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Abstract. In this note, we study equivariant versions of Stolz’ R-groups, the positive
scalar curvature structure groups R°Pi"(X)&  for proper actions of discrete groups G. We
define the concept of a fundamental groupoid functor for a G-space, encapsulating all the
fundamental group information of all the fixed point sets and their relations. We construct
classifying spaces for fundamental groupoid functors. As a geometric result, we show that
Stolz’ equivariant R-group RSP™(X)® depends only on the fundamental groupoid functor
of the reference space X. The proof covers at the same time in a concise and clear way the
classical non-equivariant case.
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1 Introduction

In [10], Stolz organized the classification problem of metrics with positive scalar curvature in
a long exact sequence

o= RPN(X) — PostPR(X) — QSPI(X) — RPI(X) — ... (1.1)
of cobordism groups, where X is a CW-complex. This long exact sequence includes the well-
known spin cobordism QP (X); then the structure bordism group of metrics of positive scalar
curvature Posi™™ (X)), whose cycles (f: M — X, g) are defined like those of Q" (X)), but adding
the geometric secondary structure given by a positive scalar curvature metric g on the smooth
compact manifold M with spin structure; finally, the object of study of this note, R"™(X)
which intuitively arises as a sort of mapping cone construction of the forgetful functor

PosPin(X) — QPIn(X).

An explicit calculation of this last group has not yet been achieved in any case of interest.
Nonetheless, Stolz has proved that, if X = Bmi(M) is the classifying space of the fundamental
group of a closed spin manifold M with dim(M) > 5, then R, | (X) acts freely and transi-
tively on the space of concordance classes of positive scalar curvature metrics on M. This action
is canonical and hence the space of concordance classes inherits canonically (after the choice of
a base point) an abelian group structure and a construction of an explicit model for this is given
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in [15, Section 4]. This has been used, for instance, in [6, 7, 9, 15] to give a lower bound on the
rank of this affine group and of the moduli space of concordance classes of metrics of positive
scalar curvature, where moduli space refers to the quotient by the action of the diffeomorphism
group of M.

A fundamental step in [9] uses the fact, which can be implicitly deduced from [10], that a 2-
connected map between CW-complexes, such as the classifying map w: M — B (M), induces
an isomorphism between corresponding R:™™ groups for * > 6.

There is an obvious equivariant reformulation of this story: instead of working with a space X
one can work with the a G-cover X with its free G-action. One can then go equivalently back
and forth between structure on X and G-invariant structure on X (pulling back from X to X
and quotienting by G from X to X). This way, for a space X with fundamental group G' and
universal cover X, one can replace equivalently the Stolz sequence (1.1) by its equivariant version

= RP(X)C o PostP (X)) - P (X) Y o RPN(X)C
where all the cycles are defined as above, by requiring to come with a free and co-compact
and (whenever we have metrics) isometric action of GG, and all maps are required to be G-
equivariant. This equivalent reformulation is important to get information about the groups
in the Stolz sequence via higher index theory, which has been successfully implemented in [5]
and [16], compare also [14] and the survey [8]. The proofs of lower bounds on the rank of the
affine group of concordance classes of positive scalar curvature are based on these techniques.

The aim of this note is two-fold. The first main contribution is an explicit and concise proof of
the fact that (non-equivariantly) the group Ri*™(X) depends for * > 6 only on the fundamental
group information of X. Secondly, we want to analyze the corresponding statement for the
case of general proper G-actions. Here, we develop basic tools for this generalization and then
study it in the equivariant context of a CW-complex endowed with a proper action of a discrete
group. Concretely, we construct an equivariant version of the Stolz exact sequence, compare
Proposition 3.3. One contribution is to give a complete proof of exactness, as we are not aware
that this is available in the literature. Our main original result is the fact that the equivariant
R-groups do only depend on the equivariant 2-type of the space, compare Theorem 4.1. Along
the way, we construct an equivariant analog of the space B (X), namely a “universal space for
a given 2-type”, compare Section 5.2.

It should be noted that this relies on surgery constructions requiring enough “room”. This
is the reason for the dimension restrictions listed above: the manifolds whose positive scalar
curvature metrics are controlled have to be spin manifolds of dimension at least 5, and the
group RP™(X) can be treated efficiently if * > 6.

2 Proper actions of discrete groups

Let us fix throughout a discrete group G.
Definition 2.1. A G-CW-complex X is a GG-space together with a G-invariant filtration

g=XDcxOcxWc...cxm®c...c UX(”):X

such that X carries the colimit topology with respect to this filtration and for each n > 0 the
space X (™ is obtained from X (=1 by attaching equivariant n-dimensional cells, i.e., there exists
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a G-pushout

| | G/H; x s771 — x (D)

i€ln

| | G/Hi x D" —— X ™).
7:6[’!’1,

Note that the G-CW-complex X defines its isotropy family Z(X) of subgroups of G where H
belongs to Z(X) if and only if the fixed point set X! is non-empty or in other words if and only
if X contains a G-cell G/K x D™ where a conjugate of H is contained in K.

We recall the concept of a family of subgroups which we just have used.

Definition 2.2. Let G be a discrete group. A family of subgroups F is a set of subgroup of G
which is closed under conjugation and is closed under passing to smaller subgroups.

Significant examples of such families of subgroups are FZN, the family of all finite subgroups,
or ALL, the family of all subgroups.

Let us fix some notation.

Definition 2.3. Let f: X — Y be a continuous G-equivariant map between G-spaces. We will
denote by f7: X" — Y the restriction of f to the H-fixed point sets, with H a subgroup
of G.

Definition 2.4. We say that f is cellular if X and Y are G-CW-complexes and, denoting
by X the k-skeleton of X, one has f(X®) C y(*).

The well-known and important cellular approximation theorem extends to the equivariant
context (compare [12, Theorem 2.1]).

Theorem 2.5. Let f: X — Y be a G-map. Then there exists a G-homotopy h: X x I =Y
such that ho := hx oy = f and hy := hx 1y s cellular.

We also have an equivariant version of the Whitehead Theorem for G-CW-complexes.

Definition 2.6. Consider a function v: ALL — N. Then we say that f is v-connected if f¥
is v(H )-connected for all H € F, namely the induced maps are isomorphisms on the first v(H)—1
homotopy groups of (all components of) X and Y and a surjection on the v(H)-th one. In
particular, we say that it is k-connected if v is constantly equal to k.

Moreover, we say that a relative G-CW-complex (X, A) has dimension less or equal to v if
the cells in X \ A are of the form G/H x DF with k < v(H).

Proposition 2.7 (compare [12, Proposition 2.6]). Let f: B — C' be a v-connected map between
G-CW-complezes and A another G-CW-complex. Write [A, B]G for the set of G-homotopy
classes of G-maps from A to B. Then

for [A,B]Y = [4,C°
is surjective (or bijective, respectively) if dim A < v (or dim A < v, respectively).

Note that the classical Whitehead theorem is a consequence, using A = C' and A = B and
identity maps.
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3 The Stolz exact sequence

Definition 3.1. Let X be a G-CW-complex. We then define the following groups:

. Qipin(X )¢ is the G-equivariant spin bordism group: a cycle here is given by a pair (M, f),
where M is an n-dimensional spin-manifold with cocompact spin-structure preserving'
action of G and with a G-equivariant reference map f: M — X. Two cycles (M, f)
and (M’, f') are equivalent if there is a cocompact spin G-bordism W from M to M’ and
there exists a G-equivariant reference map F: W — X extending f and f’.

e Pos?P(X)E consists of cycles (M, f,g), where the pair (M, f) is as before and g is
a G-invariant metric with positive scalar curvature on M. Two such cycles (M, f, g)
and (M g ) are equivalent if there exists a spin bordism (W, F) as before, along with
a G-invariant metric gyy on W which is of product type near the boundary which restricts
to g on M and to g’ on M’.

o RP™(X)C is the bordism group of spin G-manifolds with boundary (possibly empty) of
dimension n, together with a G-invariant Riemannian metric of positive scalar curvature
on the boundary. Bordisms are then manifolds with corners. In particular, (M, f,g)
and (M g ) are equivalent if there exists a G-bordism (W, F, g), where W is a bor-
dism between M and M’ and the resulting bordism dyW between OM and OM’ car-
ries a G-invariant metric g with positive scalar curvature, so that it is a bordism be-
tween (OM,0f,g) and (OM',8f,¢’) in the sense of Pos,™; (X)C,

n—1

Each of these sets is equipped with an abelian group structure given by disjoint union
of manifolds and is covariantly functorial in X as follows: a G-equivariant map of G-CW-
Complexes ¢: X — Y induces a mapping ¢, on these groups by post-composing the reference
maps with ¢.

Remark 3.2. Note that for each cycle f: M — X in Q5P™(X)% the isotropy of M is restricted
to belong to the family Z(X) (because the image under the equivariant map f of a point z € M
fixed by a subgroup H of G must also be fixed by H, and is a point in X).

If we want to restrict the isotropy even further, to live in a family F of subgroups of G,
we can replace the space X by X x ErG where ErG is the universal G-CW-complex with
isotropy family F. This space is characterized by the property that ExGH is empty if H ¢ F
and ExG™ is contractible if H € F, in particular Z(ExG) = F. It exists for each family F and
it is unique up to G-equivariant homotopy equivalence. It has the universal property that a G-
CW-complex X with isotropy contained in F has a unique homotopy class of G-maps to ErG.
These spaces were introduced and studied in [11, 12].

Proposition 3.3. The abelian groups defined in Definition 3.1 fit into the following G-equivari-
ant version of the Stolz positive scalar curvature exact sequence:

o RP(X)Y = PosP(X)E — QP(X)G — RPM(X)E o
where the first map sends a manifold to its boundary, the second one is the forgetful map (i.e.,

it forgets the metric of positive scalar curvature) and the last one considers a closed manifold as
a manifold with empty boundary.

Proof. This is a rather direct consequence of the definitions and well known to the experts,
at least non-equivariantly, stated, e.g., in [10, long exact sequence (4.4)] (but without proof).
The argument for the G-equivariant case is exactly the same as the classical non-equivariant

!That is, with a lift of the action to the Spin principal bundle.
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situation. As we are not aware of a treatment available in the journal literature, we follow the
referee’s suggestion and give a complete account of the argument here.

First, that the composition of two consecutive maps is zero indeed is a direct consequence of
the definitions:

e Given [W, f,g] € Rfffi (X)€, its image in Q,(X)Y is represented by (OW, f|sw) which

indeed is a boundary, hence represents 0.

o Given [M, f,g] € PosP™(X)C, its image in R{P™(X) is the manifold M with empty
boundary. It is bordant in Ry’ " (X) to @ and hence represents 0 via the bordism M x
[0, 1], where (M x {1}, g) is a positive scalar curvature bordism of @ = OM to @ = 9.

e Given [M, f] € QP™(X)%, its image in Pos™™ (X)C is represented by M = @, hence
represents 0.

For the opposite inclusions of the kernels in the image, the constructions are almost as
straight-forward:

e Assume that [M, f] € OP™(X)% is mapped to 0 in RP™(X)C. This means that there
is a null-bordism (W, F'). In the case at hand, OW has two disjoint parts: on the one
hand (M, f) and on the other hand (M’, f,¢’) which is a bordism from M = & to
09 = @ and which is equipped with a metric g of positive scalar curvature. But this
means, by definition, that [M, f] = [M’, f'] € Q"™ (X)® where M’ is equipped with a
metric g of positive scalar curvature. Hence we have the preimage [M i g] € PosPn(X)¢
of the initial equivariant bordism class (M, f).

e Assume that [M, f,g] € Posi™(X)C is mapped to 0 in 5P™(X)C. This means that
there is a bordism (W, F) with d(W,F') = (M, f). But then [W, F, g] represents a class
in RP] (X)Y which is mapped to [M, f,g] € PosiP™(X)¢.

e Finally, assume that [W, f,g] € Rfﬁiﬁ (X)¢ is mapped to 0 in Pos?P™(X)C. This means
that there is a second bordism (W', f’,¢’) whose boundary is (OW, flaw,g). We now
consider the closed G-manifold Z := W Ugy W' with map F := f Ugw f': Z — X and
the bordism B := Z x [0,1] with map F opry: B — X. The boundary of B consists
of three parts: the internal boundary W’ between W and @ = 0Z, equipped with the
metric g’ of positive scalar curvature extending g. The other two boundary parts are W
and Z, and by definition (B, F o pry, ¢') is a bordism in Ry’ (X)% between (W, f,g) and
(Z, f,@) and [Z, f] € %P (X)Y represents a preimage of [W, f, g] € Ri¥™(X)C. [ |

Let X be a connected G-CW-complex with z¢p € X and fundamental group (X, zp). Let
T (X,.f'()) — (X, .T())

be the associated universal covering projection. Then the proper G-action on X lifts to a G-
action on X, where

1= m(X,2) >G—G—1

is an extension of discrete groups defined as follows: the elements of G are pairs (a: X > X, g)
where g € G and « covers the action map of g on X. We define the multiplication by composition
of the maps « and multiplication in G.

Note that, by covering theory, because X has trivial fundamental group, indeed for each
i1 e X with n(#) =g - m(To) there is a unique lift of the action map sending Ty to 1.

The projection map G — G sends («,g) to g. By the above consideration, this map is
surjective and its kernel consists of the deck transformations which, by covering theory, are
identified with 1 (X, z¢).
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Remark 3.4. The Stolz exact sequence of Proposition 3.3 can always be reduced to a sequence
where the space X is connected. This is done in two steps:

(1) For every component X, of X consider the induced G-invariant subspace G - X.. We
then have a disjoint union decomposition into G-invariant subsets X =| |G - X, with X,
connected (choosing one representative in each G-orbit of components). Clearly, every
group in the Stolz exact sequence and the whole sequence then split canonically as a direct
product, with one factor for each G - X..

(2) For a G-space Y = G - X, with X, connected, consider the subgroup Gy C G of all
elements which map X, to itself. Then X. is a Gg-space and Y is obtained by “in-
duction”: Y = G Xg, X.. Whenever we have a G-map f: M — Y which could be
part of a cycle or a bordism for the groups in the Stolz exact sequence, then we ob-
tain My := f~!(X.) a union of components of M on which Gg acts (restricting the action
of G on M). Then f|y,: My — X, is a Go-equivariant map and we obtain M and f
by induction: M = G x¢g, My and f = idg X, f|r,- It follows that induction gives an
isomorphism (already on the level of cycles and relations)

indg, : RP™(X)“ — RP™(Y)C

and the same for the other groups in the sequence of Proposition 3.3 and the maps between
them.

Remark 3.5. The isotropy family Z ( ) of the action of G on X is precisely the inverse image
of Z(X) under the projection G—G.

This again follows from covering theory: if we fix z € X with lift 7 € X and a subgroup H
of G fixing  we have a canonical split H — G sending h € H to the unique pair (a XX h)
such that a(Z) = 7.

Then we have the following easy identification.

Proposition 3.6. The G-equivariant Stolz exact sequence associated to X is isomorphic to the
G-equivariant Stolz exact sequence associated to X.

Proof. The action of m(X) C G on X is free. Consequently, for every G-map f: M — X
the action of 71(X) on M is free. We can therefore quotient out this action and obtain
a cycle M := M /m1(X) — X with residual action of G := G/71(X). Vice versa, given a G-
map f: M — X we can pull back X — X along f and obtain a 7 (X)-covering M — M with
map f: M — X. Because f is a G-map, it is straightforward to pull back also the action of G
to an action on M which covers the action of G on M and such that f is a G—map (indeed, the
G-action on M is defined mapping a point (m, ) € M C M x X by (o, g) € G to (gm, a(i))).
The same construction gives a bijection between G-invariant metrics on M and G-invariant
metrics on M, and also works for bordisms. These constructions are clearly inverse to each other
and preserve all additional structure and define the required bijections. |

Remark 3.7. For the paper at hand, the transition to the universal covering as in Proposi-
tion 3.6 is not really relevant. However, in other situations this point of view is really fruit-
ful. To our knowledge, essentially all information about non-triviality of the groups Ry (X)
and PosSP"(X) use higher index theory of the Dirac operator. A particularly transparent way
to do this is to use the equivariant Dirac operator on the universal covering. This essentially
means that one applies the isomorphism between the groups “downstairs” for X and the 71 (X)-
equivariant groups “upstairs” for the universal covering X , as we have already mentioned in the
introduction.
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It is pretty obvious that the same observation does hold for non-free actions: even if we
want to understand symmetric metrics of positive scalar curvature on a compact manifold M
with smooth action of a finite group I', it will be very useful to pass to the covering space
which also sees the symmetries induced by the non-trivial fundamental group. This strategy
has already been implemented in [14, Section 5] and [15]. The first paper constructs the map
from the equivariant Stolz sequence to analysis (in form of the Higson—Roe exact sequence for
the K-theory of the Roe C*-algebra) in the sense of [5]. The second paper then uses this to
explicitly distinguish many bordism classes of equivariant positive scalar curvature metrics.

3.1 Refinements beyond bordism of positive scalar curvature metrics

The Stolz positive scalar curvature exact sequence of Proposition 3.3 gives important information
about the existence and classification of metrics of positive scalar curvature. However, by the
very definition this information is about bordism classes and we are of course also interested in
a fixed given manifold M.

Non-equivariantly, the situation here is very satisfactory: for a given connected closed spin
manifold M with dim(M) > 5, if we use X = Bmi M then M itself admits a metric with positive
scalar curvature if (and only if) the image of [u: M — Bm(M)] in R (Bm(M)) vanishes.
Moreover, in this case R, (Bmi(M)) acts freely and transitively on the concordance classes of
metrics of positive scalar curvature on M.

Of course, it would be very desirable to extend such results to the equivariant case. Unfortu-
nately, the proof in the non-equivariant case uses as an important tool “handle cancellation” for
Morse functions. It is known that equivariantly such cancellation is not even true. Therefore,
a general treatment of the equivariant case seems not in reach at the moment. Under very spe-
cial conditions on the action, positive existence results can be obtained. The strongest results in
this direction we are aware of are obtained in [2]. There, also the difficulties are discussed when
one attempts to obtain more general results. In the paper at hand, we focus on the bordism
context and do not attempt to contribute to obstruction and classification results for G-invariant
metrics of positive scalar curvature on a fixed manifold M.

4 Invariance of R-groups under 2-equivalence

Theorem 4.1. Let f: X — Y be a continuous, 2-connected G-map between G-CW-complexes
(in particular, it induces a bijection between components of fixed point sets and an isomorphism
of the fundamental groups of all components of fived point sets of X and the corresponding
ones of Y). Then for x > 6 the functorially induced map fi: Ryw ™ (X)) — RP™(Y)E is an
isomorphism.

Proof. Surjectivity. We start by showing the surjectivity of the map f: flpin(X )¢ — Rsnpin(Y)G.
Let us consider a class [W,p: W — Y, g] € RiP™(Y)%. We want to find a bordant cycle whose
reference map factors through f.

Consider W as a bordism between its boundary W and the empty set and choose a G-
invariant Morse function a: W — R on it with critical points rearranged as described in [4,
Theorem 4.8], namely for any critical points p; and p; such that f(p;) < f(p;), we have
that Inds(p;) < Indy(p;), where Inds(p) denotes the Morse index at p of the function f. Notice
that we are going to use the enhanced version of this result to the equivariant setting, see for
instance [3] or [13].

Then there exists a suitable ¢ € R such that the subset W; := a~1([0,¢]) C W consists only of
G-handles of dimensions 0, 1 and 2. We immediately obtain a decomposition of W as W1 U W
such that W is a bordism from the empty set to M7 := o~ () and W3 a bordism from M; to OW.
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Of course, W5 has only critical points p; with Ind,(p;) > 3. Consider now the function —a:
this is a Morse function on Wy seen as a bordism from W to M; with same critical points p;
but with indices now given by Ind_,(p;) = dim(W) — Ind,(p;). These critical points p; are
then associated to G-equivariant (Ind_, (p;) — 1)-surgeries, hence of codimension Index, (p;) + 1
which is > 3.

M, oW

ANe

W

This allows us to apply the Gromov—Lawson theorem in its G-equivariant version as it is
proved in [2, Theorem 2]. This implies that we can extend the metric with positive scalar
curvature g on W to a G-invariant metric with positive scalar curvature g on Wa. Let us denote
by g1 its restriction to M. Observe that the triad (W1, ¢, ,g1) defines a class in Ry (V)
and the manifold W x [0, 1] provides a bordism between (W1, ¢y, 91) and (W, ¢, g).

Consider now the natural G-equivariant inclusion of the 2-skeleton given by i: Y2 — Y.
Here we have the following facts:

e Since the manifold W is obtained from the empty set by attaching G-handles of dimen-
sion 0, 1 and 2, it is homotopy equivalent to a 2-dimensional G-CW-complex. It follows
from Theorem 2.5 that the map ¢1 := ¢y, factors through ¢ up to homotopy.

e Since f is 2-connected, up to G-homotopy we can assume that its restriction to the
2-skeleton f @. X®@ 5 vY® 5V has a right inverse, i.e., there exists a G-equivariant
map h: Y® = X@ such that f@ o h is homotopic to i. To see this, observe that the
existence of such a map h is guaranteed, up to G-homotopy, by Proposition 2.7. In fact,
since f (2) is 2-connected and Y@ has dimension < 2, it suffices to apply Proposition 2.7
with A=Y® B=X® C =Y and f = f® to the map i € [4,C]%. The surjectivity
of f, then implies the existence of h.

Thus, we obtain the following commutative diagram of G-equivariant maps

147] L Y

x(2)

J

and, if we set ¢p := johop;: Wi — X, we obtain by construction that
FWi,w: Wi = X, gi] = W, 00 W = Y, g] € RPP(Y)S,

which proves that f, is surjective. ' ‘

Injectivity. In order to prove the injectivity of fi: Ry (X )¢ = RPM(Y)E, let us consider
a class [W,p: W — X, g] € RP"(X)¢ such that its image f.[W,o: W — X, g] is equal to the
trivial element in Ry> " (Y)Y, This means that there exists

e an (n + 1)-dimensional G-manifold with corners B, whose codimension 1 faces are W
itself together with a bordism V' from 0W to the empty set, which intersect in the only
codimension 2 face OW =W NV,
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e a G-invariant metric gy on V' of positive scalar curvature of product type near the boundary
which restricts to the metric g on OW;,

e a G-equivariant map ¥: B — Y which restricts to f o on W.

Consider now a G-invariant collar neighborhood of OW inside V' such that the bound-
ary of B is made of three faces of codimension 1: W on the bottom, 0W x [0, 1] vertically
and V =V \ OW x [0,1) on the top.

We want to split the bordism B, as we did in the proof of surjectivity, into the composition of
two bordisms, first from W to a manifold with boundary W; and then from Wj to V, such that
the first one involves only handle attachments of dimension less or equal than 2 and the second
one only of dimension greater or equal than 3. Since the vertical boundary face W x [0, 1] is
a cylinder, B can be obtained from W by attaching all the handles to the interior of W, away
from OW x [0,1]. Hence we can find a Morse function on B which has all critical points there.

Thus, we can decompose B as desired: By from W to Wi involving only 0, 1, 2 handle
attachments and By from W; to V. We can assume that these two bordisms have vertical
boundaries faces equal to W x [0,1/2] and OW x [1/2, 1], respectively, and therefore that W;
has boundary equal to OW.

By construction, the bordism Bj is the trace of surgeries of codimension > 3. Therefore, we
can apply the equivariant version [2, Theorem 2] of the Gromov—Lawson theorem to extend the
metric gy to a G-invariant metric of positive scalar curvature g on By. Let us denote by g; the
G -invariant metric of positive scalar curvature obtained by restricting gs to Wi.

The last fact to prove is that ¥|p,: By — Y factors through f: X — Y. Indeed, B; is
obtained form W by attaching, up to homotopy, cells of dimension up to 2. Define a map
h: By x {0} UW x [0,1] — Y as the restriction of ¥|p, o pr to this subspace of B; x [0, 1],
where pr: By x [0,1] — By is the obvious projection. Note that by assumption the restriction of
this map to W x {1} equals fo¢. These are exactly the conditions of the relative precursor [12,
Proposition 2.5] of Proposition 2.7 which now implies in particular (because f is 2-connected)
that there exists an extension K: By — X of .

Now observe that (B, ®, g1) is a bordism between (W, ¢, g) and the trivial cycle (W1, K|w,,
gilow) in RP™(X)C (trivial because the metric extends to the metric g; of positive scalar
curvature on all of W7), the injectivity of f, is proved. |

5 Universal spaces

In algebraic topology, a convenient way to deal with fundamental group information is by using
the classifying space BT of a (discrete) group I'. Let us paraphrase its relevant property:
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BT has the following universal property: for every connected CW-complex X with base-
point xg the fundamental group functor gives a bijection

[(X,z0), (BT, y0)] = Hom(m (X, x0),T)

between the pointed homotopy classes of maps from X to BI' and the group homomorphisms
from 71 (X) and T'.

It is known that BI is characterized by the fact that it is connected, has fundamental group I,
whereas all higher homotopy groups are trivial.

Our goal now is to achieve the corresponding result for a G-CW-complex X. We observe right
away that we have now much richer fundamental group information: not only X, but also each
fixed point set X for a subgroup H of G (or rather each component of X) has a fundamental
group and the action of g € G as well as fixed point set inclusions induce maps between these
fundamental groups.

As a first step, we define the fundamental groupoid functor of a G-CW-complex as a natural
generalization of the fundamental group of a CW-complex. In order to do that, let us first recall
the definition of fundamental groupoid IT; (X)) of a topological space X: it is the groupoid whose
objects are the points of X; whose arrows, from x to y for instance, are equivalence classes of
paths starting at x and ending at y, where the equivalence relation is given by homotopy of
paths with fixed starting and ending points; the composition is given by the concatenation of
paths. Observe that the set of arrows starting and ending at a same point z € X is just the
fundamental group of X at z.

Definition 5.1. Define for a family of subgroup F of G the following orbit category Orb(G, F),
whose objects are all subgroups in F and morphisms from H € F to K € F are G-maps
G/H — G/K for H K € F. Note? that any such map is of the form xH > xgK for a well
defined coset [g] € G/K, where we also have that g-'Hg C K —precisely the condition for this
map to be well defined.

As an abbreviation, define Orb(G) := Orb(G, ALL) for the family of all subgroups of G.

Definition 5.2. Let X be a G-CW-complex. The fundamental groupoid functor of X is the
contravariant functor

I1;(X;G): Orb(G,Z(X)) — groupoids,
which associates

e to a group H € I(X) (the isotropy family) the fundamental groupoid of X restricted
to the O-skeleton of X/ (meaning that we take the full subgroupoid), which we denote
by Iy (XH)|X{(§)7

e to a morphism from H to K in the category Orb(G,Z(X)) given as G-map G/H
G/K;xH ~— xzgK the morphism of groupoids between Hl(XK)|X(1§) and II; (XH)

X%
induced by the map X% — X defined as = — gz.

(0)
This extends canonically to a functor
I1;(X;G): Orb(G) — groupoids,

assigning to H ¢ Z(X) the empty groupoid. Note that the empty groupoid has a unique map to
any other groupoid, but is not the target of any map from a non-empty groupoid. The former is

2To be explicit: as G/H consists of a single G-orbit, the map is determined by the image of the coset H. Say
this image is the coset gK. Then by G-equivariance for each x € G we must have that x H is mapped to zgK.
To be well defined, for every x € G and h € H we require that xthgK and zgK are in the same K-coset, i.e.,
g 'z 2zhg € K for each h € H, which is the condition g 'Hg C K.
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good because it determines the value of II; (X; G) on morphisms in Orb(G) with domain H. The
latter is no problem because families are closed under conjugation and under taking subgroups
and therefore if K € Z(X) and H ¢ Z(X) there never is a morphism from K to H in ALL.3

Below, when dealing with different G-spaces with potentially different isotropy, we are using
this version of the fundamental groupoid functor.

Remark 5.3. More conceptually, to construct the fundamental groupoid functor, we can observe
that we have the canonical morphism map®(G/H, X) — X between the mapping space of G-
equivariant maps and the fixed point set, sending f: G/H — X to f(eH). The functoriality is
then just given by precomposition.

Observe that the construction of the fundamental groupoid functor is itself functorial. This
means that if ¢: Y — X is a G-equivariant cellular map between G-CW-complexes, then there is
an induced natural transformation ¢4 : II; (Y; G) — II; (X; G) whose component at H is the ho-
momorphism of groupoids ¢4 (H): IIy (YH)|Y<§> — II; (XH)\X(’g) induced by ¢y #: YH 5 XH,

5.1 Fundamental groupoid functor realization

We know that every discrete group is the fundamental group of a 2-dimensional CW-complex.
The corresponding result holds for our fundamental groupoid functors:

Proposition 5.4. Let G be a discrete group and I1: Orb(G) — Groupoids be a functor whose
image is given by discrete groupoids. Then there is a G-CW-complex X with I1;(X; G) = II.

Proof. The proof is somewhat parallel to the one in the non-equivariant case. One has to be
careful to work canonically (without choices) as one has to achieve compatibility between the
different fixed point set data.

To simplify, we make use of some well established constructions (classifying space/simplicial
set of a small category and its geometric realization), we also make use of one very special case of
the co-end construction, called “tensor product of space valued functors over the orbit category”
in [1, Section 1].

Since the proof is rather long, we summarize here the steps we are going to follow:

e Step 1: we first construct the 0-skeleton X(©) of the candidate G-CW-complex X;

e Step 2: we check that, for each subgroup H of G, (X (0))H is in bijection with the units
of II(H);

e Step 3: we construct the G-CW-complex X;

e Step 4: in order to check that, for each subgroup H in G, we have that II; (XH) (X =
II(H), we construct an intermediate subspace Z of X which allows to facilitate this com-
putation and we do it;

e Step 5: finally, we check that for each morphism « in Homg,, (H, K), the associated map
XK — X induces the groupoid morphism II(c) under the identification of IT; (X H )

|(X0)H
with II(H) and the similar one for the subgroup K.

Step 1. The 0-skeleton of any G-CW-complex X with fundamental groupoid functor II is
directly determined by II itself, more precisely by the units of II(H) for the subgroups H of G.
Considering an orbit G/H as a discrete topological space with G-action, the “identity” functor
defines a covariant functor E: Orb(G) — G-TOP sending G/H to the discrete topological G-
space G/H. Then we define (and are required to do so) X := E ®q,y, II.  Concretely, by

3Recall that a morphism from H to K exists if and only if 3g € G with ¢ *Hg C K.
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definition of ®q,p in [1], this is the (discrete) G-space obtained as quotient space

|| G/H xI(H)/~, (5.1)

HeOb(Orb(G))

where the equivalence relation is generated by declaring for all morphisms « € Orb(G), say
a: G/H — G/K, that

(algH), x) ~ (gH,Il(a)(x))  Va € I(K)o.

Note that we write II( K)o for the units in the groupoid II(K). The G-action is induced by the
G-action on the orbits G/H, which is well defined because the maps « are G-equivariant.

Step 2. Let us show that this produces the desired 0-skeleton of the space X to construct. For
this, we have to compute the fixed point sets say for the subgroup H of G. It is straightforward
to see that gK € G/K is fixed by H if and only if g7'Hg C K. At the same time, from
such an element gK, we then get a well defined G-map G/H — G/K, uH +— ugK which
sends the coset 1H € G/H to gK € G/K, where 1 denotes the unit in G. Thus, all the
points (gK,z) € G/K x II(K)y in X© which are fixed by H are identified with a point in
the single copy {1H} x II(H)o and therefore the H-fixed set of X is a quotient of II(H ).
We are done once we have shown that no further identifications occur. This follows from the
functoriality of II: whenever two H-fixed points are identified with each other, they are also
identified with a single point in {1H} x II(H)o.

Step 3. As a next step, we produce spaces with the correct fundamental groupoids for the
fixed point sets. For this, we rely on the well established construction of the classifying space
(as simplicial set) of a small category: |II(H)| is the geometric realization of a simplicial set
associated to the groupoid II(H) with a canonical identification Il ([IL(H)|)|y gy = IL(H).
In particular, for its zero skeleton we have |IL(H)|(®) = II(H)j.

Note, as a remark, that we can not glue together these spaces in the same way as we glued
together the O-skeleta in (5.1) to produce the desired G-space as the gluing process could destroy
the fundamental groups of the smaller fixed point sets. Instead, we have to carry out a homotopy
version of the co-end construction which has to the correct 0-skeleton to obtain the following
G-space W

( Ll c/Ex @) | ] G/H x [0,1] x |II(K )/N

HeOb(Orb(Q)) Ha: G/HﬂG;ZKK)
€Homg, (@) (H,

where the equivalence relation is now generated by a multiple mapping cylinder construction,
gluing the ends of the spaces associated to morphisms appropriately to the spaces associated to
the objects. Concretely, this is done as follows: let us use the notation (gH,t,z), to denote an
element of the summand G/H x [0,1] x [II(K)| associated to a: G/H — G/K € Homg,,(q)-
Then we declare for all morphisms o € Mor(Orb(G)), say a: G/H — G/K

(gHv Oax)oz ~ (gH,H(Oé)(.T)), VgH € G/H’ T e |H(K)’7
(9H,1,2)q ~ (a(gH),x), VgH € G/H, =z € |[II(K)|. (5.2)

Note that the G-space W contains the G-subspace Wy obtained when performing this “ho-
motopy co-end construction” just to the O-skeleton |TI(-)|(®) = II(-)g of |II(-)|, namely

Wo:= || G/HxI(H)I || G/Hx[0,1]xI(K >/N
He a: G/H—-G/K
Ob(Orb(G)) €Homg,p, () (H,K)

with the same equivalence relation as in (5.2).
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Note that there is the evident projection map p: Wy — X© sending the class of (gH, )
in W to the class of (¢H,z) in X(©) and sending the class of (¢H,t, ), to the class of (¢H, ).

Now we define the desired G-CW-complex X by identifying in W all the points in W, with
their image points under the surjective map p, i.e., as the pushout

Wy——Ww

P

X0 —-X.
Step 4. We next have to analyze X and compute in particular II;(X;G). In order to do
that, we define an intermediate G-CW-complex Z in the following way. Note that the space W

contains canonically as subspace | |ycoum () G/H x |II(H)|. We therefore obtain as a subspace
of X the pushout

Wo—> Wo U ( || G/H x \H(H)|>
‘ HeOrb(G)

|

x©) Z,

where we glue the union of the G/H x |II(H )| along their 0-skeleta with identifications. Observe
that we obtain the same space by simply attaching the spaces |[II(H)| to the already constructed
0-skeleton X(©) as the following pushout:

|| ¢/Hx (i) V— || G/H x[1(H)|
HEALL HEALL

b l

X0 Z.

In particular, it is clear that the 0O-skeleton of X is the O-skeleton of Z, i.e., precisely X ),

Observe that all 1-cells of X are already contained in the subspace Z. This space Z is
obtained from a disjoint union by identifying along O-cells. The fundamental groupoids of X
and of the subspaces X, for H subgroup of G, are then generated by the arrows given by 1-cells,
which are all contained in the constituent subspaces of Z. By the van Kampen theorem, the
relations in the fundamental groupoid are then generated precisely by the 2-cells. There are two
types of 2-cells: first the 2-cells contained in the constituent subspaces of Z, giving rise to the
fundamental groupoids II(H) of |TI(H)| and second 2-cells {gH } x [0, 1] x ¢, for a: G/H — G/K
and 1-cells ¢, in |II(K)].

Using these considerations, let us now compute for a subgroup H of G the fundamental
groupoid II; (X H ) | X, of the H-fixed set. We follow the arguments which lead to the identifi-
cation of

(Hl((X(O))H>|X(°))0 = (Hl(XH)|(X(0>)H)O = II(H)o.
Indeed, the H-fixed set of Z is given as pushout
S T

KeOrb(Q);
{gK|g~1HgCK}

p |

(xO)H zH
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with one 1-cell for each 1-cell {gK} x ¢ in {gK} x |[TI(K)|" for each subgroup K of G and
coset gK € G/K with g71Hg C K and 1-cell ¢ of |II(K)|.

Step 5. Now, each such gK gives rise to a: G/H — G/K; uH — ugK as above which
finally gives rise to a 2-cell in X which identifies the class of {gK} x ¢ and of {1H} x a*(c)
in ITy (ZH ) As before, the other morphisms in Orb(G) do not add further relations by func-
toriality of a. Next, the 2-cells in |II(H)| add precisely the required further relations which
imply that IT; (X xu =1I(H). Note that the fact that o*: Iy (|II(K)|) — IL([TI(H)|) are
groupoid homomorphisms implies that no further relations will be created. We obtain the desired
result IT; (X*)|yn = II(H) with a canonical identification.

From the con(sogruction, we also obtain that the induced map coming from a morphism
a: G/H — G/K of the form uH — ugK, given by fixed point inclusion and translation by g € G
produces on the fundamental groupoids of the fixed point sets X% and X exactly the mor-
phism II(«).

To summarize, we have constructed the G-CW-complex X such that II;(X; G) = II exactly
as required. |

5.2 Construction of a universal space

In the following, given a functor II: Orb(G) — groupoid (thought of as an abstract fundamental
groupoid functor) we construct a universal space BII such that canonically IT; (BII; G) = II, but
all possible higher homotopy groups vanish. It has the universal property that there is a bijection
between algebraic maps between fundamental groupoid functors and homotopy classes of maps
between G-spaces, compare Proposition 5.7.

We start with the G-CW-complex X of Proposition 5.4 such that canonically IT; (X ; G) = II.
Inductively on k > 3 we construct larger G-CW-complexes X, by attaching G-equivariant k-cells
to Xi_1 to kill mp_1. We start by setting X, := X.

We assume as induction hypothesis that for each subgroup H of G for each component of X ,f_ 1
the m;-th homotopy groups vanishes for 2 < j < k — 2. Note that for £ = 3 this is an empty
condition and hence the induction start for k = 3 is trivially satisfied.

Then, for each subgroup H of G we first attach cells H/H x D* of dimension k to X li 1 in
order to make m_1 (X H ) trivial. To actually remain in the world of G-CW-complexes we induce
these attaching constructions up and attach G/H x D* to G- X,il C Xk_1. Note that these G-
k-cells affect also other fixed point sets, but there will be no change of 7; for j < k — 1, and 7
can only get smaller, but as we make sure that it is trivial, this property will not be affected.
After attaching all these G-cells we therefore get a new G-CW-complex Xj containing X 1
such that =; (X,f,x) =0 for all subgroups H of G and for all 2 < 57 < k — 1 and for all
basepoints x € X,f.

Definition 5.5. The union of all X (with the colimit topology) is then called BII.
It has the following characteristic property.

Lemma 5.6. The G-space BII just constructed contains X as a subcomplex and has the same
2-skeleton as X, and satisfies that 7; (BHH, x) =0 for all j € N and for all subgroups H of G
and all x € BITH .

This classifying space BII has the following universal property.

Proposition 5.7. For every G-CW-complex Y and for every natural transformation ®: 111 (Y
G) — 10, there exists, unique up to G-equivariant homotopy, a G-equivariant cellular map
¢: Y — BII such that pu = ®.
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Proof. We begin by defining the map ¢ on the G-equivariant 0-skeleton of Y by putting PlYp) =
<I>({e})|y0). Now, we proceed to define ¢ on the 1-skeleton of Y. For a G 1-cell ¢ of the form
G/H x fO, 1] (with isotropy H) pick the ordinary l-cell ¢z := H/H x D' contained in Y.
Then cp defines (if we choose an orientation of it) an element ~ € Iy (YH ) - Define now
¢ ca — (BHH)(I) such that this map represents the element ®(H)(y) in Iy C%HH)](BH@))H.
Since H acts trivially on the target, this extends uniquely to a G-map on the G-cell ¢ with values
in the 1-skeleton of BII. Of course, we could have picked a different base cell in the G-cell c.
But because ® is a natural transformation, the resulting map is independent of this —up to the
choice of the representative in the homotopy class of ®(H)(y) which had already to be made
anyway. This defines the map ¢ on the 1-skeleton of Y.

To extend ¢ to Y@ let ¢ be a G-2-cell of the form G/H x D?. Pick the correspond-
ing ordinary 2-cell H/H x D? (with isotropy H) which is contained in Y. Its attaching
map t: S* — Y is obviously contractible in Y and hence trivial (i.e., a unit) in the fun-
damental groupoid II; (BHH)|(BH(0>)H (we conjugate with a path in Y to the 0-skeleton to
make 1) represent an element of IIy (YH ) g » the triviality does not depend on the choice of
such a path). Consequently, ®(H) being a méap of groupoids, also the image under ®(H) of this
element of the fundamental groupoid is trivial (a unit). By construction of ¢ on the 1-skeleton,
this image element is represented by ¢ ot (up to the chosen conjugation with a path to the
0-skeleton), which is hence contractible in BII¥. Extend ¢ over H/H x D? using this contraction
and then extend it G-equivariantly to ¢ = G/H x D2

Inductively, we then extend ¢ over the k-skeleta of Y. The extension property now follows
because each attaching map has contractible image by the vanishing of all higher homotopy
groups of all components of all fixed point sets of BII for the various subgroups of H.

By the very construction of ¢ on the 1-skeleton, we have 4 = ®, because the morphism sets
of II(H) = II; (BII*) |(prio)y are generated by the 1-cells.

The last step of the proof concerns uniqueness. Choose therefore a G-equivariant map
@'+ Y — BII such that ¢, = ®. We have to show that ¢’ is G-homotopic to ¢.

It is immediate from the definition that if gpg‘# = 4, then their restrictions to Y{g) are equal.
The construction of the desired G-homotopy is now done inductively over the skeleta and follows
the pattern in the non-equivariant case and for the construction part, making use of the condition
that d)%& = ¢4 for the extension over the 1-skeleton and of the vanishing of higher homotopy
groups for the further extensions. |

Example 5.8. Consider the 2-dimensional torus T? = S x S! with the following CW-complex
structure: the first factor is given by two vertices v; and vo; two edges e; and es both with
extremes v; and vy (this gives the first factor); two loops [; and Iy attached to v; and v
respectively (these give two copies of the second factor); finally two 2-cells ¢; and cg suitably
attached, the first one to eq, l1, 61_1, and [y, the second one to es, Iy, 62_1, and l5. Let then Zo
act on T? by flipping the first factor (in particular, swapping e; and e3) and also ¢; and ¢z, and
then fixing [y and [s.

In Figure 1, we represent the torus as a square where we identify opposite sides. Because the
fixed-point sets are the aspherical spaces S! for Zy and T? for {e}, this is a classifying space for the
functor II; (TQ; ZQ), isomorphically given as IT: Orb(Z2) — Groupoids which is defined as fol-
lows. We have to specify which groupoid it assigns to each of the two possible Zs-orbits, namely
to the trivial orbit Za/Zs and the free orbit Zy/{0}. Moreover, in the category Orb(Zs) there
are only two non-identity morphisms, the collapse map Zs/{0} — Zs/Zs and the non-identity
bijection 7: Zy/{0} — Z2/{0} and we have to specify the associated morphisms of groupoids.

Concretely, we define II as follows:

e We assign to Zy the groupoid Z x {vi,va} over {vi,ve}, where {S} denotes the trivial
groupoid of the set S with only identity morphisms.
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Figure 1. Torus with action of Z,.

e We assign to {0} C Zy the group Z>.

e We assign to the collapse map Zy/{0} — Zs/Zs the morphism of groupoids which first
projects Z x {v1,v2} to the factor Z and then injects Z into Z? as the subgroup {0} x Z.
Note that, if we identify Z? with the fundamental group of the torus 72 we constructed
above, we think of this as the subgroup generated by each of the two loops I, or Iy (the
two loops are homotopic).

e We assign to the non-identity map 7: Zy/{0} — Z2/{0} the automorphism of Z? which
sends the generator of the first factor to its inverse and the second generator to itself.

Note that indeed this is precisely the fundamental groupoid of the Zs-space T2 with the
chosen CW-structure, and by the contractibility of S* and 72 it is a model for BII; (T 2, ZQ).

It is a nice exercise to carry out the construction of the space X of Proposition 5.4 for
this II. One observes that one attaches quite a few 2-cells and 3-cells and that way produces
a space X not homotopy equivalent to T2. Specifically, the 0-skeleton of X is the 0-skeleton
of T?2. To obtain the 2-skeleton, we use the classifying spaces T2 of I1({0}) = Z? and S* x {v1,v2}
of H(Zg) =7 X {?}1, 1)2}.

By construction of X, we have to take the disjoint union of the 2-skeleta of Zs/{0} x T2 and
of Zs/Zs x S* x {v1,v9} which is the disjoint union of two copies of T2 and of S'. To this,
we have to glue 4 cylinders for the 4 morphisms in Orb(Zs)

Zy/{0} x [0,1] x T?, Z/{0} x [0,1] x T?, Zs/{0} x [0,1] x ST x {vy, v},
[0, 1] X Sl X {Ul,UQ}.

Gluing in the first cylinder, corresponding to idz, /{0y, produces Zz/{0} x T3. The second cylin-
der produces another copy of T3, glued with the previous two along embedded copies of T2. The
third cylinder, corresponding to the collapse map, homotopically and Zs-equivariantly glues the
2 copies of S' into this space (without changing the homotopy type). The forth cylinder, corre-
sponding to the identity of Zo/Zs, glues in two more copies of T into the space obtained so far
along a homotopically non-trivial circle in each. From the cellular chain complex we can read
off that H3(X;Z) = Z3, generated by the fundamental classes of the three copies of T° the first
two cylinders produced. In particular, this space is not homotopy equivalent to T2.

Remark 5.9. Observe that when G = {e} is the trivial group and II({e}) is a discrete group I"
(a groupoid with only one object) then BII is a standard C'W-complex with a single 0-cell. It
follows that the space obtained in this way is an Eilenberg—-Mac Lane space BI' = K(I', 1).

Now we combine the results obtained in this section and Theorem 4.1, obtaining as a corollary
the fact that the Stolz G-equivariant R-groups depend only on the equivalence class of the
fundamental groupoid functor.

Here, we define a natural equivalence between two groupoid valued functors as follows.
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Definition 5.10. Let C be a small category and F,G: C — Groupoid be two functors. Let T
be a natural transformation between F' and G. We say that T is an equivalence if and only if
for each object ¢ of C, the functor T'(c): F(¢) — G(c) between the groupoids F'(c) and G(c)
is an equivalence of groupoids. Recall that the latter condition means that there are func-
tors S(c): G(c) — F(c) and the compositions T'(c) o S(c) and S(c) o T'(c) admit natural trans-
formations to the identity functor.

Remark 5.11. Let T: G — H be a morphism of groupoids. Recall the standard two facts:

(1) If T is an equivalence then 7" induces a bijection between the sets of orbits and for each
unit x of G an isomorphism of isotropy groups G — ’H;Eg

(2) If G has a single orbit then for each object x of G the inclusion G — G induces an
equivalence between the isotropy group of z in G (considered as a groupoid with a single
object) and the full groupoid G.

Lemma 5.12. Let T': G — H be a morphism of groupoids such that it induces a bijection between
the sets of orbits and for each object x € G an isomorphism of isotropy groups G& — ”H;Eg
Then T is an equivalence of groupoids.

Proof. The assertion follows directly from the following commutative diagram:

L] e—= | i)
(H)

[alemo(9) [alemo
e

Here, we denote m(G) the set of orbits of G and we use that T induces a bijection be-
tween 7o (G) and 7o(H) and that a disjoint union of equivalences of groupoids is again an equiv-
alence of groupoids. |

Lemma 5.13. Let X and Y be G-CW-complexes and f: X — Y be a cellular G-map. Then
the induced transformation fyu: II1(X;G) — II1(Y; G) is an equivalence in the sense of Defini-
tion 5.10 if and only if for each subgroup H of G and for each xo € X f induces isomorphisms

mi(F7): m (XM o) = (VY f(x0))  forj=0,1.

Proof. First, assume that fx is an equivalence. By definition, this means that fH induces an
equivalence of groupoids between II; (X H ) and II; (YH ) This, in turn, by Remark 5.11 implies
that m; ( il ) is an isomorphism for j = 0 and 5 = 1. The other implication is a special case of
Lemma 5.12. |

We now show that the equivariant R-groups of G-CW-complexes depend only on the equiv-
alence class of the fundamental groupoid functor. More precisely, we have the following result.

Proposition 5.14. Let II: Orb(G) — Groupoids be a functor (thought of as an abstract funda-
mental groupoid functor). Let X be a G-CW complex and ®: I11(X; G) — II be an equivalence
as in Definition 5.10. Then for the classifying G-map ¢: X — BII as in Proposition 5.7 which
induces ® on the level of fundamental groupoid functors, we have that for n > 6

pu: RPP(X)C - R (BIDS

18 an tsomorphism.
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Proof. By Lemma 5.13, the map f: X — Y induces isomorphisms of 7y and m; for each fixed
point set X and each basepoint. Moreover, as all higher homotopy groups of fixed point sets
of BII are trivial, this map indeed is 2-connected in the sense of Definition 2.6. Therefore, the
assertion is exactly the one of Theorem 4.1. [ |

Using this proposition, we arrive at a slight strengthening of Theorem 4.1.

Corollary 5.15. Let f: X — Y be a G-map between G-CW-complexes such that for each
subgroup H of G the induced map fH: X" — YH induces an isomorphism

mi (1) (X7 2) = m (Y, f(@))

for allz € XH and j =0,1. Then for n > 6 the induced map
for RPP(X)C = RP(Y)C

s an isomorphism.

Note that the assumption on f in the corollary is close to the condition to be a 2-connected,
but we do not have any condition on .

Proof. This improvement relies on the existence of the universal space BII. In fact, we can
post-compose with the classifying map u: Y — BII;(Y; G) of Proposition 5.7. Then v and uo f
both are automatically 2-connected and hence both induce isomorphisms between the R-groups.
Then also the third map f, is an isomorphism. |

Remark 5.16. Note that Proposition 5.14 and Corollary 5.15 of course also hold if G is trivial
and just state that Ry’ (X) depends only on the fundamental group of the CW-complex X.
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