retain the notation in the previous subsection.

Let tx be a Cartan subalgebra of [ and write p(ug) for half the sum of all roots in A(ug, tx).
Let Wi (resp. Wi, ) denote the Weyl group of £ (resp. ). For an ([, Lx)-module F', we have
a natural homomorphism indg «(F) — ind}(F) of (¢ Lk )-modules, and it induces a K-module
homomorphism

Brp: R°T}, (ind}, (F)) — R°T}, (ind(F)).
This map is called a bottom-layer map in [16, p. 365] (when (g, ) is symmetric).

Lemma 3.4. Let F be a finite-dimensional irreducible (I, L )-module. Then for each irreducible
K-submodule V' of RSFf-fK (indgK (F)), the linear map

(Br)s: Homg (V, R°TE, (ind§, (F))) — Homg (V, R°T, (indd(F)))

1s bijective. In particular, Br is injective.



Construction of Irreducible U (g)Gl—Modules and Discretely Decomposable Restrictions 13

Proof. Let V be an irreducible K-submodule of R Ff—fK (indg (F)). Then there exists a unique
irreducible Lg-submodule Fy of F' such that the image of the natural homomorphism

R°TF, (ind, (Fy)) — R°TL, (indf (F))

is equal to V. Write [A] € tj. /W, for the infinitesimal character of F. Then (A+p(ugx),3) <0
holds for any 5 € A(ug,tx), and RSI‘fK (indgK (Fp)) has the infinitesimal character [A+ p(ug)].
See Fact 2.22.

Set W :=U(¥)(1® F') in ind§(F'), which is a £-submodule of ind}(F) isomorphic to indgK (F).
We shall show that W contains the primary component Py () (indg(F)| K). If so, we have

Pissp(ure)) (RTL, (nd§(F) i) € Tm(Bpe).

by Fact 2.20, and this shows the assertion.

By Proposition 2.16, there exists a standard filtration 0 = Mo C My C - -+ of M = ind§(F)
such that gr(M) zindflK(F®S(ﬁ/ﬁK)), where we let ug act on S(u/ug) trivially. Since
Pixipuy)) is an exact functor, it is enough to show

Pt p(uy) (inds . (F @ S(u/iig))) C indj, (F ® C).

Let F’ be an irreducible Lg-submodule of F ® S(u/uix) with infinitesimal character [u] €
5, /Wr,. Then pu(H) < A(H), and the equality holds only if F/ C F ® C since all eigenvalues
of ad(H) in u are negative. Assume [p + p(ug)] = [A + p(ug)] in ;. /Wx and let us show
w(H) = A(H). Note that indgK(F’) has the infinitesimal character [ + p(ug)] € ¢}, /Wgk. By
assumption, there exists s € Wy such that u+ p(ug) = s(A + p(ug)).

Since A+ p(ug) is an algebraically integral weight and dominant with respect to —A(ug, tx),
there is a sum R of elements in A(lx, tx) U A(ug, tx) such that s(A+ p(ur)) = A+ p(ux) + R.
Hence we have

(b + p(ug))(H) = s(A+ p(ur))(H) = (A + p(ux))(H)

Recall that we have R(H) > 0 by ug C u(H) (see Definition 2.14). Combining this with
w(H) < X\(H), we obtain u(H) = A\(H), and hence F' C F ® C. [ ]

The following proposition is proved by the same way as the proof of Lemma 3.4.

Proposition 3.5. Let F' be a finite-dimensional irreducible (I, Li)-module. Let Vo and Vi be
irreducible K -submodules of Im(Bp) and RSFfK (ind§(F)), respectively. For each i = 0,1, take
a representative \; € t of the infinitesimal character of V; such that

()‘Zuﬁ) <O7 V/BGA(UK,tK)
Then one has N\o(H) > A1 (H) and the equality holds only if Vi C Im(Bp).

We prove that the subspace Im(Bf) in Lemma 3.4 generates the g-module R® FfK (indg(F )
under some dominance condition. To do so, we need the following fact (see, e.g., [42, Lem-
ma 6.A.1.3)).

Fact 3.6. Let g be a complex Lie algebra and € a subalgebra of g. Let V' be a g-module. Set
n = dim(g/t). Then there exists an eract sequence

0 2% U(g) Sy (\"(g/8) @ V) % U(g) Suw (N e/ @ V)

6»”7 8 8 €
B U(9) Ruey (8/80 V) D U(Y) Qup V=V =0

of g-modules. The last homomorphism € is the multiplication map.
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Lemma 3.7. Let F be a finite-dimensional irreducible (I, L )-module. Suppose that

<A+p(uK>+Za,ﬁ> <0

acel

for any Z(Ix)-character [\ in F|zq,), B € Alugk, tx) and E C A(q/qk,tx). Then Im(Bp) in
Lemma 3.4 generates RSFfK (indg(F)) as a g-module.

Remark 3.8. In this lemma, we regard A(q/qxk,tx) and E as multisets.

Proof of Lemma 3.7. By Fact 3.6 for qx C q and F, we have an exact sequence

0 2% U(q) Puqi) (N"(0/dK) @ F) 22l U(q) Rur) (A" a/ak) © F)

D ? o :
=25 B U) Bua) (/2K © F) 25 UQ) @yyq) F S F =0

of g-modules. Recall that U(g) is free as a right U(q)-module. Applying the exact functor
U(g) Du(q) (+) to the above exact sequence, we obtain an exact sequence

On, On—
0 =% U(g) Que) Bn — U(@) Que) En-

On— € .
NN ) Ru(e) B %5 U(g) ®u(e Eo = indg(F) — 0 (3.1)

of g-modules, where E; := indgK (A'(a/ax) @ F). Set W := U(¥)(1 ® F) C ind}(F) as in the
proof of Lemma 3.4. Then we have ¢(1 ® Ep) = W.

We shall show that eg = RSFfK (€) is surjective. By the dominance assumption, Fact 2.10
and Proposition 2.13, each E; is completely reducible. Since U(g) ®y ) E; is isomorphic to
S(g/t) ® E; as a t-module, Proposition 3.3 shows

RTE, (U(9) @) Ei) ~ S(g/t) @ RTE, (E;) =0
for any d # S. By (3.1) and the long exact sequence, we have exact sequences
0 — RT{, (Im(8p)) — R°TE,_(U(g) @uw Eo) == R°TY, (indd(F))
— RHITE (Im(dp)) — 0,
0 — RTF (Im(9;)) — RTE (Im(0i41)) — 0

for any d > S and i € N. The second exact sequence implies Rdf‘ﬁ( (Im(0;)) =0 for any d > S
and ¢ € N. Hence €g is surjective by the first exact sequence.
By [42, Lemma 6.3.1], the following diagram is commutative:

U(g) @ RSTE (Eo) ~U(g) @ W

5 %‘

RTY (U(g) ® Ep) RTE (indd(F)),

where m’s are the multiplication maps and the vertical isomorphism is given by Fact 2.20. Note
that we regard U(g) as a (g, K)-module via the adjoint action. The map Rsfﬁ( (m) is written
as the composition

R°TE_(U(g) ® Eo) — RTE, (U(g) @uw Eo) > R°TE, (indd(F)).

Since the canonical surjection U(g) ® Eo — U(g) @y(e) Eo of (¢, L )-modules has a right inverse
and eg is surjective, RS FfK (m) is surjective. By the above commutative diagram, we obtain
U(g)W = R°TE _(indd(F)). n
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Corollary 3.9. Retain the setting in Lemma 3.7. Let N denote the unique mazimal submodule
of ind}(F) and set M := ind}(F)/N. Assume that F|r, is irreducible and RSHFfK (N)=0
holds. Then RSFK (M) is irreducible.

Proof. Write ¢: 1ndg(F) — M for the quotient map. By the proof of Lemma 3.4 and the
dominance assumption, U (¢)(1 ® F) is a direct sum of some primary components in indg(F)le,
and hence ¢(U(£)(1 ® F)) is a direct summand of M|e. Since 1 ® F contains a highest weight
vector in ind§(F), q(U(¢)(1 ® F')) is non-zero. By Fact 2.22 and the dominance assumption in
Lemma 3.7, RSFK (q(U(E)(1 ® F))) is non-zero. Hence we can identify RSFfK (U (1 F)))
as a non-zero subspace Vo of RS FKK(M ).

The assumption RS+1FKK (N) = 0 implies that RSFK (M) is a quotient of Rsfﬁ( (indg(F)).
As a consequence, by Lemma 3.7, RSI‘K (M) is generated by the non-zero K-submodule V.
By the assumption that F|r . is 1rredu01ble Vb is irreducible. See Fact 2.22.

By the duality [16, Corollary 3.7], there exists a (g, K )-module isomorphism

(RSTF (M)*) . = RSTF _((M*)1,).

We identify them via the isomorphism. The highest weight module (M*)r,, = (M*); is isomor-
phic to the unique irreducible quotient of ind2 (F *). By the same argument as for R® FKK (M),
the dual RSFK ((M*)L,) is generated by a unique irreducible K-submodule V| isomorphic
to V. If RSFK (M) has a non-trivial quotient, then RSI‘K (M7 ) has a non-trivial submodule
containing V{J, and this is contradiction. Therefore, R® FK (M ) is irreducible. |

4 Embedding of categories

We have seen in Propositions 2.3 and 2.4 that irreducible U (g)G/—modules are constructed from
irreducible (g’ ® g, A(G’))-modules. In this section, we give an embedding from the relative BGG
category Of to Mod(g’ @ g, A(G’)). As a consequence, we obtain a family of finite-dimensional
irreducible ¢ (g)& -modules.

4.1 Setting and main theorem

The main concern in this section is to construct a category embedding from the BGG category
to the category of generalized Harish-Chandra modules. We shall give a setting and state the
main result.

Let (g, G') be a pair with semisimple g. Then (g’ & g, A(G")) is a pair, where A: G' — G'xG’
is the diagonal embedding. Let q = [ & u be a weakly g’-compatible parabolic subalgebra of g
containing q(H), H € ¢’ (see Definition 2.14). Define ¢’ = ' ®u' = gNg’ as (2.2). Then their
Levi decompositions determine opposite parabolic subalgebras ¢ = [@u and § = [ W for q
and ¢/, respectively. Note that q’ @ q and q’ @ q are weakly A(g')-compatible. Write L’ for the
centralizer of H in G'.

Fix a Cartan subalgebra t’ of ' and write W and Wy, for the Weyl groups. Let p(u) denote
half the sum of roots in A(w/, ¥'). Similarly, we define t, W, WL and p(u) for g to satisfy t Ct

We have the three Lie algebras g’ ® 0, 0 ¢’ and A(g’) in g’ & g isomorphic to g'. If there is
no need to distinguish them, we omit A. We use similar notatlon for subalgebras of g’.

For a finite-dimensional [-module F', we denote by Og (F) the full subcategory of (’)g whose
object M satisfies that M ® F lifts to an L’-module. Then Og (F) is closed under takmg finite
direct sums and subquotients.

Our main purpose in this section is to show the following theorem. We denote by L£(M) the
lattice of submodules of a module M. Set S := dim(u'). For a finite-dimensional irreducible
-module F, we denote by T (or T for short) the functor RST E )) ((® ind§(F )) from (’)g,/(F )
to Mod (g’ & g, A(G")).
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Theorem 4.1. Let F' be a finite-dimensional irreducible [-module with infinitesimal character
[A] € /W1, satisfying

2(A + p(u), @)

o Z{0,1,2,...}, VaeA(ut).

Then the functor T is exact and preserves submodule lattices.

Note that ‘preserves submodule/ lattices’ means that T induces a lattice isomorphism from
L(M) to L(T(M)) for any M € (95, (F). The proof of Theorem 4.1 is postponed to Section 4.2.
We shall show a corollary assuming Theorem 4.1.

Corollary 4.2. Under the assumption in Theorem 4.1, the functor T is fully faithful, and maps
wrreducible objects to irreducible ones.

Proof. Since T preserves submodule lattices, the second assertion is clear.
Let My, M; € (’)fl, (F). First, we shall prove the faithfulness of T. Let f € Homgy (M, M)
such that T'(f) = 0. By the exactness of T', we have two exact sequences

My L) =0, ) 2 () — 0.

T(f) = 0 implies T'(Im(f)) = 0. Since T' preserves submodule lattices, we obtain Im(f) = 0,
and hence f = 0.

Next, we shall show that T is full. Let p;, i = 1,2, denote the projection from M; & My
to M;. Let f be a morphism from 7'(M;) to T (Ms). Consider

idT(M1) @ft T(Ml) — T(Ml) () T(MQ).

Im (idT( M) © f) is the graph of f. Since T preserves submodule lattices, there exists a unique
submodule N C M; & My such that T(N) = Im(idT(Ml) @f). Then N is a graph. In fact,
since T is faithful and T'(p1|n) is bijective, p1|xy is also bijective.

We set f’ := pa o (p1/n)~!. Then we have

T(f") =T(p2) o T((p1ln)~") = T(p2) © (idr(ar) ) = f-
Hence T is full. We have proved the corollary. |
The exactness in Theorem 4.1 is easy from the general result in the previous section.

Lemma 4.3. Let F' be a finite-dimensional irreducible [-module. Assume that ind3(F) is irre-

ducible. Then RT EG))(M ® indd(F )) = 0 holds for any M € (’)g (F) and d# S.

Proof. Let M € Oﬁ,( ). The assertion for d < S follows from Propositions 2.13, 2.16 and 3.2.
Let d > S. Since M ® ind§(F') is '-admissible by Proposition 2.17, we have

((M@indg(F)) )o = (M) ®1ndg(F*)

As in the proof of Proposition 3.3, we obtain
dA(GY) a(F

(R R (M @ indd(F))" ) e

~ RPILE) (M*)r @ indd(F*)) = 0. u
Proof of the exactness in Theorem 4.1. Note that indf(F) is irreducible under the as-
sumption in Theorem 4.1 by Fact 2.10. Hence the exactness follows from Lemma 4.3 and
the long exact sequence. |
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Corollary 4.4. Retain the setting in Lemma 4.3. Let M € Oﬁ,l(F) Then T induces a lattice
homomorphism T*: L(M) — L(T'(M)).

Proof. The map T™ is given by T*(N) = T(N), N € L(M). Here we identify T'(N) with
a submodule of T (M) using the exactness of T. It is obvious that T* is order-preserving.
Let a: M & M — M denote the addition. Then T'(a): T(M) & T(M) — T(M) is also the
addition. For any two submodules My, My C M, we have T'(My N Ms) = T(My) N T(Ms) and
T (M + Ms) =T (M) + T(Ms) from the following commutative diagram:

0 — T(MlﬂMQ) — T(Ml)@T(MQ) — T(M1+M2) — 0
N N N

0 - TM) = TMerTH™M) Y% ) S o

This implies that T* is a lattice homomorphism. |

4.2 Proof of Theorem 4.1

In this subsection, we prove the remaining part of Theorem 4.1. Retain the notation 1n the
previous subsection. We shall prove that 7*: L(M) — L(T'(M)) is bijective for any M € (’)g (F).

Fix a simply-connected connected semisimple algebraic group G with the Lie algebra g.
Replacing G’ with its finite covering, we may assume that the homomorphism G’ — Ad(G)
factors through a homomorphism G’ — G. Then any G-module is a (g, G’)-module. Remark
that this operation does not affect Theorem 4.1.

Let [u] € (t’) /Wer be an infinitesimal character and F' a finite-dimensional I'-module. We de-
note by (’)g (F,[u]) the full subcategory of (’)g (, ) consisting objects with the generalized in-
finitesimal character [i]. Since any object in (’)g (F') has the primary decomposition, we have

= @Og,(F

Hence it is enough to show Theorem 4.1 replacing Og (F) with Og (F, [u]).

Note that Og (F,[p]) contains finitely many generahzed Verma modules mdﬁ (F") up to iso-
morphism. We denote by A(F,[u]) the set of infinitesimal characters of all finite-dimensional
irreducible -modules F’ such that 1ndg (F') e (’)g (F,[p]). Then [¢/ + p(v)] = [p] holds for
any [p/] € A(F, [u]).

To show Theorem 4.1, we reduce the problem to the case of enough large characters FF = C,
using the translation functor. The reduction is standard and postponed to Theorem 4.11. First,
we shall consider the case of enough large characters.

Let [u] € (Y)* /W be an infinitesimal character and v a character of [. Then the infinitesimal
character of C, is [v + p(I)], where p([) is half the sum of positive roots of [. The choice of the
set of positive roots is not important here. Assume that

2(v + p(1) + p(u), B)

55 ¢ 10,1,2,...}, (4.1)
<u + vl 4 pu! +Za,ﬁ)<0 (4.2)
acl

for any [p] € A(Cy, [u]), 8 € A(u,t), 8 € AW, ') and E C A(u,t'). We shall show Theorem 4.1
for F = C,,. We use the notation 7" in Theorem 4.1.

'We recall the bottom-layer map. Let F” be a finite-dimensional I'-module such that indﬂf (F')e
Og, (Cy,[p]). Then we have the bottom-layer map

Brrge,: RSTE (ind$(F' @ C,)) — RSTR(S) (indd (F') @ ind3(C, ).
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For short, we write B for Bpigc,. Note that RSTE/ (indﬁj(F’ ® C,)) is irreducible by Fact 2.22
and (4.2).

Lemma 4.5. Let 1ndg (F') e (’)g (Cu, [n]) be a generalized Verma module. Then T(lndﬂi(F’)) is
generated by Im(BF/) If, moreover M is the unique irreducible quotient oflndg (F"), then T'(M)
s the unique irreducible quotient ofT(mdg (F’))

Proof. The assumption of Lemma 3.7 is fulfilled by (4.2). Hence the assertion is a special case
of Lemma 3.7 and Corollary 3.9. Remark that indg(C, ) is irreducible by (4.1) and Fact 2.10. H

Lemma 4.6. Let My, M, € Og,/((CV, []) be irreducible objects. If T(My) ~ T (Ms), then M; ~
Moy holds.

Proof. It is well-known that Ml, 1 = 1,2, is isomorphic to the unique irreducible quotient of a
generalized Verma module mdﬁ ( i), and hence T'(M;) is isomorphic to the unique irreducible
quotient of T(mdg (F})) by Lemma 4.5. Suppose T'(M;) ~ T(M,). By Proposition 3.5 and
Lemma 4.5, we have Im(BF/) Im(BF/) Recall that Im(BFZ_/) o~ Rsrg (indﬁ, (Fi’ ®(C,,)).
By Fact 2.22, we obtain Fj ~ F| and hence M; ~ Mp. n

Lemma 4.7. Let M € (95,/(((31,, (u]). Then T*: L(M) — L(T(M)) defined in Corollary 4.4 is
bijective.

Proof. We have shown that 7™ is a lattice homomorphism in Corollary 4.4. Since T is exact
and sends irreducible objects to irreducible ones by Lemma 4.5, T'(M ) has the same length as M.

We shall show that T™ is surjective by induction on the length of M. If M is completely
reducible (or, in particular, irreducible), then the surjectivity follows from Lemma 4.6. As-
sume that M has length 2 and is not completely reducible, and let us show that T'(M) is
indecomposable. Then M or (M*)y is a highest weight module. If M is a highest weight mod-
ule, then T'(M) is indecomposable by Lemma 4.5. Similarly, if (M™*)y is a highest weight module,
RSFAEL/)) (M*)y ® indg(C_y)) is indecomposable, and hence its A(G’)-finite dual T'(M) is also
indecomposable.

Assume that M has length strictly greater than 2. Let N C M and L C T (M) be irreducible
submodules. By the induction hypothesis, we have (L + T'(N))/T(N) € T*(L(M/N)). This
implies that there exists a submodule L' C M such that T(L') = L + T(N). Since the length
of L' is less than or equal to 2, we have L € L(T'(L')) = T*(L(L")) C T*(L(M)) by the induction
hypothesis.

Let L C T(M) be a non-irreducible submodule. By the irreducible case, there exists an
irreducible submodule N C M such that T(N) C L. By the induction hypothesis, we have
L/T(N) e T*(L(M/N)), and hence L € T*(L(M)). [

We have proved Theorem 4.1 for F' = C, with the assumptions (4.1) and (4.2). To reduce the
general cases, we need the following lemma, which assures the existence of such a character v.

Lemma 4.8. One has
(p(u),a) > 0, Va € A(u, t),
(p(W)]¢,) >0,  Vae AW, t).

Lemma 4.8 is a special case of the following proposition. Only here, let g be a complex
reductive Lie algebra and t a Cartan subalgebra of g.

Proposition 4.9. Let V' be a finite-dimensional g-module and o € A(g,t). Let W be a t-
submodule of V' such that go - W C W. Then Z,BEA(W,’:) (8,) > 0 holds. If, moreover, g C V,
go CW and g_o ¢ W, then ZﬂeA(Wﬁ)(ﬂ,a) > 0 holds.
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Remark 4.10. In Proposition 4.9, we consider A(W,t) as a multiset.

Proof of Proposition 4.9. Fix an slo-triple { H,, X4, Yo} for the root a such that X, € g,
and Y, € g_q. Set s := spanc{Hy, Xa, Yo }-

Since Vs is completely reducible, W has the eigenspace decomposition W = @f\; Wi
for H,, where W; is zero or the eigenspace of eigenvalue i € Z. Since W is X,-stable, the
map X:-: W_; — W; is well-defined and injective for each i € N by the representation theory
of s5l(2,C). Hence we obtain the desired inequality from

N N

2 Yo Bia)y= > idim(W;) = > i(dim(W;) — dim(W_;)) > 0.

(o, @) BEA(VY) =N i=1

The last assertion follows from that Xg-: W_o — Wy is not surjective if g, C W and
g—a ¢ W. u

Theorem 4.11. Let F' be a finite-dimensional irreducible [-module with infinitesimal charac-
ter [A] satisfying the assumption in Theorem 4.1, and M € (’)ﬁ,(F). Then the lattice homomor-
phism T*: L(M) — L(T(M)) defined in Corollary 4.4 is bijective.

Proof. Since M has the primary decomposition, we may assume that M has a generalized
infinitesimal character. Fix a set A1 ([,t) of positive roots of A([,t). Then A™(g,t) := AT([,t)U
A(u, t) is a set of positive roots of A(g,t). Replacing A with some representative of [A], we may
assume that A is regular anti-dominant with respect to AT ([,t). By assumption, A + p(u) is
regular and integrally anti-dominant (see Definition 2.6) with respect to At (g, t).

Set [ss := [[,[] and t55 := t N [55. Since —(A + p([))],. is an algebraically integral weight of s,
and [ is a Levi subalgebra of g, there exists an algebraically integral weight y € t* of g such that
e = =X+ p(0)le,. Set v == A+ p+ p(l). Then we have T/<\+“(F) ~ C,. It is easy to see
(’)g (F) = Oq (C,) because the I-module F @ C_, lifts to an L’-module. Remark that we have
assumed that G is simply-connected.

By Lemma 4.8, if necessary, replacing p by p — 2mp(u) for enough large integer m, we may
assume that v = A + pu + p(I) satisfies (4.1) and (4.2). Using the translation functors and by
Facts 2.11 and 2.20, we have

Tt (imd§(F)) = ind§(C,),
A (G

T/\:;(j)pu < L))(M®1ndgl )) ~ RT E ))(M®1ndg(C )
A A(G A(G .

T (BT (M @ indg(C,)) ) = RSTR) (M @ ind§(F)).

Note that the isomorphisms are natural in M.

We have shown that RST¢ (M ® mdg(Cy)) has finite length in Lemma 4.6. According to
Fact 2.7, the translation functors T o) @ and TXHPW) give equivalences of categories on the
images of the functors T and Tg,,. Therefore, the assertion follows from Lemma 4.6. |

4.3 Equivalence of categories in special case

We shall consider the case in which q is a Borel subalgebra and g’ = g. We show that the
functor T defined in Theorem 4.1 gives an equivalence of categories in this setting.

Let G be a simply-connected connected semisimple algebraic group and 7' a maximal torus
of G. Fix a Borel subalgebra b of g with Levi decomposition b = t @ u, where u is the nilpotent
radical of b. Then (g @ g, A(G)) is a pair. Set S = dim(u).
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We need the following equivalence of categories proved in [1, Theorem 5.9]. Let A € t*. Two
covariant functors F and G are defined by

F(M) = Hom@(indg(C,\),M)A(G), M € OF(C_y),
G(N) = N @y(g) indg((C,\), N € Mod(g @ g, A(G)) —x—p(w)-

Here, to define G, we consider the (g @ g, A(G))-module N as a (U(g),U(g))-bimodule via
A-n-B:= (A®tB)n, A,Be€lU(g) and n € N,

and Mod(g @© g, A(G))_x—p() is the full subcategory of Mod(g @ g, A(G)) consisting of objects
with the infinitesimal character —\ — p(u) with respect to the subalgebra 0@ g C g @ g. For the
functor (-)a(q), see Definition 2.2. The following fact is proved in [1, Theorem 5.9].

Fact 4.12. If A + p(u) is regular and integrally dominant (see Definition 2.6), then F gives an
equivalence of categories and G is a quasi-inverse of F.

Theorem 4.13. Let A € t* and assume that X\ + p(u) is reqular and integrally anti-dominant.

Then the functor T: Of(Cy) — Mod(g ® g, A(G))rspw) defined by T(M) = Rsfig%) (M ®

indg((C,\)) gives an equivalence of categories.
Remark 4.14. This theorem was conjectured and partially proved by T.J. Enright in [4].

Proof of Theorem 4.13. By Theorem 4.1 and Corollary 4.2, the functor 7 is exact and fully
faithful. Hence what we need to show is that 7 is dense (i.e., for any object N in the codomain,
there is an object M in the domain with 7 (M) ~ N). In fact, a functor F' gives an equivalence
of categories if and only if F' is fully faithful and dense.

We set A = —X — 2p(u). Then we have OF(C_y) = OF(C,), and X + p(u) is regular and
integrally dominant. We consider G for the weight \’. By Theorem 4.1 and Fact 4.12, we have
an exact fully faithful endofunctor G o7 on (’)g (Cy), and G o T preserves the irreducibility.

We shall prove that G o T is a dense functor. We denote by Irr the set of all isomorphism
classes of irreducible objects in Of(Cy). Then G o T induces a permutation on Irr. Since Go T
preserves infinitesimal characters, the cardinality of each orbit on Irr is bounded by |W¢|. Hence
there exists a positive integer k such that (G o T')* acts on Irr trivially. Obviously, (G o T)* is
dense if and only if G o T is dense.

Set £ := (G o T)* and we shall show that £ is dense. Let P be an indecomposable projective
object in Of(Cy). Then P is a projective cover of an irreducible object L (see [10, Section 3.9]).
Let w: P — L denote the surjective morphism. Remark that L is a unique irreducible quotient
of P. Since £ is exact, £(m): E(P) — £(L) is surjective. Since £ acts on Irr trivially, we can
identify £(L) with L. Since P is projective, there exists a homomorphism 7: P — £(P) such
that the following diagram commutes:

)
™
E(P) T(:)S(L) = L——0 (exact).

Recall that the functor £ induces a lattice isomorphism between £(P) and £(E(P)). This implies
that £(L) is a unique irreducible quotient of £(P), and hence 7 is surjective. Since P and £(P)
have the same length, we have P ~ E(P).

Since OF(C») has enough projectives [10, Section 3.9], any object of Of(C,) can be writ-
ten as a quotient of a projective object, which is a direct sum of indecomposable projectives.
Therefore £ is dense. This completes the proof. |
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4.4 Embedding 2

We use the notation in Section 4.1. We shall show a similar result to Theorem 4.1 swapping the
roles of g and g¢'.

Let F’ be a finite-dimensional irreducible ['-module. We denote by OF (F”) the full subcategory
of OF whose object M satisfies that M & F " lifts to an L’-module. Let 7" denote the func-

tor RST A (indS (F)) © ) from OF(F') to Mod(g' & g, A(G')).

Theorem 4.15. Let F' be a finite-dimensional irreducible I'-module with infinitesimal character

N e (¥)" /Wy satisfying

Then the functor T' is exact and preserves submodule lattices.

Proof. Let M € Of(F’). We have assumed that g is weakly g’-compatible. By Propositions 2.16
and 2.17, M|y is discretely decomposable in (’)g (F"), and each primary component Py (M|y) has
finite length This implies that M|y is a dlrect sum of objects in (99 (F"). By Theorem 4.1
for g = g’, T' is exact and faithful.

To show that T" preserves submodule lattices, let L be a (g’ & g, A(G"))-submodule of T'(M).
By Theorem 4.1 and the above discussion, there exists a unique g’-submodule L' C M such that
Rsl“ig,)) (1ndg (F')® L") = L. We shall show that L' is g-stable.

For a dlrect sum N of objects in (99 (F"), set T'(N) = R°T E ))(mdg (F') ® N) by abuse of

notation. By [42, Lemma 6.3.1], we have a commutative diagram

WeT(L')=W®L—"=T'(M

TW @ 1)) —)

for any finite-dimensional G-submodule W C U(g), where m’s are the multiplication maps.
This implies that T'(U(g)L’) = U(g)T'(L') = L and hence U(g)L' = L' by the uniqueness of L'.
Therefore, L' is g-stable and this shows the assertion. |

5 Irreducibility of U(g)% -modules

In this section, we consider the irreducibility of U (g)Gl—modules in the branching problem. We
treat generalized Verma modules, cohomologically induced modules and discrete series repre-
sentations.

5.1 Generalized Verma module

In this subsection, we consider the branching problem of generalized Verma modules. We will
give a criterion for the irreducibility of U (g)G/—modules on Hom spaces.

Let (g,G’) be a pair with semisimple g. Let ¢ = [ & u be a weakly g’-compatible parabolic
subalgebra of g containing q(H) (H € g¢'). See Definition 2.14. Set

=INng, wi=ung, w:=ung, g =leu.

Then ¢’ is a parabolic subalgebra of g’. Write L’ for the centralizer of H in G’.
Fix a Cartan subalgebra t of [ and write W and Wy, for the Weyl groups. Let p(u) de-
note half the sum of roots in A(u,t). Similarly, we define ¥, W/, Wy, and p(v') for g’. Fix
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a set AT(I',t') of positive roots in A(I';t') and p(I') denotes half the sum of the positive roots.

Set p(g') = p(I') + p(u). /
In this subsection, using the results in Section 4, we consider the irreducibility of the ¢(g)“ -

module Homg (indﬁ,(F’ ), indg(F)| o). For a finite-dimensional irreducible I'-module F, we set

Fd = F* X (C—Qp(u’)~
Then the multiplicity of C_y, in Fl® Fis 1, and

(=2p(0) — p(I') + p(w'), B) = (=p(I) = p(w), B) <0, VB e AQ,¥).

Note that —2p(u’) — p(I') is the infinitesimal character of C_y,y and —p(I') — p(u') = —p(g’) is
that of the g’-module C.

Lemma 5.1. Let F be a ﬁmte dimensional irreducible I'-module and F' an irreducible ['-
submodule of F¢ ® F. If mdg (F') has the infinitesimal character [p(g')], then F' ~ C_s,u)
holds.

Proof. Write A € (¢)* for the representative of the infinitesimal character of F’ such that A
is anti-dominant with respect to A*(I',t). Then [\ + p(u')] is the infinitesimal character
of mdg (F'). By assumption, there exists w € W such that w(\ + p(u')) = —p(g). Since F’ is
a submodule of F¥® F, we have \(H) = (=2p(u/) — p(I'))(H), and hence

(A + p(w))(H) = —p(g") (H). (5.1)

Let b’ denote the Borel subalgebra of g’ such that —p(g’) is dominant with respect to b’.
Then A + p(1) is dominant with respect to w=1b’. This implies that A + p(u’) is half the sum
of roots in A(wilb',t'). By (5.1), we have W' C w™1b’. Since A is dominant with respect to
—AT(I',t), this implies w=b’ = b’ and hence w = e. Therefore, we obtain A\ = —2p(1’) — p(I')
and F' =~ C_g (.- [

By Lemma 5.1 and the proof of Lemma 3.4, we obtain the following.

Lemma 5.2. Let F be a finite-dimensional irreducible '-module and M a non-zero quotient

of ndY, (F?) ® ind%, (F).

L P_py—pwy (Mlag)) =i 'ndﬁf(c—Qp(u’))'
RSFA(G)(M) @) ~C.

A(L)
3. R'T E ))(M)A(G/ =0 for anyi # S.

By Lemma 5.2, the functor RT E ))(mdg (F) @ (- ))A(G,) is regarded as an analogue of the
functor Homgy (md ( ), ) We shall compare the two functors.

Let F’ a finite- dlmensmnal irreducible I'-module and M € (99 Suppose that the [-module
M ® (F')* lifts to an L’-module. This implies that the ['- module mdﬁ (F’d) ® M lifts to
an L'-module. Remark that this condition follows from Homgy (mdq (F), ) #0if M is in-
decomposable.

There is a canonical g'- and U(g) -homomorphism
®: indY(F') ® Homg (ind%, (F'), M) — M

defined by ®(v ® ¢) = p(v). Let M’ be a non-zero quotient of indg: (F’ d). Applying Lem-
ma 5.2 (2) to M’ ® 1ndg (F"), we have isomorphisms

Homg (ind3 (F), M) =~ C ® Homg (indS (F'), M)
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A(G . / A(G’ . /
~ RSP (M @ indd, (F') 2% @ Homg (indS, (F'), M)
~ RSTR\) (M’ © indf) (F') © Homyg (ind%, ("), 1)) > (5.2)

of U(g)%"-modules. Compositing this isomorphism with R°T E ))(1d @®)2(E) gives a U(g)e
homomorphism

: ! A(G’ ’
¢y : Homgy (mdﬁ/ (F), M) — RSPAEL’)) (M' ® M)A(G )

If ®jp is injective, we can study the space Homgy (indﬂj(F’ ), M ) using the Zuckerman derived
functor module. We shall consider the injectivity of ®p;r.

Lemma 5.3. Rifﬁgg))(M’ ® Ker(®))2(C) =0 holds for any 1.

Proof. Let N denote the unique maximal submodule of indﬂj(F ). By Lemma 5.2, it is enough
to show

Ker(®) € N ® Homg (ind% ("), M). (5.3)

Let u denote the highest weight of indﬂj(F "). Assume that (5.3) does not hold. Set X :=
Homy (indﬁi (F'), M). Then we have

0 # Ker(®)/(Ker(®) N (N @ X)) C (ind%(F')/N) ® X.

Since (mdg (F")/N ) ® X is isomorphic to a direct sum of some copies of the irreducible g’-mod-
ule mdg (F "Y/N as a g’-module, there is a weight vector v € Ker(®) with the weight p. Then v
isa b'- elgenvector

Write v = > _,v; @ ¢, where {v;};_, C 1ndg (F') and {¢;};_, C X such that {viti_,
and {¢;};_, are linearly independent. Then each fuz is a highest weight vector of mdﬁ (F/ ). This
implies » = 0. By v € Ker(®), we have po(vg) = 0. Since vy is a cyclic vector of 1nd§l (F"), we
have @9 = 0 and hence v = 0. This contradicts to v # 0. Therefore, we have shown (5.3). |

Consider the following two exact sequences:

0 — Ker(®) — ind%, (F) @ Homy (ind% (F), M) = Im(®) — 0,

0 — Im(®) - M — Coker(®) — 0.

Applying the functor R"I‘ﬁgf,/))(M’ ® (-))2() and by Lemma 5.3 and (5.2), we obtain
RSTR) (M @ Tm(2))2(¢") ~ Homy (ind%, (F), M),
RS (M @ Coker(®))2(E) — RSTRT) (M’ @ Im (@)
Dar RSFAE%))(M’ ® M)AE) (exact)

as U(g) -modules. Therefore, we have shown the following criterion.

Theorem 5.4. @, is injective if and only if RS_lfﬁgf:))(M’ ® Coker(®))A(E) = 0.

Remark 5.5. If (M’ @ Coker(®))|a(y) has an exhaustive filtration whose associated graded
module has a standard filtration, we have RS~IT E ))(M’ ® Coker(®))2(E) = 0 by Proposi-
tion 3.2.
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By Proposition 2.13, (mdg (F’ d) ® Coker(®))|a(y has an exhaustive ﬁltration whose asso-
ciated graded module has a Standard filtration. Hence it M/ = 1ndg (F ! ) then &, is injec-
tive. In general the (¢’ @ g, A(G"))-module structure on R°T EL,))(M’ ® M) is not easy even if
M = 1ndg (F' ) Using Theorem 4.15, we obtain a partial result.

Corollary 5.6. Let F' be a finite-dimensional irreducible I'-module with infinitesimal charac-
ter [N'] satisfying

2(—)\/ — P(u)’ a) ¢ {07 1.2.. } for any a € A(u’, ’tl)-

Then the length of Homgy (in

is irreducible, then Homgy (in

’
/(
/
/

F), M) 1s less than or equal to that of M. In particular, if M
(F"), M) is irreducible or zero.

g
dq
g
dq

Proof. By Theorem 4.15, the length of Rsfigg)) (indﬁj(F’d) ® M) is less than or equal to that

of M. Hence the assertion follows from Theorem 5.4. [ |

Remark 5.7. Under the assumption of Corollary 5.6, indﬁj(F ") is projective in Ofl,/.

We shall estimate the length of the #/(g)“ -module Homgy (indﬁ: (F"), M) for generalized Verma
modules M with a dominance condition. Let F' be a finite-dimensional irreducible l-module and
assume that F' satisfies the assumption of Theorem 4.1, that is,

2(A + p(u), @)

(v, @)

¢{0,1,2,...} for any a € A(u,t),

where [\] € t*/W7 is the infinitesimal character of F. Then the submodule lattice R® FAEG )) (M'®

ind§(F)) is isomorphic to that of M’ by Theorem 4.1.

Corollary 5.8. The length of the U(g )¢ -module Homgy (mdg (F'),indd(F ) is less then or equal
to that of indﬁ, (F’ ). In particular, if mdg (F d) is zrreduczble then Homg (mdg (F'),ind§(F))
is irreducible or zero.

Proof. The assertion follows from Theorems 4.1 and 5.4 by putting
M = indﬁ,(F') and M = ind§(F). [

Corollary 5.9. Assume that Im(®) for M = ind§(F') is a direct summand of ind§(F)|y. Then
the U(g)¢" -module Homgy (indﬂj(F’), indg(F)) is irreducible or zero.

Remark 5.10. For example, if ind§(F")|y is completely reducible, the assumption of the corol-
lary holds.

Proof of Corollary 5.9. Let [\]| denote the infinitesimal character of indﬁ:(F ). By Propo-
sition 2.17, the primary component Pp\q(M|y) has finite length. Since M|y has a standard
filtration, so does Py (M|y). By [10, Proposition 3.7 and Theorem 9.8 (3)], any direct sum-
mand of Pyj(M|y) has a standard filtration. In particular, Coker(®) has a standard filtration
by assumption. Therefore, the assertion follows from Theorems 4.1 and 5.4 by letting M’ be
an irreducible quotient of mdg (F ! d). See Proposition 2.13 and Remark 5.5 for the vanishing

q’ ,
of RSTITLT) (M’ ® Coker(®))A(@), m
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5.2 Quasi-abelian parabolic subalgebra

In this subsection, we give a sufficient condition for completely reducibility of ind§(#")|y to apply
Corollary 5.9. Retain the notation in the previous subsection.

Set u” := un(g)*t and u’ = un (¢)*. Then u” is w-stable and u = 1’ & u” holds by
the definition of weakly g’-compatible parabolic subalgebras (Definition 2.14). The notion of
quasi-abelian parabolic subalgebras is defined in [5, p. 109] for symmetric (g, g’). We consider
a straightforward generalization of the definition.

Definition 5.11. q is said to be quasi-abelian with respect to g’ if (o, 3) > 0 holds for any
ace A, t) and g € A(W,t).

It is clear that if p is a weakly g’-compatible parabolic subalgebra containing q and q is
quasi-abelian, then p is also quasi-abelian. In fact, the nilpotent radical of p is smaller than that
of q.

If the nilpotent radical of q is abelian, q is quasi-abelian. More generally, we have the following
criterion.

Proposition 5.12. If W/ ,u”] = 0 holds, then q is quasi-abelian. In particular, a parabolic
subalgebra with abelian nilpotent radical is quasi-abelian.

Proof. Let a € A(W/,t') and f € A(u”,t'). Assume (o, ) < 0. This implies a + 8 € A(u”, )
and [ul,, u’é] # 0. By assumption, [ug‘,ug] C [w,u”] = 0 holds and this is contradiction. There-
fore, q is quasi-abelian. |

Example 5.13. If g ~ sl(2,C), then q is quasi-abelian as follows. q contains q(H) defined
by a semisimple element H € g'. Since any eigenvalue in u(H) of ad(H) is positive, q(H) is
quasi-abelian. As noted immediately after Definition 5.11, q is also quasi-abelian.

Take an slo-triple {H, X, Y} C ¢/ with [X,Y] = H. If ad(H) has an eigenvalue greater than
or equal to 3 in g, then we have [u,u”] # 0 by the representation theory of sl(2,C). Take
a finite-dimensional irreducible sl(2, C)-module F' of dimension greater than or equal to 3. Then
the embedding g’ = s((2,C) < sl(F') = g gives an example of quasi-abelian parabolic subalgebra
with [/, u”] # 0. This means that the converse of Proposition 5.12 does not hold in general.

A criterion for the completely reducibility of ind§(F')|y is given in [5, Lemma 3.1] if (g,g') is
a symmetric pair. We extend the criterion to our setting.

Lemma 5.14. Let F be a finite-dimensional irreducible [-module. Assume that for any irre-
ducible submodule of F|y, its infinitesimal character [N'] € (t')* /Wy satisfies

2(X + p(w), )

) ¢ {1,2,...}, Va e A(W,t).

Suppose that q is quasi-abelian. Then ind§(F)|y is completely reducible and each irreducible
component is isomorphic to an irreducible generalized Verma module.

Proof. By Proposition 2.16, ind§(F")|y has a standard filtration with
gr(ind§(F)ly) ~ indﬂ, (FoS@@")),

where the u-action on S(u”) is trivial.
Let V be an irreducible I'-submodule of F ® S(u”). By the Weyl character formula, the
infinitesimal character of V' is of the form [\ — R], where R is a sum of elements in A(u”, ')
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and [\'] is the infinitesimal character of some irreducible submodule of F|y. Since q is quasi-
abelian, we have

2(R, )
(a, @)

This and the assumption imply

€{0,1,2,...}, Va e A(W, ).

2N — R+ p(i), )

(@, @)

Z{1,2,...} for any a € A(W,t).

Hence indﬁi(V) is irreducible by Fact 2.10. Therefore, Proposition 2.13 shows the assertion. W

The condition in Lemma 5.14 is given in terms of t-weights. We shall give a criterion for
the completely reducibility in terms of t-weights. To do so, we prepare several convexity results.
Note that J.A. Vargas gave a similar estimate in [41, §(1.5)] in the context of the branching
problem of discrete series representations. Our result (Theorem 5.17) contains his estimate. See
also Theorems 5.27 and 5.31.

Suppose t' C t. Let t be the orthogonal complement of t' in t. Consider (t')* as a subspace
of t* using the direct sum decomposition t =t @ t’. For a € A(w/,t'), define

A(a) = {B € Aw,1) | Blv = a}.
For a subset S of a real vector space, we denote by Co(S) the convex hull of S.
Lemma 5.15. Let o € A(W,t'). Then o € Co(A(ex)) holds.

Proof. Fix a Cartan involution 6 of g such that g’,t and t' are -stable. In fact, since g’ is
reductive in g, such an involution exists.

Take a root vector X € u,. By X € u, we can write X =} 5.1, Xp with Xz € ug.
Consider the inner product (-,-) == —(-,6(-)) on g. Note that [t",g'] C (g')*. Then the root
spaces are mutually orthogonal, and hence we have

IX12=> Xl

BEA(a)
> (B(Z)Xp, Xg) = (a(Z') X, X),
BEA(a)
> (B(Z2")Xp, Xp) = ((2",X],X) =0 = (a(Z")X, X)
BEA(a)

for any Z' € ' and Z” € t’. This shows

Rl 1511
B, =1
2 1112 Z) X112

BeEA(a) BeA(a

Therefore, we obtain a € Co(A(w)). [ |

Lemma 5.16. Fiz a Borel subalgebra by, = t @ ur of [. Let A1 and A2 be dominant integral
weights of 1. Then we have Co(Wr A1) + Co(WrA2) = Co(WL (A1 + A2)).

Proof. Co(WrA1) + Co(WrA2) D Co(Wr(A1 + A2)) is obvious. We shall show the converse
inclusion. Let s € W, and it is enough to prove A; + s(A\2) € Co(Wp (A1 + A2)).

For a dominant integral weight \ of [, we denote by F'()) the irreducible l-module with the
highest weight A. Then there exists a unique non-zero homomorphism p: F(\) ® F(\y) —
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F(A1 + A2) up to scalar. For each ¢ = 1,2, fix a highest weight vector v; of F'(\;). Then we have

p(v1 ® v9) # 0.
Take a weight vector v, € F(\g) with the extreme weight s(A\2). Then there exists X € U(uy)
such that Xvl, = vy. Since vy is up-invariant, we have X (vq ® v4) = v; ® vo. This implies

Xp(v1 @ vh) = p(X (v1 ®@v5)) = plvr ® va) # 0,

and hence p(v1 @ v) # 0.
Since any weight of F(A; + A2) belongs to Co(Wr (A1 + A2)), this shows A\ + s(A\2) €
Co(Wr (A1 + A2)). We have proved the lemma. [

Fix a basis {v1,...,v-} of t' and extend it to a basis {v1,...,v,} of t. The bases determine
lexicographical orders on (t)* and t*. Let AT (', ') and A*(I,t) denote the sets of positive roots
given by the orders. Write p(I') (resp. p(l)) for half the sum of roots in AT(I';t') (resp. AT (I, t)).
Then p(I)|y is a dominant integral weight of I'.

Theorem 5.17. Let F be a finite-dimensional irreducible [-module with infinitesimal character
[A] € t* /W, in the good range, namely,

Re(A + p(u),a) <0, Vo € A(u, t).

Suppose that q is quasi-abelian. Then ind§(F)|g is completely reducible, and each irreducible
direct summand is of the form indﬁ/ (F") such that F' is a finite-dimensional irreducible '-module
i the good range.

Proof. Let F’ be an irreducible submodule of F|y and [\] the infinitesimal character of F.
We shall prove Re(\ + p(v),a) < 0, Va € A(v/,t'). If we prove this, the assertion follows by
the same way as Lemma 5.14.
Replacing the representatives A\ and )\, we may assume that A and )\ are dominant with
respect to AT (I[,t) and AT (I, ¥'), respectively. By Lemma 5.16, we have
A€ Co(WL(A = p(D))]¢ + p(I') € Co(WL(A = p(1))]¢ + Co(WLp()]y — p(1)|¢ + p(I')
— Co(We (M)l — p(Dle + (1),

From this, we write

N =3 sl = 0l + p(1)

seWr,

with ZseWL as; =1 and ags > 0.
Let « € A(W/,t). By Lemma 5.15, « is written as

o= Z cgf3
BeA(a)

with 3 gca(0) €8 = 1 and c¢g > 0. Then we have
(X' + p(), @) + (p(W)]y + p(D]y — p(I) = p(u'), )

(3wt + oo

seWr,

= Y ases(M+p(w),sH(B)). (5.4)

SeEWL,BEA(x)
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By A(a) € A(u,t) and the assumption, the real part of (5.4) is negative. By Proposition 4.9,
we have

(W)l + pOle — p(1) = p(u), @) > 0.
Therefore, we obtain (X 4 p(u'), ) < 0. [ |
Combining Corollary 5.9 with Theorem 5.17, we obtain the following.

Corollary 5.18. Let F' be a finite-dimensional irreducible l-module with infinitesimal character
[A] € t*/W, in the good range, and F' a finite-dimensional irreducible l'-module. Suppose that q
is quasi-abelian. Then the U(g)% -module Homg (indﬁ,(F’), ind§(F)) is irreducible or zero.

The estimate in the proof of Theorem 5.17 is independent of the assumption that ¢ is quasi-
abelian.

Corollary 5.19. Let F be a finite-dimensional irreducible [-module in the good range. Let F’
be an irreducible submodule of Fly and [N'] the infinitesimal character of F'. Then XN is in the
good range, i.e.,

Re(N + p(u), ) <0, Va e AW, ).

5.3 Holomorphic discrete series representation

A typical example of Corollary 5.18 is the case of holomorphic discrete series representations.
In the case, the branching laws are studied in [11] (at the unitary representation level), and
in [21, 22]. Theorem 5.17 has been proved in [21, Theorem 7.4]. Corollary 5.18 for holomorphic
discrete series representations of some classical groups is reduced to the compact group case by
the Howe duality and see-saw pair (see, e.g., [30, Lemma 2.6]).

Let (g,G’) be a pair with semisimple g, and 6 an involution of g fixing g’. Set £ := g’
and ¥ = (g')?. Suppose that there exists a semisimple element H € g such that H ¢ ¢, g’ = ¢
and ad(H) has eigenvalues —1, 0, 1 in g. Define parabolic subalgebras q = q(H) = ¢ ¢ u(H)
and q' .= ¥ @ (u(H)Ng') (see Section 2.4 for the notation). Then q is quasi-abelian with respect
to g’ by Proposition 5.12.

Fix a real form gr of g such that 6|y, is a Cartan involution. Set £g := gr N ¢, gp == ¢’ Ngr
and £, = gp N €. Let Gg be a simply-connected connected semisimple Lie group with the Lie
algebra gr. Let Kg, G and K} denote the analytic subgroups of Gr with the Lie algebras g, gg
and £, respectively.

Let F' be an irreducible unitary representation of Kk. Then F' is finite-dimensional. By
Harish-Chandra’s classification of holomorphic discrete series representations, F' is in the good
range if and only if indg(F ) is unitarizable and isomorphic to the underlying Harish-Chandra
module of a holomorphic discrete series representation of Gg (with respect to q). For simplic-
ity, irreducible finite-dimensional unitary representations are regarded as holomorphic discrete
series representations. We refer the reader to [15, Chapter VI] for holomorphic discrete series
representations.

In this setting, Theorem 5.17 and Corollary 5.18 are rephrased as follows. Although the
following theorem has an overlap with Theorem 5.31 (the discrete series case), we state it
explicitly because in the present setting K is non-compact and (g, g’) need not be a symmetric
pair.

Theorem 5.20. Suppose V' (resp. W) is a holomorphic discrete series representation of Gg
(resp. Gg). Then V|Gﬁ¥ 1s discretely decomposable and o direct sum of holomorphic discrete
series representations of Gg. Moreover, L{(g)G/ acts on HomG]/R (VV, V|Gﬁ§) irreducibly if the
space is non-zero.
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Remark 5.21. The discrete decomposability (or, more strongly, Gg-admissibility) is well-known
in [21, Theorem 7.4].

Proof of Theorem 5.20. We denote by Vi, the subspace of all Kg-finite vectors in V. Note
that the center Z of G acts on V' via a character and Kg/Z is compact. This implies that Vg,
behaves as a underlying Harish-Chandra module for a semisimple Lie group with finite center.

Hence Vi, is a g-submodule in V*° the space of smooth vectors. Then Vi, is isomorphic to
a generalized Verma module ind§(F") with finite-dimensional irreducible t&-module F i in the good
range. Similarly, WK/ is deﬁned and isomorphic to a generalized Verma module 11r1dg (F") with
finite-dimensional 1rredu01ble t-module F’ in the good range.

Remark that ind§(F) is ¥'-admissible by Proposition 2.17. This implies Vi, = V- Hence
the irreducible decomposition of Vi |y gives the irreducible decomposition of V\G]/R by taking
completion. In particular, the restriction map gives an isomorphism

Homgﬁg (W, V’G]/R) — Homy (WK&, Vie |g/)
of vector spaces. This shows the assertion. See [20, Proposition 1.6] for this isomorphism. B

In general (including non-holomorphic cases), U(g)® may not act on the Hilbert space
HomG]/R (VV, V|Gﬁ¥) as an algebra. In fact, an element in U (g)Gl acts on the space as a densely
defined closable operator, and the action is defined without using Vg, and WK&. See, e.g., [13,
Theorem 10.24]. In the current setting, Homgy (W, V|G]’R) is finite-dimensional, and hence U (g)¢’
actually acts on Homg, (W, V’Gﬁ@)'

Remark that Theorem 5.20 does not hold for unitary highest weight modules. We shall give
an example in which the ¢(g)% -module is not irreducible.

Example 5.22. Suppose that g = sp(2n,C) and g’ = sp(n,C). Here ¢’ is the diagonal
embedding in sp(n,C) @ sp(n,C) C sp(2n,C). Take a real form gr = sp(2n,R) of g such
that gp =g Ngr is sp(n,R). Let (w,V) be the even part of the Segal-Shale-Weil represen-
tation of sp(2n,R). Then V|y is completely reducible. Take an irreducible g’-submodule V'
of V| g

By the classical invariant theory, w(U(g))® is commutative. Hence, if Homgy (V', V) is irre-
ducible for any V', V| should be multiplicity-free. It is well-known that V'|y is not multiplicity-
free. In fact, O(2) that is the commutator of Sp(n,R) in Sp(2n,R) acts on Homgy (V’, V) irre-
ducibly. This implies that Homy (V’, V') is not irreducible excluding special V.

Using the theta lifting, we can obtain many concrete examples of U(g) -modules. See [12]
and [9] for the branching law and the theta lifting.

5.4 Zuckerman derived functor module

As an application of Corollary 5.18, we consider the branching problem of Zuckerman derived
functor modules induced from quasi-abelian parabolic subalgebras.

Let (g, K) be a pair with semisimple g, and (g’, K’) its subpair with reductive g’ in g. Suppose
that there exists an involution 6 of g such that € = g? and ¢ = (g’)?, and there exists a connected
reductive algebraic group G with the Lie algebra g’ such that (g,G’) is a pair. Fix H € ¢
semisimple in g with real eigenvalues and define a parabolic subalgebra q := q(H). Then q is
f-stable. Suppose that q is weakly g’-compatible, and set q’ := g’ N q. We use the notation
u,[u', ;... as in Section 2.4.

Write Lg for the centralizer of H in K and set L) := K' N Lg. Fix 6-stable Cartan
subalgebras t' and t of I' and [, respectively, such that t C t. Let p(u) denote half the sum of
roots in A(u, t).
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In this subsection, we consider Zuckerman derived functor modules defined by
L£3,(V) = RTF, (indd(V))

for an (I, Lx)-module V. Then £g’i(V) is a (g, K)-module. In [16], this module is defined by
the Bernstein functor II, and our parametrization is so-called unnormalized version, which is
written as" L.

Set S := dim(uN¢). For an ([, Lx)-module F' with infinitesimal character A, we say that A
(or V) is in the good range if A satisfies Re(A + p(u),a) < 0 for any o € A(u, t). The following
fact is a fundamental result about Egi(V) (see [16, Theorem 0.50]).

Fact 5.23. Let V' be an irreducible (I, Lk )-module with infinitesimal character [A].
1. Eﬁ’i(V) has the infinitesimal character [A + p(u)].
2. If X is in the good range, Egvi(V) is zero for i # S and non-zero irreducible for i = S.

Proposition 5.24. Let F;, i = 1,2, be a finite-dimensional irreducible (I, Li)-module with
infinitesimal character [\;] in the good range. If Eﬁ g(F1) ~ Eﬁ g(Fy), then Fy ~ F, holds.

Proof. Set t; = spangA(g,t). Then the symmetric form (-, -) is an inner product on t; and tj
is stable under the action of the Weyl group W of g. For p € t*, we denote by Re(u) the real
part of p with respect to the real form t;.

Fix a set AT([,t) of positive roots of A(l,t). We may assume that A\; and Xy are anti-
dominant with respect to AT ([, t). By Fact 5.23, Cg s(F3), i = 1,2, has the infinitesimal charac-
ter [A\; + p(u)]. By assumption, Re(A; + p(u)), i = 1,2, is regular and anti-dominant with respect
to AT(1t) U A(u, t).

Since E;S(Fl) ~ ﬁﬁ}S(Fé), there exists s € W such that s(A; + p(u)) = A2 + p(u). By the
anti-dominance, s is identity and hence we obtain A; = As. |

In a special case, the functor RiI‘%m L, can be computed by RT?Q L 1tisa generalization
of [7, Lemma 7], which is for discrete series representations.

Lemma 5.25. Let V' be an (I, Li)-module and M a connected reductive subgroup of K acting
on K/Lk transitively. Fizi € N. Then there exists an isomorphism

L3,(V) ~ RT g, (ind(V))
of (g, M)-modules.
Proof. By the construction of R'T’ fK (see before Proposition 2.18), we have
L£3,(V) ~ H' (¢ Lg; ind§(V) ® O(K)).
Recall that H* ({’,7 Ly;indg§(V) ® O(K )) is the cohomology of the complex given by
C7 (€, L; indd(V) ® O(K)) = Homp, (N (¢/1k),indd(V) ® O(K)).
See [2, Section 1.8]. Since M acts on K/Lg transitively, the restriction map induces a bijection
(O(K) @ W)H< = (O(M) @ )M

for any Lx-module W. Note that M N L is reductive since M /(M N Lk ) ~ K/L is affine.
Hence we have an isomorphism

Homy, (N (£/1k),indd(V) ® O(K))
~ Hompsng, (A (m/mN(g),indd(V) ® O(M))

of vector spaces. It is easy to see that this isomorphism induces an isomorphism of complexes.
Taking the cohomology, we obtain the lemma. |
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Example 5.26. If K is simple, there are few tuples (K, M, L) such that M acts on K/Lg
transitively,
(K, M, Lg) = (sl(2n, C), sp(n, C), gl(2n — 1,C)),
(50(271, C),50(27’l - 17 C)a g[(n7 (C))v
(50(7,C), g2,50(5,C) x C*)

are examples. See [23, Section 3 and Example 3.7].

We shall consider the branching problem of Eg s(F). To apply Corollary 5.18 to E S(F),
we need an additional assumptlon We assume that K’ acts on K/Lg transitively and q is
quasi-abelian with respect to g’.

Theorem 5.27. Let F be a finite-dimensional irreducible (I, L )-module in the good range.

1. Eq s(F) (g ,x7y s decomposed into a direct sum of irreducible modules of the form E (F’)
with finite-dimensional irreducible (I', L )-module F' in the good range.

2. ind§(F)|y 1. is decomposed into a direct sum of irreducible modules of the form 1ndEl (F)
with finite- dimensional irreducible (V, L )-module F' in the good range.

3. For any finite-dimensional irreducible ([’, L’K) -module F' in the good range, RSF? induces
. . K
an isomorphism

Homg: 1/ (indf, (F'),ind§(F)|y 1 ) = Homg g/ (L3 o(F), L3 §(F)lg.x7)

of U(g)% -modules, and each U(g)S -module Homgy/ g (E s(F"), L’ (F)’g’,K’) is irredu-

cible or zero.

Remark 5.28. The abstract branching law of £§ s(F) (g ,x7y is known in [35, Corollaries 5.7
and 5.8] in the Grothendieck group level. His result for Aq(X) (i.e., F is a character) is done
for A in the weakly fair range. His results are proved under weaker assumptions than ours.

Proof of Theorem 5.27. The assertion 2 has been proved in Theorem 5.17. By Lemma 5.25,
there exists an isomorphism £g g(F)~ RS Ff,/ (ind§(F)) of (g, K')-modules. Then we have
’ K

ind§(F)l (g 11 ) ue)e = P inds, (F') @ Homy 1 (indS, (F'),ind§(F)),
FI

and hence

L8 () (g 10y 24 @c s(F") ® Homg, 1, (ind%, (F), ind§(F)).

The sum is taken over all finite-dimensional irreducible ([/ L ) modules in the good range.
By Fact 5.23, each Eg, (") is non-zero and irreducible. By Proposition 5.24, Lg, ") is
not isomorphic to £° p S(F "\ for F”" % F’ in the good range. This implies

Homg s (ind§, (F'),ind§(F)|y 11 ) = Homg g (L5, o(F'), L] 6(F)lg k)

This isomorphism is induced by the functor RSI‘ . The irreducibility of the U(g)% -module
follows from Corollary 5.18. We have proved the theorem |
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We shall state an important case in which the assumption of Theorem 5.27 is fulfilled. We
assume that there exist two non-trivial ideals €1, €5 of £ such that

tE=1¢ Dby, Elzkl@(E/ﬂEQ), H e t.

Set E’Q = ¢ N€y. Then we have €5 C [ and uN€ C €. Let K;, ¢ = 1,2, denote the analytic
subgroup of K with the Lie algebra €;. It is clear that K’ acts on K /Ly transitively by Ko C Ly
and K; C K'.

For example, (g,9") = (u(p, q),u(p,q')), ¢’ < g, satisfies the assumption. In the case, €¢; ~ u(p),
t2 ~ u(q) and € ~ u(q’).

We shall give a criterion for the condition that q is quasi-abelian with respect to g’.

Proposition 5.29. If q is quasi-abelian with respect to €1, then q is quasi-abelian with respect
tog.

Proof. Replacing t', we may assume that t' contains a Cartan subalgebra of €. Set t, ==t N¢.
Recall that we have assumed H € £ C g’. Set u” := un (g/)*. Then we have u = u” @ v'.
SinceuNtC ¥ Cg andu= (uNt) & (uNtt), we have u” C &+
Assume that q is not quasi-abelian with respect to g’. Then there exist a € A(w,t') and
B € A(u”,t) such that (o, ) < 0. Since (g')* is a g’-module, this implies [u’a,u/’é] # 0. Since ¢’
is f-stable, there are two possibilities:

(1) v, C &t
2) (u, ® ug(a)) NE £0.
Assume (1). Using [u/,u”] C v, u” C ¢! and [t+,&+] C £, we have
[, uf] cu’necene=o.

This contradicts [u’a,ug] # 0.
Assume (2). By uj C gL, 3 is f-invariant. Hence we have

(el Ble) = (e, (B+0(B))/2) = (a, B) < 0.

By the assumption (1), ay belongs to AW N¥,t,) = A(un gy, t,). Therefore, this contradicts
the assumption that ¢ is quasi-abelian with respect to £;. We have proved the assertion. |

5.5 Discrete series representation

We assumed in Theorem 5.27 that q is quasi-abelian with respect to g’ and K’ acts on K/Ly
transitively. Note that there exist many tuples (g, K, g’, K/, q) such that EgS(F)\(g/,K/) is dis-
cretely decomposable and K’ does not act on K/Lg transitively. See the classification in [26].
On the other hand, many discretely decomposable restrictions of discrete series representations
satisfy the assumption.

Let Ggr be a connected non-compact simple Lie group with finite center and a Cartan involu-
tion 6, and G} be a 6-stable connected non-compact reductive subgroup of Gg. Set Ky := G%
and Kp = (G]’R)e. We assume that (Gg,Gg) is a symmetric pair and rank(g) = rank(t).
Then G has discrete series representations.

Fix a maximal torus Tr of Ky satisfying that T N K]k is a maximal torus of Kk. Then T
is a fundamental Cartan subgroup of Gr. Take a #-stable Borel subalgebra b of g containing t.
Let n denote the nilpotent radical of b. Set S” := dim(n).

For a unitary character Cy of T in the good range with respect to b, L’% o(Cy) is unitarizable
and its completion is a discrete series representation of Gr. By the classification ([26]) of
discretely decomposable Aq(A)’s, we can see the following fact. See also [3] and [35, Section 8]
for the details.
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Fact 5.30. Let Cy be a unitary character of Tr in the good range with respect to b. Suppose
that Eg’s,(CA)|(g/7K/) is discretely decomposable. Then there exists an element H € g’ N+/—1tg
such that the corresponding 0-stable parabolic subalgebra q == q(H) = @ u satisfies the following
conditions:

1.gDb.

2. lCt

3. q 1s quasi-abelian with respect to t.

4. There exists an ideal €1 of € such that uN€ C € C g’ and H € &,.
5

. There exists a finite-dimensional irreducible (I, Lx)-module F' in the good range such that
55,5/ (Cy) = ﬁﬁ,s(F)a
where S = dim(u) and Ly is the centralizer of H in K.

More precisely, u in Fact 5.30 is at most 2-step nilpotent and satisfies [u,u] C € In this
case, £§ g(F) is called a small discrete series representation in [7]. The ideal £ in Fact 5.30
is generémted by ¢Nu. In [3, Corollary 1], for a symmetric subgroup G C Gg, the restriction
Eﬁ 5/(C\)l(gr, Ky 1s discretely decomposable (or equivalently g’-admissible) if and only if £ C ¥
Note that we have proved the if part in Theorem 5.27.

Assume that the assumption of Fact 5.30, and take g in the fact. Replacing b with its
conjugate by an inner automorphism of [, we may assume that b’ := b N g’ is a #-stable Borel
subalgebra of g’. Set S” := dim(nNg’).

Theorem 5.31. Let Cy be a unitary character of Tg in the good range with respect to b. Then
Eg,S/(CA”gCK’ is decomposed into a direct sum of irreducible modules of the form Cgi’s,,((c)\/)
with Cy in the good range. Moreover, U(g)S acts on HomggK/[.](V’,Egvs,((c,\)\g/,K/[.]) irre-
ducibly for any irreducible submodule V' in ngs/(C,\)\g/,Ku

Remark 5.32. The branching law of £ ¢ (Cy)|y k- is described by the branching law of a gen-
eralized Verma module ind§(F)|y 1/ as we have seen in Theorem 5.27.

Remark 5.33. The branching law of L] ¢, (Cy)|y,x is computed by several researchers. In [7]
and [3], the multiplicities are given by an alternating sum like the Blattner’s formula. In [41]
and [33], the branching law is reduced to the K-type formula of another discrete series represen-
tation of G}, where (Gg, G}) is the associated symmetric pair of (Gg,Gg). In [35, Section 8],
the branching law is computed explicitly.

Proof Theorem 5.31. By Proposition 5.29, q is quasi-abelian with respect to g’. The assertion
is reduced to Theorem 5.27 by Fact 5.30. Note that for any finite-dimensional irreducible (I, L )-
module F” in the good range, £§:7 5(F") is isomorphic to some 53;7 g»(Cy) with a unitary character
Cy of Ty in the good range. In fact, by induction in stages (see [16, Corollary 11.86]) and the
vanishing theorem, we have

’ [/ i
L3 s (Lyow,sr-s(Cx)) = Ly g0 (Cx),
taking Cys to satisfy £E/ml' gr_g(Cy) > F'. [

5.6 Polynomial identity

One of the motivations of our study of U (g)G/—modules is to relate the multiplicities to algebraic
properties of U (g)G/. We shall consider polynomial identities as one of the properties.

We recall the notion of PI degree, which estimates non-commutativity of algebras. We refer
the reader to [31, Section 13].
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Definition 5.34. Let A be a (unital associative) C-algebra. For a Z-coefficient non-commutative
polynomial f with n indeterminates, we say that f is a polynomial identity of A if

FX1, Xoy o X)) =0, VXi€ A

We denote by PI(.A) the set of all polynomial identities of A, and set
Pl.deg(A) :=sup{n € N | PI(A) C PI(M,(C))},

which is called the PI degree of A.

It is clear that if there exists a surjective homomorphism A — M, (C), then we have
PI.deg(A) > n. Roughly speaking, Pl.deg(A) is the maximum dimension of irreducible A-
modules. This is true under a mild assumption (see Proposition 5.36).

Let s, denote the Z-coefficient non-commutative polynomial with n indeterminates defined by

(X1, X, o Xn) = Y sen(w) Xy Xu)  * Xum):
weG,

where G,, is the symmetric group of degree n and sgn is the signature character of &,,.
Fact 5.35 ([31, Proposition 3.2 and Theorem 3.3]). Fiz an integer n > 0.

1. (Amitsur—Levitzki) s,, € PI(M,(C)) for any 2n < m.

2. Conversely, sy & PI(M,(C)) for any m < 2n.
In particular, we have Pl.deg(M,(C)) = n.

Let A be a C-algebra. Assume that A has at most countable dimension.
Proposition 5.36.

L. Let {M;},c; be a family of irreducible A-modules. Suppose that (1), Anna(M;) is zero.
Then one has

Pl.deg(A) = sup {dim(M;) |i € I}.

2. If A is semiprimitive, then Pl.deg(A) is the maximum dimension of irreducible A-modules.

Proof. The second assertion easily follows from the first assertion. We shall show the first
assertion.

Assume that there exists ¢ € I such that dim(M;) = oco. Here oo means the cardinal-
ity |[N|. By the Jacobson density theorem, .A/Ann4(M;) contains a subalgebra isomorphic
to M,(C) for any n € N. This implies Pl.deg(A) = oo = sup {dim(M;) | ¢ € I}. Hence if
sup {dim(M;) | i € I} = oo, then the assertion holds.

Assume that sup {dim(;) | i € I} < oo. Then A/Ann4(M;) is isomorphic to Mgjy(ar,)(C)
for each ¢ € I. This implies PL.deg(A) > sup{dim(M;) |i € I}. By assumption, there is
an injective homomorphism A < [];c; Endc(M;). Hence we obtain the converse inequality
Pl.deg(A) < sup{dim(M;) | i € I'}. We have shown the proposition. |

Let (g, G') be a pair. The following proposition is an easy consequence of Proposition 5.36.

Proposition 5.37. Let V' be a g-module such that V |y is completely reducible. Write Irr(V]g/)
for the set of all isomorphism classes of irreducible g -submodules in V|y. Assume that the
U(g)% -module Homy (V', V|y) is irreducible for any V' € Irr(V|y). Then one has

sup  dimHomg (V', V|y) = PLdeg((U(g)/Anny g (V) 7).
V'elrr(V]y)
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Proof. The assertion follows from Proposition 5.36 for
GI
A= (u(g)/Annu(g)(V)) and {Mi}ier = {Homg/ (Vla V|g’) }V’elrr(\/|g/) : u

Combining Corollary 5.18, Theorem 5.27 and Proposition 5.37, we obtain the following.

Theorem 5.38. Let V' be a generalized Verma module ind3(F) in Theorem 5.17 or a cohomo-
logically induced module Eﬁ s(F) in Theorem 5.27. Then one has

sup  dimHomy (V',V|]y) = PLdeg((U(g)/Anny g (V)) G/) .
V’EIrr(V|g/)

In particular, Vg is multiplicity-free if and only if (Z/{(g)/Annu(g)(V))G, 18 commutative.

Under the assumption of Theorem 5.38, the algebra A := (U(g)/ Annu(g)(V))Gl is semiprim-
itive. Then PL.deg(A) = 1 if and only if any irreducible A-module is one-dimensional, that
is, A is commutative (see Proposition 5.36). Note that X; Xo — X9 X7 is a polynomial identity
of M1 ((C)

If V is an irreducible g-module and V| is locally finite and completely reducible, then the
assumption of Proposition 5.37 is fulfilled. In this case, an analogue of Theorem 5.38 appeared
in the proof of [36, Theorem 4.3].

In general, Homg/(V’ ,V\g/) (or Homg/(V\gr,V’ )) may not be irreducible as we have seen
in Example 5.22. We gave in [13] a similar uniform estimate of multiplicities by PIl.deg, and
a relation between the finiteness of Pl.deg and coisotropic actions on nilpotent orbits.
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