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Abstract. We study extended associative semigroups (briefly, EAS), an algebraic structure
used to define generalizations of the operad of associative algebras, and the subclass of
commutative extended diassociative semigroups (briefly, CEDS), which are used to define
generalizations of the operad of pre-Lie algebras. We give families of examples based on
semigroups or on groups, as well as a classification of EAS of cardinality two. We then
define linear extended associative semigroups as linear maps satisfying a variation of the
braid equation. We explore links between linear EAS and bialgebras and Hopf algebras. We
also study the structure of non-degenerate finite CEDS and show that they are obtained by
semi-direct and direct products involving two groups.
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1 Introduction

It seems that the notion of family parameterization of a given type of algebraic structure ap-
peared firstly appears in the context of quantum field theory: in [6], the authors introduced Rota—
Baxter family algebras. This terminology is due to Li Guo [12]. In the same spirit, family pre-Lie,
dendriform or tridendriform algebras, among others have been introduced [10, 15, 16, 17, 18].
In all cases, the idea is to replace the operations defining the structure by a bunch of operations
indexed by a semigroup 2; the relations between the axioms are deformed using this structure
on Q. For example, if (€2, *) is a semigroup, an (2, x)-family associative algebra A has a family
(*a)acn of products, with the relations

T o (Y *3 z) = (T *q ) *axf %,

satisfied for any «, 5,y € € and any z, y, z in A. In the same spirit, the notion of matching
parameterization can be used: for pre-Lie, it appears for example in the work of Bruned, Hairer
and Zambotti on regularity structures to solve stochastics PDEs [2, 3, 4, 9]. Matching Rota—
Baxter algebras, associative, dendriform, pre-Lie algebras are introduced in [9, 16], see also [10]
for a two-parameter versions for pre-Lie algebras. For example, a matching associative algebra
has a family (x4 )aecq of products indexed by a set €2, with the relations

T ko (Y x5 2) = (% Y) %3 2.

Note that no specific structure is required on €2 in this case. Attempts to unify these parame-
terizations have been done in [7, 8, 11]. For example, for associative, following [7], given a set §2
with two binary operations — and >, an (£2, —,>)-associative algebra has a family (*4)aecq of
products, with the relations

T ko (Y*3 2) = X *app (Y *a—sp 2).
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Of course, usually these structures do not have any convenient property, and some conditions
are imposed: roughly speaking, one imposes that the underlying combinatorics of the initial
object is conserved, modulo a parameterization by 2. This gives some constraints on 2. For
associative algebras, (€2, —,>) has to be an extended associative semigroup (briefly, EAS):
Va,B,v€Q,  a—=(B—=7)=(a—=B) =,
(ap(B=7) = Bey)=(@=>B)py,  (ap(B—=7)>(Bpy) =arp.

In particular, (€2, —) is an associative semigroup. Here are some examples:

e If Q is a set, putting Vo, 5 € Q, a — 8 = 3, a8 = «, we obtain an EAS, denoted by
EAS(2). This EAS gives back matching associative algebras.

e If (2, —) is an associative semigroup, it is an EAS with Va, 8 € Q, a> 8 = . This EAS
is denoted by EAS(Q2, —). It gives back (2, —)-family associative algebras.

e If (,%) is a group, it is an EAS, with Vo, 3 € Q, a — 8 =8, a>f = ax L It is
denoted by EAS'(,*).

The two first examples explain why Q-matching and (2, x)-family associative algebras are very
similar, in particular why the free objects are isomorphic as vector spaces: this is fact works for
the more general settings of ()-associative algebras over an EAS. The same can be done with
pre-Lie algebras, leading to the notion of commutative extended diassociative semigroup (briefly,
CEDS). A CEDS is an EAS satisfying the complementary axioms

Va, 8,7 € Q, (a—=pB) =>v=(8—a) =17, av (B —7) =avy,

The Koszul duality of quadratic operads applied to 2-pre-Lie algebras leads to the notion of
dual CEDS, which are EAS with the complementary axioms

Ya, 8,7 € €, (abp) = v=a—7, (a>p)>y=(a>y)>p.

For example, for any set 2, EAS(2) is both a CEDS and a dual CEDS. For any semigroup ({2, x),
EAS(Q, %) is a dual CEDS and is a CEDS if and only if

Va, 8,7 € Qax (Bx7) = (axB)xy = (B*xa)*7.

For any group (€, %), EAS'(Q, ) is a CEDS, and is a dual CEDS if and only if x is commutative.
The axioms of EAS can be reformulated using the maps

" 02— Q2 92— 02
(@B —(a—Bax ), (@8 — (8,0).
Then (2, —,>) is an EAS if and only if
(Id x¢) o (¢ x Id) o (Id x¢) = (¢ x Id) o (Id x7) o (¢ x 1d).

Similar formulations can be done for CEDS and dual CEDS, see Lemma 2.10. This reformulation
naturally leads to the notion of linear EAS: an (EAS is pair (A, ®), where A is a vector space
and ®: A® A — A® A is a linear map satisfying the (FAS braid equation

(Id@®) o (P ®1d) o (Id®@®P) = (P ®Id) o (Id®7) o (¢ @ Id).

In particular, let (2, —,>) be a set with two operations. We denote by K2 the vector space
generated by €2 and we define ®: K ® KQ — KQ ® KQ2 by

Va, B € Q, Pla®p)=(a— ) (arf).
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Then (KQ, ®) is an /EAS if and only if (2, —,>) is an EAS. Not all the fEAS can be obtained
in this way, see Example 4.2 for two-dimensional examples. Similar presentations of /CEDS and
(CEDS can be established, see Definition 4.1.

The aim of this paper is a study of EAS, CEDS, and their linear versions. In the second
section, after recalling the main definitions, we give a classification of EAS of cardinality 2,
which gives 13 non-isomorphic examples, 11 being CEDS, 7 being dual CEDS, 3 being non-
degenerate (that is to say, with an invertible map ¢). The third section is devoted to the
study of non-degenerate finite CEDS. We prove that the three examples defined earlier are
in fact fundamental bricks: Theorem 3.16 states that any finite non-degenerate CEDS can be
decomposed as the direct product of a semi-direct product EAS(y,*) x EAS' (9, %) with
an EAS(Q3), where (€1, %) is an abelian group, (£22,x) is a group and {23 is a nonempty set.
The fourth section is devoted to linear versions of EAS. We give firstly a family of 18 examples
of /EAS in dimension 2, then study the duality of /EAS (see Proposition 4.4), and left units,
left counits and eigenvectors (see Definition 4.6). If (A, ®) is an /EAS, an element a € A is a left
unit if for any b € A, ?(a ®b) = b® a. An element f € A* is a left counit if for any a,b € A,
(f®Id)o®(a®b) = f(b)a. In particular, we characterize left units and counits and eigenvectors
for linearization of non-degenerate CEDS in Proposition 4.10. In the last section, we introduce
two functors taking their values in the category of /EAS. The first one (see Proposition 5.1) is
defined on the category of bialgebras (not necessarily unitary nor counitary) and generalizes the
construction of EAS(§2, —). The second one (see Proposition 5.10) is defined on the category
of Hopf algebras and generalizes the construction of EAS’(€, ). In the case of an /EAS coming
from a Hopf algebra, this is closely related to the notion of right integral (see Proposition 5.16).
We prove in Theorem 5.17 that we can associate to any convenient pair (a, f) of a unit and
a counit a bialgebra structure on A, recovering in this way fEAS coming from a bialgebra. This
is finally applied to /EAS defined from Hopf algebras of groups.

Notation 1.1. K is a commutative field. All the vector spaces in this text are taken over K.

2 Extended (di)associative semigroups

2.1 Commutative extended diassociative semigroups

Let us first recall this definition of [10], where it is related to a parameterization of the operad
of dendriform algebras.

Definition 2.1.

(1) A diassociative semigroup is a family (£2,<,—), where € is a nonempty set and <,
—: Q x Q — Q are maps such that, for any «, 5,7 € €,

(@ B)y=a (B+7)=a+ (B—=7), (2.1)
(= B)y=a—(B+1),
(@a=B)=y=(a+pB)=y=a—=(B—=7).

An extended diassociative semigroup (briefly, EDS) is a family (€2, +—, —, <,>), where € is
a nonempty set and <, —,<,>: ) x  — ) are maps such that

(a) (£2,4,—) is a diassociative semigroup.
(b) For any a, 3,7 € Q,

ad(f+y)=a>p, (2.4)
(@ = pB)ay=p47, (2.5)



(a<p) < (a4 B)<a7) =a<(B ), (2.6)
(@) a((a+ B)ay) =B, (2.7)
(@<af) = (e« B)ay) =a<(B =), (2.8)
(@aB)p (e B)ay)=B>7, (2.9)
(a>(B—=7)) < (Bey) = (a+ B)>7, (2.10)
(a> (B —=7)a(Bry)=adp, (2.11)
(ax(B—=7) = (Bey)=(a— B>y, (2.12)
(a>(B—=7)>(Bry)=a>p. (2.13)
An EDS (9, -, —,<,>) is commutative if for any «, 5 € Q,
a+ B=8—=aqa, a<dfB=08pa. (2.14)

Let us reformulate the definition of commutative EDS.

Proposition 2.2. A commutative EDS (briefly, CEDS) is a triple (2, —,>), where Q is a non-
empty set and —,>: Q% — Q are maps such that, for any o, 5,7~ € 9,

a=(B=r)=(@=>p)=y=0B—a) >, (2.15)
a>(f—vy)=ary, (2.16)
(apy) = (Bpq) = (@ = p)>7, (2.17)
(apy)>(Bry) =ap>p. (2.18)

Proof. Replacing <— and < in (2.1)—(2.13) with the help of (2.14), we find (2.15)-(2.18). H

Definition 2.3 ([7]). An extended associative semigroup (briefly, EAS) is a triple (2, —,p),
where  is a nonempty set and —,>: Q2 — Q are maps such that, for any o, 8,7 € €,

a—(B—=7)=(a—=PB)—=1, (2.19)
(a>(B—=7) = (Bry) =(a—B)>7, (2.12)
(a>(B—=7)>(Bry)=a>p. (2.13)

Remark 2.4. Let (2, —,<,>,<) be an EDS. Then (Q, —,>) is an EAS, called the right part
of the EDS (2, —, +,>,<). We obtain a commutative triangle of functors

CEDS—— EAS.

\[ Aart

EDS

We shall see that not all the EAS are right parts of an EDS (see case C6 in the classification of
EAS of cardinality 2 in the next paragraph).

Example 2.5.
(1) Let © be a set. We put

a— =4,

arf=a.

Y(a, B) € O, {

Then (2, —,>) is an EAS, denoted by EAS(Q). It is a CEDS.
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(2)

Let (£2,%) be an associative semigroup and let 7: £ — Q be an endomorphism of (€2, %)
such that 72 = 7. We put ¥(o, ) € Q2, a> = 7(a). It is an EAS, which we denote
by EAS(Q, , 7). It is a CEDS if and only if for any a, 3,7 € Q, (ax ) xy = (B* ) x 7.
We shall simply denote EAS(Q, %) instead of EAS(, x,Idg). In particular, if (,x) is
a group, then EAS(Q, x) is a CEDS if and only if (€2, ) is abelian, which proves that not
all EAS are CEDS.

Let Q be a set with an operation > such that, for any o, 8,7 € Q, (a>v)>(B>7) = a>f.
We then put V(a,8) € Q% a — B = 3. Then (2, —,5) is a CEDS (so is an EAS). This
holds, for example, if (€2, %) is an associative semigroup with the right inverse condition

Y(B,7) € 9%, Fa € Q, axfB=n.
This unique « is denoted by v > 5. Then, for any «, 5,7 € €,
((a> )5 (B57) % B = (@b 7) > (B> 7)) * (B57) +7)
= (((apy)>(Bpy)* (Bry))*v = (aby)*7y =a,

so (a>y)>(B>v) = a>B. This EAS is denoted by EAS'(Q,*). The right inverse
condition holds for example if (£2,*) is a group, and then a > 3 = ax f*~1. It also holds
for semigroups which are not groups. For example, if {2 is a nonempty set, we give it an
associative product defined by Va, 5 € ), a*x 8 = a. It satisfies the right inverse condition
and, for any «, 3 € Q, a> 3 = a. Note that for this example, EAS'(Q2,x) = EAS(Q).

Definition 2.6. Let (2, —,>) be an EAS. We shall say that it is non-degenerate if the following
map is bijective:

)9 — 02
o {(mﬁ) — (o= B,a> ).
If © is a non-degenerate EAS, the structure implied on Q by ¢! will be studied in the next
paragraph.
Example 2.7.
(1) Let Q be a set. In EAS(Q), for any o, 8 € Q, ¢(a, ) = (B,a), so EAS(Q) is non-

(2)
3)

2.2

degenerate.
Let (€2, %) be a group. Then EAS({2, ) is non-degenerate. Indeed, in this case, ¢(a, §) =
(ax B, ), so ¢ is a bijection, of inverse given by ¢~ !(a, ) = (8,8 ! ).

Let (2, %) be an associative semigroup with the right inverse condition. Then EAS'(, )
is non-degenerate. Indeed, in this case, ¢(a, ) = (B,a> ), so ¢ is a bijection, of inverse

given by ¢~ (o, 8) = (B * a, ).

Dual commutative extended semigroups

Definition 2.8. Let (2, —,>) be a set with two binary operations. We shall say that it is a dual
CEDS if, for any «, 8,7 € £,

(= B)—=v=a—=(8-=7), (2.19)
(a>(B—=7) = (Bry)=(a—B)e7, (2.12)
(a>(B8—=7)>(Bry)=aprp, (2.13)
(a>f) = y=a—7, (2.20)
(a>pB)py = (a>y)>B. (2.21)



6 L. Foissy

Example 2.9.

(1) If Q is a set, then EAS(Q) is a dual CEDS.

(2) If (9, %) is a semigroup and 7: Q@ — € is a semigroup morphism such that 72 = T,
then EAS(Q, x, ) is a dual CEDS if and only if Va, 8 € Q, m(a) * 8 = a* (. In particular,
EAS(Q, %) is a dual CEDS.

(3) If (92, %) is a semigroup with the right inverse condition, then EAS'(£2, %) is a dual CEDS
if and only if Vo, 5,7 € Q, (a> ) >y = (a>~) > [. This is equivalent to Vo, 5,7 € €,
a*fBxvy = a*xyxf. In the case where (2, %) is a group, EAS/'(Q, ) is a dual CEDS if
and only if (2, ) is abelian.

The following lemma, proved in [8], is a reformulation of the axioms of EAS, CEDS and dual
CEDS with the help of the map ¢.

Lemma 2.10. Let (2, —,>) be a set with two binary operations. We consider the maps

" {92—>Q2, _ {92—>Q2,
- (. B) — (a = pavp), - (@ B) — (B,a).

Then
(1) (Q,—,>) is an EAS if and only if

(Id x¢) o (¢ x Id) o (Id x¢p) = (¢ x Id) o (Id x7) o (¢ x Id). (2.22)

(2) (Q,—,>) is a CEDS if and only if

(Id x¢) o (¢ x Id) o (Id x¢) = (¢ x Id) o (Id x7) o (¢ x Id), (2.22)
(Id x¢) o (Id x7) o (T x Id) o (¢ x Id)
= (1 xId)o (¢ xId) o (Id x¢) o (Id xT). (2.23)

(Q,—,>) is a dual CEDS if and only if

(Id x¢) o (¢ x Id) o (Id x¢p) = (¢ x Id) o (Id x7) o (¢ x 1d), (2.22)
(¢ xId) o (7 x Id) o (Id x7) o (Id x )
= (Id x7) o (Id x¢) o (¢ x Id) o (7 x Id). (2.24)

With this reformulation, the following result becomes immediate, as the inversion of (2.22)
gives (2.22) again and the inversion of (2.23) gives (2.24).

Proposition 2.11. Let (2, —,>) be a set with two binary operations. We shall say that (2, —,1>)
is non-degenerate if the map ¢ of Definition 2.6 is a bijection. If so, we put

o1, {92 .02
(@, B) — (@~ Boaw B).

Then (Q,—,1>) is an EAS (resp. a CEDS, a dual CEDS) if and only if (2, ~,») is an EAS
(resp. a dual CEDS, a CEDS).
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2.3 EAS of cardinality two

Here is a classification of EAS of cardinality two, which we obtained by an exhaustive study of
the 2% possibilities of pairs of operations. The underlying set is Q = {X,Y} and the products
will be given by the pair of matrices

X=X XY XX XpY
Y—-X Y=Y/’ Yo X YY)~

We shall use the two maps

Q—Q, Q—Q,
X . Ty :
a— X, a—Y.
We respect the indexation of EDS of [10].
’ Case ‘ — ‘ > ‘ Description ‘ Comments
Al X X X X EAS(Q, -, 7x) (?EDS, dual CEDS,
X X X X right part of D1
A2 X X X X EAS(Q, —) (?EDS, dual CEDS,
X X Y Y right part of D2
X X X X .
C1 (X Y) (X X) EAS(Q,—,7mx) CEDS, right part of C4
X X X X
EAS(Z/27 ED 1 CED
C3 (X Y) (Y Y) S(Z/27Z, x) CEDS, dual CEDS
X X Y Y .
Cs5 (X Y) (Y Y) EAS((Z/2Z, x),my) | CEDS, right part of C2
X X X X
o (¥ 7))
X X X X
R DY .
E1-E2 (Y Y) (X X) EAS(Q,—,7mx) right part of E1 and E2
Es’ X X X X EAS(Q, ) d'ual CEDS,
Y Y Y Y right part of E3
CEDS, dual CEDS
XY X X ' X
F1 ( ) ( ) EAS(Q,—,7mx) right part of B1, F2, G1
XY X X
and G2
¥ v ¥ x CEDS, dual CEDS,
F3 ¥ v v vy EAS(Q) non-degenerate,
right part of B2 and G3
CEDS, dual CEDS
XY X Y ’ ’
F4 < ) < > EAS'(Z/27,+) non-degenerate,
XY Y X )
right part of F5
X Y X X
H1 EAS(Z/27 ED
() () emsirm o |
H2 X Y X X EAS(Z/2Z, +) CEDS, dual CEDS,
Y X Y Y non-degenerate

For the cases C3, C5, F4, H1 and H2,  is identified with Z/27Z, X being 0 and Y being 1.
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Remark 2.12. With similar methods, it is possible to prove that there are three non-degenerate
EAS of cardinality 3 up to isomorphism: EAS({1,2,3}), EAS(Z/3Z,+) and EAS'(Z/3Z, +).
All of them are both CEDS and dual CEDS.

3 Structure of non-degenerate finite CEDS

We now turn to CEDS, and prove the structure Theorem 3.16 after several intermediate results.

3.1 Preliminary results
Lemma 3.1. let Q be a finite non-degenerate EAS.

(1) Let Q' be a sub-EAS of Q. Then € is non-degenerate.

(2) Let ~ be an equivalence on 2, compatible with the EAS structure. Then the quotient EAS
Q/~ is non-degenerate.

Proof. (1) By restriction, ¢ = (¢a)o2 is injective. As ' is finite, it is a bijection. So Q' is
non degenerate.

(2) Let m: Q — Q/~ be the canonical surjection. Then ¢q /. o7 = (T @ 7) 0 . As ¢ is
surjective, ¢/~ is surjective. As 2/~ is finite, it is a bijection. So {2/~ is non-degenerate. W

Definition 3.2. Let (2, —,>) be an EAS. For any « € 2, we put

. {Q—>Q o {Q—>Q

68— a—p, 8 — Br>a.

We shall say that (2, —, ) is strongly non-degenerate if for any « € Q, ¢, is bijective.
Remark 3.3. As the product — is associative, for any o, 8 € €1, ¢o © Pg = Pa— 3.
Lemma 3.4. Let (£, %) be an associative semigroup. The following conditions are equivalent:
(1) EAS(Q, %) is non-degenerate.
(2) EAS(Q, x°P) is strongly non-degenerate.
(3) (€, %°P) has the right inverse condition.
Proof. Let «, 3, v, § € Q. Then

¢(a75):(7’6)<:>{a*5:77
o= 0.
So

¢ is bijective <= V(v,0) € 02, 3B € Q6B =17
< in EAS(Q,x°P), V§ € Q, ¢5 is bijective
<= (€, %°P) has the right inverse condition. [

Lemma 3.5. Let (2, —,>) be a finite non-degenerate CEDS. Then it is strongly non-degenerate.
Proof. Let a, 7,7 € Q such that ¢, (7) = ¢(7’). In other words, & — v = a — 7. By (2.16),

aby=ab(a—=7y)=a>(a—=v)=a>y.

Therefore, ¢(a,v) = ¢(a,v’). As ¢ is injective, v = ', s0 ¢, is injective. As Q is finite, ¢, is
bijective. |
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Lemma 3.6. Let Q = (Q,—,>) be a non-degenerate EAS, such that Vo, € Q, a — 3 = .
There exists a product *x on £, making it a semigroup with the right inverse condition, such
that Q@ = EAS'(Q, x). For any B € Q, 13 is bijective and its inverse is

o, Q—Q,
B a— axf.

Moreover, for any 8,7 € €,

g oty =Vgiy,  Ypoy =Pgot (3.1)

Proof. Note that for any a € Q, ¢, = Idg. Let «, 8,7v,6 € Q. Then

B =",

¢(a76)=(%5)<:>{wﬁ:&

Hence,
¢ is bijective <= V(v,4d) € Q% Fa € Q,a>vy = § <= ¥y € Q, 1), is bijective.

Putting ¢~ !(a, 8) = (a ~ B,a » ), by Proposition 2.11 (2, ~,») is an EAS, so ~ is as-
sociative. Moreover, ¢~ !(a, ) = (o ~ B,a), so (2, ~, 4) = EAS(2,~). By Lemma 3.4, if
x* =P then * has the right inverse condition. Moreover, for any «, 8 € €2,

¢ o, ) = ¢~ (B,an B) = ((a> ) * 8, 8) = (a, B).
Hence, the unique element v € Q such that v * 3 = «a is a > 3: consequently, Q = EAS'(Q, *).
Moreover, for any «, 3 € €, qﬁ’ﬁ og(a) = (arf)*f =a. So ¢’ﬁ og = Idg. As 193 is bijective,
v =g
Let 8,7 € Q. Then, for any o € Q, ¢ 0 ¢s(a) = a* Bxv = ¢j,.. So ¢\ 0y = ¢,
Inverting, ¥5 0 1y = 1g.y. As a consequence, gy © ¥y = P (gyy)sy = ¥, Which induces the last
formula. |

Lemma 3.7. Let Q = (Q,—,>) be a non-degenerate EAS such that Yo, € Q, a — 8 = .
Then Qy, = {ta, 0 € Q} is a subgroup of the group of permutations of ).

Proof. Direct consequence of (3.1). [

Proposition 3.8. Let Q = EAS'(Q, x), where (Q, %) is a finite semigroup with the right inverse
condition. We define an equivalence ~ on Q by o ~ B if Yo = 3. Then

(1) ~ is compatible with the EAS structure of ). Therefore, 0/~ is an FAS.
(2) There exists a product x on Q/~, making it a group, such that Q/~ =EAS'(Q/~,x).

(3) There exists a sub-EAS Qo of Q, such that the restriction to Qg of the canonical surjec-
tion m: Q — Q/~ is an isomorphism.

Proof. (1) Let a, 5 € Q, such that a ~ 3. Then ¢, = ¢g. Let y € Q. Thena -y ==y =
v,and y = a=a~ B =v— . As ¢, =g, y>a =y > 3. Moreover, by Lemma 3.6,

¢a[>7:¢a0¢§1:¢ﬁ0%_1:¢5m

SO0 a7y ~ B> ~ is compatible with the EAS structure.
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(2) By Lemma 3.1, €2/~ is non-degenerate. By Lemma 3.6, there exists a product * satisfying
the right inverse condition, such that Q/~ = EAS'(Q/~, ). We consider the map

(Q/N7*) — (Gﬂ/fv? 0)7
o — Yg.

By Lemma 3.6, this is a semigroup morphism. Let us prove that it is injective. We assume that

Vg = % In other words, for any v € Q, v>a ~ vy 3, or equivalently, ¢ »q = 1,55. Moreover,

Yypa = Py Oz/}(;l = d}f}/pﬁ =1y Owﬁ_l.

As 1), is bijective, 1, = 1, so & = B.
By Lemma 3.7, there exists e € /~, such that 1. = Idg,.. For any @ € Q/~,

Yew = e O Y5 =5,
so 1(€2/~) is a subgroup of &g ... Consequently, (£2/~,x) is a group.
(3) By Lemma 3.7, there exists §y € €2 such that g, = Ido. We put

Qo ={Bo>a, a €} ={Ya(Bo), @ € Q}.
As the product — of Q is trivial, this is a sub-semigroup of (2, —). Let Sy > a, Bo> S € Q.

(ﬁO > a) > (50 > 6) = wﬁob'y o %(50) = w(ﬁoby)*a(ﬁO) € QO)

so Qo is a sub-EAS of Q.
Let us assume that o> a ~ Sy 5. Then

¢ﬂol>oz = ¢ﬁ0 O@Z’;l = ’QZ}(;I = d%’obﬁ = wﬁo 07%71 = 77%717
so Yo = p. Hence, Bo>a = By > B, which proves that 7 q, is injective. By Lemma 3.7, there
exists 3 € €1 such that g = Yt We consider By 3 € Qo. Then Yaosp = Vg, © w/gl = g, SO
Bo> B ~ a. Hence, mq, is surjective. |

Theorem 3.9. Let Q = EAS'(Q, %), where (Q, %) is a finite semigroup with the right inverse
condition. There exists a group (Qo,*) and a set Q1 such that Q ~ EAS(Q;) x EAS'(Qp, %).

Proof. We keep the notations of the proof of Proposition 3.8. As the sub-EAS ) is isomor-
phic to Q/~, it is a group for the law *, and Qy = EAS'(Qp,*). Let e be the unit of the
group (§2/~, ). We consider 1 = {a € 2, @ = e}. Let us prove that ; = {a € Q, ¢, = Ida}.
D: if ¢y = Idg, for any 8 € Q, Bxa* 1 = 9(B) = B, s0 @ =e and a € Q.
C: ifa=e, then for any B € Q, f>a =3, so B>« ~ (: in other words, Ygsa = 3. Then

Ypsa =Yg o¥a' = Up.
As 13 is bijective, 9, = Idg.
Therefore, for any a € Q, for any § € Qi, a> f = Y¥3(a) = a. As a consequence, 0 =
EAS(€;). We consider the map

9 91X90—>Q,
" (o, B) — axB.

Let us prove that 6 is injective. If 8(a, 8) = 0(c/, B'), in Q/~, axB=B =o' x3F =B As T
is injective, 3 = [3'. Because of the right inverse condition for *, a = /.

Let us prove that 6 is surjective. Let v € 2. There exists a unique 3 € g such that 5 = Yg.
We put o = y>3, so v = ax3. Moreover, 1z = 15 0 ¢§1 =Idg/~. Soera = = ygle) =,
and finally o € ;.

Let (a,8) and (o/,0') € Q1 x Qp. In Q, as &’ € Oy, axfxa' « 3 = ax (8 * '), which
implies that (a x 8) > (o * ) = a* (8% f*1). So 6 is an isomorphism of EAS from EAS(;) x
EAS'(Qo, ) to Q. [ |
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3.2 Non-degenerate finite CEDS

Lemma 3.10. Let (Q,—,>) be a strongly non-degenerate finite EAS. Then Q4 = ({¢a, €
Q},0) is a group. The following map is a surjective morphism of semigroups:

(€2, =) — Qq,
a— Qq.

Proof. We already observed that for any o, € Q, ¢, 0 ¢g = ¢po—p, S0 ¢ is a semigroup

morphism. By hypothesis, for any o € €2, ¢, is a bijection, so belongs to the symmetric group &g

of permutations of 2. As () is finite, for any o € €, there exists n > 2 such that ¢ = Idg.

Then ¢o—n = Idg, so {2y is a monoid. Putting 8 = a1 $B 0 Pa = o © ¢g = Idq, s0 €y is

a group. |

Proposition 3.11. Let Q = (Q, —,>) be a finite non-degenerate EAS, such that for any o € Q,
¢a s a bijection. We put Q7 = {a € Q, ¢, = Ida}, O ={B € Qg =1da}. Then

(1) Q7 is a non-degenerate sub-EAS of Q.

(2) If Q" is nonempty, it is a non-degenerate sub-EAS of Q.

(3) If QF is nonempty, then QO N Q™ is nonempty.

(4) If Q is a CEDS, Q" is nonempty.
Proof. (1) Recall that for any a, 5 € Q, ¢o 0 g = ¢po—p. This easily implies that Q7 is stable

under —. By Lemma 3.10, there exists « € Q, such that ¢, = Idg, so Q7 is nonempty.
Let o, 8 € Q7. Let us consider v € Q. As ¢ is bijective, there exist 3,7 € Q such that

(8" =+, 8'>v) = (8,7)
Then
barp(7) = (> B) = v = (a> (8 —7)) = ('p7) =8> =1
S0 ¢apg = Idg and a>f € Q7. By Lemma 3.1, Q7 is a non-degenerate sub-EAS.
(2) Let B,y € Q°. As ¢y, =1dg, Sy =€ Q. For any a € 2, by (2.12) and (2.13),
(a>(B—=7) = (Bry)=(a=PB)py=a—=F,
(a> (B —=7))>(fry) =avf.

So p(a> (B — v),B>7) = ¢(o,B). As ¢ is injective, a > (8 — v) = a, so g, = Ido
and 8 — v € Q°. If QO is nonempty, by Lemma 3.1, it is non-degenerate.

(3) Let us take v € ©F. The permutation ¢, is of finite order as  is finite, so there
exists n > 2, such that ¢ = ¢4—n = Idg. Putting f = a7, then 8 € Q" (as it is a sub-CEDS)
and § € Q7 as ¢g = Idg.

(4) Let us consider the EAS associated to the inverse of ¢ (see Proposition 2.11), which we
denote by (€2, ~, »). By the first point, there exists a € 2 such that for any 5 € Q, a ~ 5= .
In other words, for any 3 € 2, ¢~ 1(a, 8) = (8, » (). This implies that ¢z(c » 3) = a. The
inverse of the bijection ¢g is the map

o, Q—Q,
b a— aw S

As Q is finite, there exists 3’ € Q such that qﬁgl = ¢p. Hence,

B=p>(amp)=p5>(8 —a)=p8ra
by (2.16). So a € Q. [
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Proposition 3.12. Let (2, —,>) be a finite non-degenerate CEDS.

(1) We define an equivalence = on Q by B =" if Ja € Q, ' = a — . This equivalence is
compatible with the CEDS structure. Therefore, Q) = is a CEDS.

(2) The restriction to Q7 of the canonical surjection m: Q& — Q/ = is an isomorphism.
3) Q=0 —- Q7.

Proof. (1) The relation = can be reformulated as: there exists ¢o € g, such that ¢o(8) = 5.
By Lemmas 3.5 and 3.10, €4 is a group. This easily implies that = is an equivalence: its classes
are the orbits of the action of the group €1, over 2.

Let us assume that 5 =" weput 8/ =a — (. Let y € Q. Theny > p=p=p'=~v— 5
by definition of =. Moreover, 8’ -~y =a — (§ —7),s0 8/ — v = — 7. By (2.13),

Bry=(a—=y)py=(av(B—=7) = (Bry) =67,
e = (a— ) =7>p
So = is compatible with the CEDS structure.
(2) Let a € Q. As ¢, is bijective, there exists a unique § € €2 such that & — 5 = . Then
b0 = GPasp = Qo © Pg. As ¢ is bijective, ¢pg = Idg, so B € Q7 and o = B. This proves
B B B

that mq— is surjective.
Let 8,8 € Q7. such that 8 = /3'. There exists o € Q such that « — 8 = 3. Then

Idg = ¢p = ¢a © P = Pa,

80 o = Idg. We deduce that 3’ = ¢4 (8) = 8. Hence, 7o is injective.

(3) By Proposition 3.11, there exists Sy € Q"N Q7. Let 8 € Q. As mq— is bijective, there
exists 1 € Q7, such that 8 = ;. Weput 8 =a — (1. As Bo € Q7, 8 =a — By — b1
Moreover, for any v € Q, as 5y € O, by (2.16), v> (. = Bo) =v> By =7, 80 a = fo € . N

Proposition 3.13. Let (Q,—,>) be a finite non-degenerate CEDS. We define an equivalence
on Q° by

/ " " /
o ~d' = JacQ7, " =d = a.

(1) This equivalence is compatible with the CEDS structure, and ) = QF /~ is a non-degen-
erate CEDS. Moreover, (V,—) is an abelian group and ' = EAS({Y, —).
(2) The following map is a semigroup isomorphism:
9. (AU xQ7, =) — (Q,—),
@ 8) — a— B

Proof. We firstly introduce an auxiliary map, defined by

o, [Fxor—a
' (Oé, 6) — a— 6
By Proposition 3.12, it is surjective. Let us prove that ©(a/,5") = ©(a”,8") if and only if
o ~a” and g/ = p".
Let us assume that ©(a/, ') = 0(a”, 5"). As ¢ is bijective, there exists a € 2, o/ = o/ —
a. Aso/ - B =a" — " and 3,5 € Q7,

Sar = bar © B = Barsr = Parrsr = Paur-
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Hence, ¢ = ¢or © o = Q. As ¢ is bijective, ¢ = Idg, so a € Q7: we obtain that o/ = o”.
As ¢or = Py Por (B') = P (B") = ¢L(B"). As ¢ is injective, 5 = 3. Conversely, if o € Q7
o sa—p=d —=p.

As a consequence, ~ is indeed an equivalence, 6 is well-defined and is a bijection. It remains
to show that ~ is compatible with the CEDS structure of Q”. Let o/, o € O, such that o/ ~ .
We put o/ = o’ — «, with a € Q7. Let 8 € Q”. Then

deB=d ~ad"=d">8, Bra =B=p>a".

Moreover,
! " 1 " / /
o 5 f=a sa—=pf=a —f, f—=ad =0 sa~F—=a.

Therefore, ”/~ is a CEDS. By Lemma 3.1, it is non-degenerate.
Let o,/ € O and 8,8 € Q7. As € Q7,

0@, B) = 0(c,f)=a=B—-d s> =a—d =4
=a—d o= =0@>d,0).
So 6 is an isomorphism for the products —.

Let us now study the CEDS . By definition of O, for any @, 8 € ¥, avf = @, so
' = EAS' (€Y, —). By Proposition 3.11, Q7 is nonempty. Let us prove that

Q7 ={a,ac P nQ7}.

D is obvious. Let us take @ € 7. Then, for any 8 € Q>, @ — § = B3: there exists v € Q7,
a — B = — . Therefore, po0¢g = pgop, = Pg, as ¢, = Idg. As ¢z is a bijection, ¢, = Idg,
soae Q. Let a,8€ Q"NOQ7. As ¢, is bijective, there exists ' € Q, a — ' = 3. Then

Idg = ¢g = ¢a © P = @p/,

so 3 € Q7: we proved that o ~ 3. As a conclusion, there exists a unique € € €', such that for
anyac ), e—va=na.

Let us choose @ € €. As ¢, is bijective, there exists ¢/ € Q' such that @ — ¢ = a.
Let 5. Then@ — ¢ — B =a — B: in other words, « — ¢ — 8 ~ o — 3, and there
exists v € Q7 such that « - €’ — 8 =a — 8 — 7. As ¢, is injective, ¢/ — =0 — v~ [,
so e — =/ for any B € . By unicity of €, ¢/ =€ foranya € Q, @ - e =1a, so e is a
unit of (¥, —). By (2.15), for v =€, we deduce that (€', —) is an abelian monoid. Let @ € €.
As ¢, is surjective, there exists @’ € Q' such that @ — @ =e. So (', —) is a group. [ |

Proposition 3.14. Let (2, %) be an associative semigroup such that for any o, B,y € Q,
axfBxy=L0%ax"y.

Let (¥, —,>) be a CEDS, and <: Q x Q' — Q be a map such that for any o, B € Q, for
any B,y € &,

a<(f =9)=a=<7, (3.2)
(% 8) <9 = (a=7)*(B=<7), (3.3)
(<)< (Bpy)=a=<p, (3.4)

we define two products — and > on Q x Q' in the following way: for any (a, '), (8,5") € Ax Y,
(,a') = (B,8') = (ax B, = f'), (,a) > (8,8) = (< B,a'>0).
Then (2 x Q) —,>) is a CEDS, which we denote by € x~ €Y.

Proof. Direct verifications. [ |
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Remark 3.15. If for any (o, ') € Q x @', a < o/ = «, we recover the direct product Q x Q' of
EAS.

Theorem 3.16. Let Q) be a finite non-degenerate CEDS. There exist an abelian group (01, %),
a group (Qa,%), a left action »=: Qo X Q1 — Q1 of (Qa,*) on (1, *) by group automorphisms,
and a nonempty set Q3 such that Q is of the form

(EAS(Qq, %) x» EAS'(Q9,%)) x EAS(Q3),
with the products given by
(a1, a2, a3) = (B1, Ba, B3) = (a1 * B, B2, B3),
(a1, a2, a3) > (B1, B2, B3) = (B2 = a1, 0% B3 1, a3).

Proof. Let us consider the map 6 of Proposition 3.13. For any a, o’ € O, and for any 8, €
07, by (2.16) and (2.17),

(a=B)> (/= f)=(a—=B)pp =(arf) = (B>5).
Let By € QN Q7. Then, as By € Q7
(a=pB)p (o' =) =(arp) = Bo— (B>F).
| ———
=71 =72

Obviously, v € Q7. For any v € Q, by (2.16), y>v1 =y Sy = 7, so 11 € ©°. We then put,
for any @ € @, and for any f € Q7, a < f=a>f — Bo. Then, for any @, o’ € @/, and for
any 8,7 € Q7, 0(a,B)>0(«/,8) =0(a < f/,8> ). Then

G« (81 =as(Bo7) »F=asT o Hh=a <7
which proves (3.2). As fy € Q7,
@ B) <7 =l > BIo7 + Fo—as7 - Fo7 - o
=aby = fo— By — fo=(@=<7) = (B=<7),
which proves (3.3). Then

@=<7) =< (Bey)=(ary)>(Bey) = Bo> (Bey) = Bo=arB— Fo>(B>7) = Bo
=adf—=Pf=a<p,
which proves (3.4). For the last equality, we used that Sy (5>7) € Q7, as 8, Sy and v belong
to Q7.
We finally obtain that 6 is an isomorphism between Q' x- Q7 and Q. We put Q' =
EAS(Qq,*). From Theorem 3.9, we obtain a decomposition of Q7 of the form EAS'(Qq, %) x

EAS(Q3). The map <: O x Qo x Q3 —  satisfies (3.2)—(3.4). In this particular case,
(3.2) becomes trivial, and (3.3), (3.4) can be reformulated in this way: for any «1,8; € i,

B2,v2 € Q2, 83,73 € (13,

(a1 % B1) < (72,73) = (1 =< (72,73)) * (B1 < (72,73))5
(1 = (72,73)) =< (B2, 83) = a1 < (B2 * 2, B3).
The products of € are given in this way: for any «;, 5; € €;, with 1 <1 < 3,

(a1, a2,a3) = (B, B2, B3) = (a1 * B1, B2, £3),
(a1, s, a3) > (B1, B2, Bs) = (a1 < (B2, Bs), aax B3 ', ag).
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For any (B2, 83) € 2 x Q3, we consider

¢_< ) Ql — Ql,
P2Bs™ )y — g < (Ba, B3).

As Q is non-degenerate, necessarily 13, g, is injective. As Q is finite, 13, g, is a bijection.
Moreover, by (4.1), for any (52, 53), (72,73) € Q2 x Q3, ¢;2463 ozzp%ﬁi = wgg*vz,ﬂs' For B2 = o

being the unit e of {2y and B3 = 3, we obtain that (¢e 53) =) By As it is a bijection,
:53 = IdQl for any 3 € 3. Hence,

=< =< = =
eB3 © w'Y?:’YS - w’Ym’YS - ww,ﬁs’

so g, 3, does not depend on B3. We denote this map by vg,. Note that we proved that

V., = Ido,. We put, for any aq € O, B2 € Qg, an < B2 = 1/1;2(oz1). We finally obtain that
2

the products in ) are given by

(a1, a9, a3) = (B1, B2, B3) = (a1 * P, B2, B3),
(a1, 02, a3) > (B1, B2, B3) = (a1 < Ba,aa % B3, ag).
So Q = (EAS(Q1, ) x< EAS'(Qs, %)) x EAS(Q).

In the particular case of EAS(Qq, %) x< EAS'(Q9, %), (3.2) is trivial, and (3.3), (3.4) can be
reformulated in this way: for any aq, 81 € Q1, 82,7 € Q9

(aq % f1) <72 = (o1 < 72) * (1 < 72), (a1 < 72) < B2 = aq < (B2 % 72).

As Yeq, = Idq,, the following map is a left action of (Qg, %) on (21, x) by group automorphisms:

QQ X Ql — Ql,
(B2, 1) — B2 = a1 = oy < Po.

The formulas for the products in 2 are then immediate. |

Remark 3.17. Consequently, we have a semi-direct product of groups (21, %) Xy (Qa,*).
Inverting the corresponding maps ¢, we obtain the following corollary.
Corollary 3.18. Let ) be a finite non-degenerate dual CEDS. There exists an abelian group
(Q1, %), a group (Qa,%), a right action <: Q1 x Qo — Q1 of (Qa,%) on (Q1,*) by group auto-
morphisms, and a nonempty set Q3 such that 2 is of the form
(EAS(Q, ) x< (EAS' (4, %)) x EAS(Q3),

with the products given by

(a2, a1, a3) = (B2, B1, B3) = (a2 * B2, f1 < az, B3),

(ag, ar,a3) > (B2, B1, 83) = (o, 01 (B < ay'), a3).

Remark 3.19. The inverse dual CEDS of the CEDS (EAS(21, *) x. EAS' (2, %)) x EAS(Q3)
is (EAS(Qg,*°P) Xop (EAS'(Q1,%)) x EAS(Q3).
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4 Linear extended associative semigroups

4.1 Definitions and examples

The notions of /EAS, ({CEDS and dual /CEDS are introduced in [8, Definition 1.5], as a linear
version of Lemma 2.10.

Definition 4.1. Let A be a vector space and let ®: A® A — A ® A be a linear map.

(1) We shall say that (A, ®) is a linear extended associative semigroup (briefly, /EAS) if

(Id®@®) o (P ®1d) o (Id®@P) = (P ®Id) o (Id®7) o (¢ @ Id). (4.1)
(2) We shall say that (A, ®) is a linear commutative extended diassociative semigroup (briefly,
(CEDS) if
(Id@®) o (P ®1Id) o (Id@®) = (P ®1d) o (Id®7) o (P ® Id), (4.1)
(Id®@®) o (Id®7) o (T ®1d) o (P @ Id)

= (r1®1d) o (® ®1d) o (Id @) o (Id ®7). (4.2)

(3) We shall say that (A, ®) is a linear dual commutative extended diassociative semigroup
(briefly, dual (CEDS) if

(Id@®) o (P ®@1Id) o (Id®@®P) = (¢ ®Id) o (Id®T) o (P ® Id), (4.1)
(P®1Id)o (r®Id) o (Id®7) o (Id @®)
= (Id®7) o (Id®@®) o (® ®Id) o (T ® Id). (4.3)

If (A, @) is an /EAS (resp. an {CEDS or a dual /CEDS), we shall say that it is non-degenerate
if @ is bijective.

Note that, by definition, {CEDS and dual /CEDS are (EAS.
Example 4.2.

(1) Let (©2,—,>) be an EAS (resp. a CEDS, a dual CEDS). Let A = KQ be the vector space
generated by ). We define

ARA— AR A,
a®b— (a—b)R(a>b).

Then (A, ®) is an /EAS (resp. an /CEDS, a dual /CEDS), which we call the linearization
of (2, —,>). It is a non-degenerate /EAS if and only if € is a non-degenerate EAS.

(2) Not all the FEAS are of the form KQ. For example, if A is a two-dimensional space with
basis (x,y), the maps given by the following matrices in the basis (r @z, 2Ry, y @z, yQy)

are /EAS
0010 0000 1000
00 0 0 00 a O 000 0
Mi=1g 00 ol Ma=14 00 0| Ms=10 00 o]
00 0 0 0000 000 0
1000 1000 1 000
0010 00 0 0 000 0
Mi=10 00 ol Ms=10 1 0 ol Ms=10 01 0]
00 0 0 00 0 0 00 0 0
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100 0 1000 1000
00 0 0 0010 000 0
Mi=1¢9 00 ol Ms=10 01 0| My=109 10 o]
0010 00 0 0 00 10
1000 1000 10 0 0
000 0 00 10 00 0 0
Mo=1g 1 1 o Mau=|g o1 o] Me=1g 1 0o ol
000 0 00 10 01 —1 0
1 000 1000 1100
000 0 00 0 0 000 0
Ms=1g 00 0| ™M4=|g1 0 0l Mis=10 00 0]
000 1 000 1 00 1 1
1000 10 1 0 1000
000 0 00 -1 0 0010
Me=101 00| M=o 1 —1 0" Ms=|0g1 0 0]
0011 00 2 1 000 1

where a is a scalar. Moreover,

e The /CEDS in this list are the M;’s with
i€{1,2,3,4,5,9,10,13,14,16,17,18}.

e The dual /CEDS in this list are the M;’s with
i€{1,2,3,4,5,7,8,9,11,13,14, 15,16, 17, 18}.

These EAS are in fact the EAS of dimension 2 which have a basis of special vectors, see
Definition 4.6.

Notation 4.3. Let (A, ®) be an /EAS. We use Sweedler’s-like notation
Pawb)=> d >V bl

Note that the operations — and > do not necessarily exist, nor the coproducts a’ ® a” or v/ @ b".
With this notation, (4.1) can be rewritten as

ZZZ@’ W =)@V =) W) @@l =) >0 )"
I D> (d=V) wde(d V) v @d >l (4.1
Similarly, (4.2) and (4.3) are rewritten as
YN e (d— V' @d = (" =) @d b
= ZZ@”M}” @cd = (d=V)odv(d—=V)" (4.2

Z Z(b” > C”)/ — a' & (b” > C”)” > a” & b/ — C/
S S W s d e ed) v e ((sa") o . (4.3)

By transposition of (4.1), (4.2) and (4.3), we have the following.
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Proposition 4.4. Let V be a finite-dimensional space and
O VRV —=VeV

be a linear map. We consider
O VIVI=(VeV) — (VeV) =V eV

Then (V,®) is an LEAS (resp. an LCEDS, a dual ¢CEDS) if and only if (V*,®*) is an (EAS
(resp. a dual CEDS, an ¢CEDS).

Example 4.5.

(1) As their matrices are symmetric, the fEAS Ms, Mg, My3 and Mg are self-dual, through
the pairing which matrix in the basis (z,y) is ((1) (1)) With the same pairing, the dual of My
is M5 and the dual of Mg is Mig. The fEAS Ms and My, are also self-dual, through the
pairing which matrix in the basis (z,y) is ({§). The (EAS M and M7 are self-dual,’
through the pairings which matrix in the basis (z,y) are respectively (1¢), (42). The
duals of My, M7, Mg, M1, Mio and M5 are not isomorphic to any M;’s.

(2) Let Q be a finite EAS and A = KQ be the associated /EAS. The dual A* is identified with
the space K of maps from Q to K, with the dual basis (d4)acq of the basis Q of KA.
Then, for any «, 8 € (Q,

*Ba®bs) = Y. 5 ® 0.
(7,6)€97(ax,B)

This is usually not the linearization of an EAS, except if ) is non-degenerate: in this case,
we recover the linearization of (2, ~, ») of Proposition 2.11.

4.2 Special vectors, left units and counits

Definition 4.6. Let (A, ®) be an (EAS.

(1) Let a € A. We shall say that a is a left unit of (A, ®) if for any b € A,
P(a®b) =b®a.
(2) Let f € A*. We shall say that f is a left counit of (A, ®) if

(foId)od =1d®f.

(3) Let a € A and X € K. We shall say that a is a special vector of (A4, ®) of eigenvalue A if

Pla®a) =N ® a.

Remark 4.7. Let (A, ®) be an /EAS.

(1) Any left unit of (A, ®) is a special vector of eigenvalue 1.
(2) If A is finite-dimensional, its left counits are the left units of (A*, ®*).

(3) The set of left units is a subspace of A and the set of left counits a subspace of A*. The
set of special vectors of a given eigenvalue is generally not a subspace of A.

For M7, this holds if the characteristic of the base field is not 2.
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Lemma 4.8. Let (A, ®) be an (EAS and a € A be a nonzero special vector of (A, ®). Then its
etgenvalue X is 0 or 1.

Proof. Let us apply (4.1) to a ® a ® a. This gives

Mewa®a=MNe®a®a.
Asa#0,A=0or 1. |
Example 4.9.

(1) Let us give special vectors, left units and left counits for the thirteen /EAS associated
to the thirteen EAS of cardinality 2. In each case, we give a basis of the spaces of left
units and left counits; A\, u and v are scalars. The dual basis of the basis (X,Y") of KQ is
denoted by (X*,Y™).

Some of them have a basis of special vectors: let us determine their matrices in such

Case Special vectors | Special vectors | Left units | Left conits
of eigenvalue 1 | of eigenvalue 0

Al AX V(X -Y) %) %)

A2 AX v(X-Y) 1%} (X*+Y")

C1 AX 0 %) 1%}

C3 AX, pY 0 (Y) (X*+Y™")

C5 ng 0 (Y) %)

(0]} AX 0 1%} I}
E'1-E'2 AX v(X-Y) 1%} I}

E'3 AX, uYy v(X-Y) I} (X*4+Y™)

Fi AX v(X-Y) (X) I}

F3 AX +uY 0 (X,Y) (X*,Y")

F4 AX, v(X+Y) 0 (X+Y) (X™)

Hi1 AX 0 (X) I}

H2 AX, v(X+Y) 0 (X) (X*4+Y™)

a basis. We recover in this way some matrices of Example 4.2:

For A1, in the basis (X, X —Y), we obtain Ms.

For A2, in the basis (X, X —Y), and for F1, in the basis (X —Y, X)), we obtain Mj.

For C3, in the basis (Y, X), we obtain M.
For E'1-E’2, in the basis (X, X — YY), we obtain M.

For E’3, in the basis (X,Y — X), we obtain M.

For F3, in the basis (X,Y), we obtain M;s.
For F4 and H2, in the basis (X — Y, X)), we obtain M.

Hence, the /EAS associated to A2 and F1 are isomorphic, whereas the EAS A2 and F1
are not. As similar situation holds for F4 and H2.

(2) It is possible to show that any 2-dimensional /EAS with a basis of special vectors is
isomorphic to one of the eighteen cases of Example 4.2. For all of them, let us give special
vectors, left units and left counits for the eighteen cases of Example 4.2. In each case, we
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give a basis of the spaces of left units and left counits; A, u and v are scalars. For Mo,
we assume that the parameter a is nonzero (otherwise, ® = 0).

Case || Special vectors | Special vectors | Left units | Left counits
of eigenvalue 1 | of eigenvalue 0
M, 0 Az, (Y & 1%/
Moy 0 Az, py %) %)
Ms AT wy 1%/ 1%/
My Az uy %) (z*)
M; Az 1y (2) @
Mg Az Hy 1%} 1%}
M~ AT Hy 1%} 1%}
Mg Az uy %) (z*)
My Az ny (x) 1)
Mg Az 1y (2) @
My | Az,v(z+y) 1y 2 (")
Mo AT “y 1o} 1o}
Mis AT, (Y 0 & &
My Az, py 0 (2) (y")
M5 Az, 1y v(z —y) o (" +y")
Mg Az, py 0 (z) (" +y")
M7 Az, py 0 (2) (=" +y")
Mg AT + py 0 (z,9) (z*,y")

Among them, Mi; has three lines of special vectors.

is My5, so M11 and M5 are isomorphic.

In the basis (z + y,z) its matrix

4.3 Left units and counits of finite non-degenerate CEDS

Proposition 4.10. Let (21,%*) be an abelian finite group, (Q2,%) be a finite group, and Q3 be
a finite set. We denote by e; and ex the units of Q1 and Q.

(1) Let (A, ®) be the linearization of the CEDS (EAS(Qq,*) x. EAS'(Q2,%)) x EAS(Q3) of

Theorem 3.16.

(a) The special vectors of eigenvalue 1 of (A, ®) are the vectors of the form

a =

D

(a1,09,3)EH X Ha X3

9(013)(041, Q, 043)7

where Hy is a subgroup of 1, Ho is a subgroup of o, such that Hy = Hy C Hi,
and g: Q3 — K is a map.
(b) The left units of (A, ®) are the vectors of the form

a =

2

(a2,03)EQ2 X3

where g: Q3 — K is a map.

g(ag)(el, g, Oég),
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(¢) The left counits of (A, ®) are the linear forms f such that for any (a1, g, as) € €,
flar, a2, a3) = 0ay.e,9(03), where g: Q3 — K is a map.

(2) Let (A, ®) be the linearization of the CEDS (EAS(Qq, %) x  EAS'(Q1, %)) x EAS(Q3) of
Corollary 3.18.

(a) The special vectors of eigenvalue 1 of (A, ®) are the vectors of the form

a= Z g(a3)(az, a1, a3),

(a1,02,a3)EH1 x Ha X3

where Hy is a subgroup of 1, Hy is a subgroup of o, such that Hy < Hy C Hi,
and g: Q3 — K is a map.
(b) The left units of (A, ®) are the vectors of the form

a= > g(az)(ez, a1, as),

(a1,03)€Q1 X3

where g: Q3 — K is a map.
(¢) The left counits of (A, ®) are the linear forms f such that for any (a1, g, as) € €,
flar, a2, a3) = 0a,.e,9(3), where g: Q3 — K is a map.

Proof. (1)(a) Let a be a nonzero vector of A, which we write as

a= Z a(alyamas)(al»a%a?»)-

(a1,02,03)€Q

Then a is a special vector of eigenvalue 1 if and only if for any (a1, a9, as), (81, B2, 53) € £,

Ao ,02,03) H(B1,82,83) = oy ' -p1,Baxaz,Bs) M (ag =BT a1 az,a5)" (44)
We put
V(ag,ag) € Oy X Qg, Hl(ag,a3) = {041 S Ql,a(m@%ag) 75 0},
Vaz € Q3,  Hy(as) = {az € Qo, Hi(ao,a3) # @}, Hz ={az € Q3, Ha(a3) # o}
We shall also consider the map
Qg — K,
az — g(ag) = Qey,e2,a3+

Let us first prove that if az € Hs, then Ha(as) is a subgroup of Qy. Let ag, B2 € Ha(as)
(which is nonempty as ag € H3). Let oy, 81 € 4, such that a(q, as,ay) 7 0 and a(g, g, as) 7 0-
By (4.4), (o118, Bywasaz) # 0, s0 fa*xay € Ha(asz). As Qy is finite, Ho(ag) is a subgroup of Q.

Let us prove that if ag € Hs, then Hj(e2, a3) is a subgroup of €1 and, moreover, for any a; €
Hi(ea, a3), Uy en,03) = g(as). As Ho(as) is a subgroup of Qg, it contains eg, so Hy(eg, a3) # 2.
Let a1, 81 € Hi(e2,a3). By (4.4),

Ao ,e2,03)4(B1,e2,03) = A(Br.e2,03) U8y L van ea,a3) # 0.
Hence, 61_1 x a1 € Hy(eg,as). Taking oy = 51, we obtain

A(ay,e2,a3)H(a1,e2,03) = A(aq,ez,a3)¥(e1,e2,a3) # 0,

S0 G(ay,ez,03) = Afer,e,a3) = g(a3)'
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Let us prove that if ag, 83 € Hs and [y € HQ(ﬁg), then Hl(ﬂg,ﬁg) - Hl(eg,ag). Let
p1 € Hi(B2,B3). Then ag, g, 3,) # 0. As Hi(e1,2) is a subgroup of €2y, it contains e,

SO (e e9,04) 7 0- By (4.4),
A(er,e2,03)A(B1,82,83) — g(a3)a(51,52,53) = A(B1,82,83) (87 L ea,a3) # 0,

SO 5;1 € Hi(ez,a3). As this is a subgroup of Qi, 81 € Hj(ez,a3). As a consequence, for
P2 = ey, we obtain by symmetry that for any as, 3 € Hs, Hi(e2,a3) = Hi(ea, f3). Therefore,
there exists a subgroup Hj of ©; such that for any as € Q3, Hi(es, a3) = Hj.

Let us prove that for any ag € Hs, Hao(ag) = Hy C Hy. Let 51 € Hy = Hi(e2,a3), then
(B, e2,05) 7 0- Let ofy € Hy(az). We put ag = 0/2_1 € Hy(ag). There exists ap € Hy(ag,as),
such that a(a, ay,05) 7 0- By (4.4),

A1 ,a2,a3) A (Br,e2,a3) = U(Br,az,a3)d((ay 1B ") ranea,03) 70,
SO (a2_1 - 51_1) x a1 € Hy(ea,a3) = Hy. Moreover, as Hy(ag,as) C Hy,
—1 —1 —1
ay =By =ay - By € Hy.

Its inverse oy, > [ is also an element of Hy, so Ha(ag) = Hy C Hj.
Let us prove that for any ag € Hs, for any as € Ho(ag), Hi(ag,a3) = Hy. Let o € Hy =
Hl(eg,ag) and 51 S Hl(ag,ag,). By (4.4),

Aay,e2,a3)A(B1,a2,08) = a(517a2:a3)a(ﬂ;1*(11,az,ag) # 0,
SO 5;1 x ap € Hy(ag,as). We obtain an injective map
H1 — Hl(ag,ag,),
o] —> 51_1 * .

Hence, |H1| < ‘Hl(OéQ,Oé3)|. We already pl"OVGd that Hl(ag,ag) - Hl, SO Hl = Hl(ag,ag).

We now prove that there exists a subgroup Ha of Q9 such that for any ag € Hs, Ha(ag) = Ho,
and that, moreover, for any as € Ha, for any ag € H3, G(c; a0,05) = 9(a3). Let a3, 3 € Hs.
Let an € Hg(ag). As e] € Hl(ag,ag) = Hl, Qe az,as) 7& 0. As ey € H2(Oé3), Q(ey e2,83) 7'5 0.
By (4.4),

ey, az,03) A (e1,e2,83) = A(er,a2,83)A(er,a0a3) 70,

S0 ay € Hy(fB3). We proved that Ha(as) C Ha(f3): by symmetry, Hao(as) = Hz(f3), which
prove the existence of Ha. Moreover, as (e, ay,ay) 7 0 and G(e, ¢, 8,) = 9(B3), we obtain that

a(el,ag,ﬁ3) = 9(53)
We proved that for any (aq, g, ag) € €,

Ay, 00,03) ?é 0 <= (041,042,043) € Hi x Hy x Hs.
Let a3, 83 € H3, 1 € H1, as € Hy. We put ag = 042_1 > (1. Then, by (4.4),

g(a3)g(63) = a(/31,a2,043)a(61,o¢2753) = a(ﬁl,a27a3)g(63)a

SO @(8;,a0,a5) = 9(3). We proved that a has the announced form.
Conversely, if a is of the announced form,

Pla®a) = > 9(a3)g(Bs)(on * b1, B2, B3)

(a1,02,03),(B1,82,83) EH1 x Ha X Q3
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® (B2 = a2, a0 % B3 1, a3)

= > (B1, B2, B3) ® (o1, a2, a3) = a @ a.

(a1,a2,03),(B1,B2,83)€H1 x Ha xQ3

(2)(a) If (A, ®) is the linearization of (EAS(Q, x) x < EAS'(Qy, %)) x EAS(Q3), then (A, @~ 1)
is the linearization of (EAS(Qy, *) X o0 EAS' (29, %°P)) x EAS(€3). The result then comes from
the observation that the special vectors of (A, ®) and (A, <I>*1) are the same.

(1)(b) Let a be a left unit of A. Then it is a special vector, which we write as

a= Z g(as) (a1, a1, as).

(a1,01,a3)EH1 x Ha X3

For any b = (1, B2, 83) € ©,

P(a®b) = > g(az)(ar * 1, B2, B3) @ (B2 = a1, 02 % By 1, a3)

(a1,a1,a3)€Hy x Ho xQ3

=b®a= Z g(as)(B1, B2, B3) ® (a1, a1, a3).

(al,al,ag)GHl X Ho x Qg

Taking 1 = e, we obtain that for any oy € Hj, oy = ey, so Hy = {e1}. Moreover, for any
52 S QQ?

Z g(Oég) ((12*52_1,063) = Z g(a3)(a27a3)>

(a2,a3)€H2 X3 (a2,a3)EHa %23

so for any as € Ho, ao *62_1 € H,. In particular, for as = es, ﬁ;l € Hs and finally By € Ho:
Hy = Q9. The converse application is immediate.

(2)(b) Similar proof.

(1)(c) and (2)(c) The left counits of (A, ®) are the left units of (A*, ®*), which is isomorphic
o (A, ®71).The result comes from(2)(b). and (1)(b). [

5 From bialgebras to FEAS

We refer to [1, 5, 13] for classical results and notations on bialgebras and Hopf algebras.

5.1 A functor from bialgebras to FEAS

Proposition 5.1. Let (A,m,A) be a bialgebra, not necessarily unitary nor counitary. For any
a,be A, we define: A A— A® A by

a®b) = (m@Ida) o (Ids®7) 0 (A@Ids)(a®@b) = aVb@a®?

with Sweedler’s notation A(a) = 3" a) ® a®). Then (A, ®) is an LEAS, denoted by (EAS(A,
m,A).

Proof. For any a,b,c € A,

(Id@P) o (?®Id)o (IdP)(a ®b® ):(<I>®Id) (Id®T) (<I>®Id)(a®b®c)
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Example 5.2.

(1) Let (©,%) be a semigroup. We take A = KQ, with its usual bialgebra structure: the
product m obtained by linearization of * and the coproduct A defined by Yo € 2, A(a) =
a ® a. Then (A,m,A) is a counitary bialgebra, unitary if and only if Q is a monoid.
In FEAS(A,m,A), for any o, € Q, ?(a® ) = ax f® a. We recover the linearization
of EAS(Q, x).

(2) Let A be a vector space, 14 € A and € € A* such that €(14) = 1. We define a product
and a coproduct on A by Va,b € A, a-b=¢(a)b, Va € A, A(a) =14 ® a. Then (A, m,A)
is a bialgebra, with a left unit 14 and a left counit . It is unitary if and only if A is
one-dimensional; it is counitary if, and only if, A is one-dimensional. In FEAS(A, m, A),
for any a,b€ A, P(a®b) =b®a.

Proposition 5.3. Let (A,m,A) be a bialgebra, not necessarily unitary nor counitary.
(1) Let us consider the following conditions:

(a) FEAS(A,m,A) is an KCEDS
(b) For any a,b,c € A, 3.3 aWbMe®a® @62 =33 0WaMe @ a? @ b2,
(¢) For any a,b,c € A, abc = bac.
(d) m is commutative.
Then (d) = (¢) = (b) <= (a). If (A,A) has a right counit, then (c¢) <= (a). If
(A,m,A) has a right counit and a right unit, then (d) <= (a).
(2) Let us consider the following conditions:
(a) FEAS(A,m,A) is a dual {CEDS.
(b) For any a,b,c€ A, Y. aWb@aPc®a® =3 aPboaMe®a®.
() (A®Id)oA=(r®Id)o(A®Id)oA.
(d) A is cocommutative.

Then (d) = (¢) = (b) < (a). If (A,m) has a right unit, then (¢) < (a). If
(A,m,A) has a right counit and a right unit, then (d) <= (a).

Proof. (1) Obviously, (d) = (¢) = (b). Let a,b,c € A. Then

(I[d@®) o (Ider)o (r@ld)o (2@Id)(bec®a) =Y > P @aPbVeea®,
(r@Id)o(@®Id)o(lded)o(der)becoa) =Y > P @bMaVeea®,

so (a) <= (b). If () is satisfied and if (A, A) has a right counit ¢, applying (Id ®e®¢) to (b), we
obtain (c). If (c) is satisfied and (A, m) has a right unit 14, taking ¢ = 14 in (c¢), we obtain (d).
(2) Obviously, (d) = (¢) = (b). Let a,b,c € A. Then

(P®Id)o(t®Id)o (Id®7) o (Id®P)(b®a®c) = Z @b a® @ aVe,
(Id@r) o (Id®®) o (P @Id)o (r@Id)(b@a®c) =Y aVb®a® @ae,

so (a) < (b). If (b) is satisfied and if (4, m) has a right unit 14, taking b = ¢ = 14 in (b),
we obtain (¢). If (¢) is satisfied and (A, A) has a right counit €, applying (Id ® Id ®e) to (c),
we obtain (d). [

Proposition 5.4. Let (A,m,A) be a finite-dimensional bialgebra, not necessarily unitary nor
counitary. Then (EAS(A,m,A)* = (EAS(A*, A*,m*).
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Proof. Let f,g € A*. For any a,b € A,

" = ((m®Idg) o (Idga®7) 0 (A®Idy))* = (A* ®Idax) o (Idax ®7) o (m* @ Id g+).
Therefore, (EAS(A, m, A)* = (EAS(A*, A*,m*). |
Proposition 5.5. Let (A,m,A) be a bialgebra.

(1) We assume that (A, m) has a right unit 14.

o If 14 is not a unit of (A,m), the unique left unit of (EAS(A,m,A) is 0. If 14 is
a unit of (A,m), then the left units of (EAS(A,m,A) are the elements a € A such
that A(a) =14 ® a.

(2) We assume that (A, A) has a right counit € 4.

o Ifcy is not a unit of (A, A), the unique left counit of (EAS(A,m,A) is 0. If e4 is
a counit of (A, A), then the left counits of tEAS(A,m,A) are the elements \ € A*
such that \om = e ® A.

Proof. (1) Let us assume that FEAS(A, m,A) has a nonzero left unit a. Let us choose A € A*
such that A(a) = 1. For any b € A,

(Id®X) o ®(a (Za (a?) )b = (Id@\)(b® a) = bA(a) = b,

=a’
so a’ is a left unit of (A, m). Then a'l4 =a’ = 14, so a’ =14 is a unit. Moreover, for b = 14,
a®ly)= Za 1y©a? =Aa) =14 ®a.
Conversely, if 14 is a unit of (A,m) and A(a) = 14 ® a, then a is clearly a left unit of
(EAS(A,m, A).

(2) Let us assume that FEAS(A, m, A) has a nonzero left counit A. Let us choose b € A such
that A\(b) = 1. For any a € A,

(A®Id)o => A(a" = a\(b) = a.
If we define \': A — K by N(a) = A(ab), then X is a left counit of (A4,A). As e4 is a right
counit of (A,A), (N ®e4q)o0A =N = ey, s0 N = €4 is a counit of (4,A). Moreover, for
any a,b € A,

(A®eq)oP(a®b) =cala => Aa" a?) = A(ab),

so Aom = e4 ® A. Conversely, if €4 is a counit of (4,A) and Aom = 4 ® A, then for any
a,be A,

A@Id)od(a@b) =Y AMaPb)a® => ea(aV)A(b)a = A(b)a,
so A is a left counit of FEAS(A, m,A). [

More generally, we can obtain other /EAS with the help of a bialgebra projection or with
certain linear forms.
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Proposition 5.6. Let (A,m,A) be a bialgebra, not necessarily unitary nor counitary, and
7 A — A be a bialgebra morphism such that 7 = w. For any a,b € A, we define ®: AQ A —
A® A by

Pla®@b)=(mem)o(Ida®7) o (A®Ida)(a Za bon(a
Then (A, ®) is an (EAS.

Proof. We define 6 = (Id ®7) o A. Then (A, m,J) is a bialgebra. Note that it is not counitary,
except if (A, A) is counitary and m = Id4. We can then apply Proposition 5.1 to (A,m,d). W

Example 5.7. Let (Q2,%) be a semigroup and 7:  — Q be a semigroup morphism such
that 72 = 7. We take A = K, with its usual bialgebra structure. Then in fEAS(A, m, A), for
any a, 8 € Q, ®(a® f) = a* @ m(a). We recover the linearization of EAS(Q, %, 7).

Proposition 5.8. Let (A, A) be a coalgebra, not necessarily counitary, and f € A* such that
(f@ f)oA=f. We put, for any a,b € A,

=> flaM)b®al
Then (A, ®) is an ¢CEDS.

Proof. We define a product on A by axb = f(a)b. It is associative. Moreover, for any a,b € A,
as (f@ f)oA=f,

Aa*b) Zb(l) Qb@ = Z fla (1) (a(Q)) Zb(l) ® b®@
= ZZf N0 @ f (a6 = Aa) x AW),
o (A, x,A) is a bialgebra, and (A, ®) = FEAS(A, *, A). Moreover, for any a,b,c € A,
axbxc= f(a)f(b)ce= f(b)f(c)a=bxaxc.
By Proposition 5.3, (A, ®) is an /CEDS. [

Example 5.9. Let  be a set, A = KQ be the associated coalgebra (where any o €  is
a group-like element), and Q' C Q be any set. We define the linear form f: A — K by

1 ifae,

0 otherwise.

Va e Q, f(a) = {
For any a € Q, (f ® f) o A(a) = f(a)? = f(a), so we obtain an /CEDS such that for any
a, B €,

BRa ifaec,

0 otherwise.

@(a@ﬁ)z{

5.2 A functor from Hopf algebras to FEAS

Proposition 5.10. Let (A,m,A) be a Hopf algebra, of antipode S. For any a,b € A, we define
P: AR A— AR A by

®(a®b) = (Idg @m) o (Idg ®S @ Id4) o (A ®Id) o 7(a => WS

Then (A, ®) is an (EAS, denoted by (EAS' (A, m,A). It is non-degenerate, and (A,<I>*1) =
(EAS(A, m, A%).



On Extended Associative Semigroups

27

Proof. Let a,b,c € A. Then

(Id®<I>)o(<I>®Id) (Id®<1>)( ®b®c)
=>"> "W YD @ S(5(c®)Pp) 5 () q
=3 >b<1>®s<s<c<3>> 2)5(c®)a
=33 W@ S0 @ §(5 (e @)b)a
=YY o () © 5()a
=(P®Id)o (Id®7)o(<I>®Id)(a®b®c)

is an /EAS.

so (A, @)
t (A, ¥) = fEAS(A, m,A°): for any a,b € A, ¥(a®b) =3 aPb® alV). Then

Let

do¥(a Z (1)®Sa2) (3)b:a®b,
Vod(a®b)=>» bS01@)awbt® =awb,

so ® is bijective, of inverse W.

Example 5.11. Let (G, *) be a group and let A = KG°P be the Hopf algebra of the opposite
of this group. A basis of FEAS’'(A,m, A) is given by G itself and, for any o, 3 € G, ®(a® ) =

B ® ax* B~ We recover in this way the linearization of EAS'(G, x).

Corollary 5.12. Let (A,m,A) be a bialgebra, such that (A, m,A°P) is a bialgebra.

(A, ®) = (EAS(A, m,A) is non-degenerate and (A, <I>*1) = (EAS'(A, m, A°P).
Proposition 5.13. Let (A, m,A) be a Hopf algebra.

(1) Then tEAS'(A,m,A) is an ¢CEDS if and only if Ao S = A% 0 S.
(2) Then fEAS'(A,m,A) is a dual (CEDS if and only if Som = S o m°

Proof. (1) Let a,b,c € A.
(Id®@®) o (Id®7) o (r®Id) o (P @Id)(b® c®a ZS Na b @963,
(r@1d)o (@2 1d)o (1Mo®) o (der)(bocod) = 3 SH)as b @ S(HO)..

IfAoS=AoS, then

YW e s0?) 0 s0@) =331 @ 50@)? @ sp@)"
=Y e S(b(3>) ® S(b<2)),

which implies that (A, ®) is an /CEDS. Conversely, taking a = ¢ = 14, we obtain, in (5.1),

> SE®) @b => S @M e S(HP).
Applying Id ®e ® Id, we obtain
AoS(b)=> SH)M @S5 =>"5b?) 2 s0HM)
=Y S @SbP) =351 @ Sb)M = A%P o S(b).

Then
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(2) Let a,b,c € A. Then

(P®@Id)o(r®Id)o(ldar) o Ided)(beamc) =Y > a5 (a®)S(@)pe W,
(Id@r) o (Id@d) o (P@Id)o (reld)beawc) =Y > a) @ 5(c?)s (@b M.

If Som = Som, then m°® o (S ® S) = mo (S ®S), which implies that (A, ®) is a dual
¢(CEDS. Conversely, taking b = 1 and applying ¢ ® Id ®e, we obtain S(a)S(c) = S(c)S(a),
som®PoS=mo(S®S5)=mPo(S®S)=Som. [ |

Remark 5.14. In particular, if S is invertible, then fEAS’(A, m,A) is an /CEDS if and only
if (A, m) is commutative; it is a dual /CEDS if and only if (A, A) is cocommutative.

Proposition 5.15. Let (A,m,A) be a finite-dimensional Hopf algebra. Then
(EAS' (A, m, A)* = fEAS'(A*, A*°P m™*°P).
Proof. Let f,g € A*. For any a,b € A,

2 (fRg)a®b)=(f@9)(Paeb) =Y (fg)(b" @ 5(bPa))
= Z Z fodPe g(2)) (b(l) ® 5(5(2)) ® a)
— S (Fo s (¢ @gm))(b(l) 25 © a)
=3 (4P @ £5*(gM))(a @ b),

so P (fog)=>g? e f5* (g(l)), which is the /EAS attached to the Hopf algebra (A* A*°P,
m*°P), whose antipode is S*. [

Recall from [14] that a right integral of a Hopf algebra (A, m,A) is a linear map f € A* such
that for any p € A*, (A ® u) o A = p(la)A.

Proposition 5.16. Let (4, m,A) be a Hopf algebra.

(1) Leta € A. It is a left unit of (EAS'(A,m,A) if and only if for any b € A, S(b)a = e(b)a.

(2) Let A\ € A*. 1t is a left counit of FEAS'(A,m,A) if and only if for any a € A,
Zx\(b(1 )S (b(Q)) A(b)14. In particular, right integrals on (A,m,A) are left counit of
(EAS'(A,m,A); if S is invertible, then the converse is true.

Proof. (1) Let a € A. Then its a left unit if and only if for any b € A, 3 b(1) ®S(b(2))a =b®a.
Applying ¢ ® Id, if a is a left unit, for any b € B, S(b)a = €(b) ® a. Conversely, if this holds,
then for any b € B,

Paxb) =Y WesdM)a=>Y tWe:(t?)a=bea.
(2) Let A € A*. It is a left counit if and only if for any a,b € A,

> AOW)S () a = ar(b).

If A is a left counit, taking a = 14, we obtain that for any b € A, /\(b(l))S(b(2)) = A\b)14.
Conversely, if this holds, then for any a,b € A,

(A®Id)o => A(" = Ab)a = (1d®\)(a® D),

so A\ is a left counit.
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Let us assume that A is a right integral of (A, m,A). For any b € A, for any p € A*,
STAG) u(S0P)) = (A@ po S) o A(b) = o S(LAAD) = p(1a)A(D).

As this holds for any p € A*, Z)\(b(l))S(b(2)) = A(b)14, so A is a right integral. Let us now
assume that S is invertible and that X is a left counit. Let v € A*. Forany b € A, if y = voS~1,

S AED)r(6®) =S Ao S(BP) = Ab)u(14)
= A(b)r o STH(14) = A(b)r(1,).

So A is a right integral. [ |

5.3 From left units and counits to bialgebras

Theorem 5.17. Let (A, ®) be an (EAS.

(1) If a is a special vector of eigenvalue 1 of (A, ®), then Ay: A — A® A defined by Ay (b) =
®(b® a) is a coassociative coproduct.

(2) Ife is a special vector of eigenvalue 1 of (A, ®)*, that is to say if (e ®e)o P =ec®e¢, then
me: A® A — A defined by me = (Id®e) o ® is an associative product.

(3) If a is a left unit of (A, ®) and € is a left counit of (A, ®) such that e(a) = 1, then
(A, me, Ay) is a bialgebra, with a as a left unit and € as a left counit. Moreover, (A, ®) =
(EAS(A,m., Ay).

Proof. (1) For any b € A,

(Id®@®) o (® ©1d) o (1d@P)(b® a®a) = (Id@®) o (P ®1d)(b® a ® a)
= (Id®®)(Au(b) ® a) = (Id®A,) 0 Ag(b),
® ®1d) o (Id@7)(Au(b) ® a)

(P®Id)o(Id®T) o (P®Id)(b®a®a) = (
— (Ay ®1d) 0 Ay (b).

Hence, A, is coassociative.
(2) We obtain, as ¢ is a special vector of eigenvalue 1 of (A, ®)*,

(Idee®e) o (Id@P) o (P ®1Id) o (Id®P) = (Id®e ® ) o (P @ Id) o (IdRP)
= (Id®e) o ® o ((Id®e) o ®))
= me o (Id®@m,),
(Id®e®e)o(P®Id) o (Id®T) 0o (P ®Id) = (Id®e) 0o @ o ((Id ®e) ® Id)

= me o (m. ® 1d).

As a consequence, m, is associative.
(3) As a is a left unit, it is a special vector of eigenvalue 1 of (A4, ®), so A, is coassociative.
Moreover, for any b € A,

(e®Id) o Ay(b) = (e®Id) 0o ®(b®a) = (Id®e)(b® a) = be(a) = b,

so € is a left counit of A,. As € is a left counit, it is a special vector of eigenvalue 1 of (A, ®)*,
S0 m, is associative. Moreover, for any b € A,

me(a®b) = (Id®e) o ®P(a®@b) = (Id®e)(b® a) = be(a) = b,

so a is a left unit of m..
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Let b1,b9 € A.

Ag(brbe) = (Id®e @ Id®e) o (P @ @) o (Id@T @ 1d) 0 (¢ ® P)
o(Id®@r®1d)(b) ® ba ® a ® a)
= ([d®e @ Id®e) o (AR IA@P) o (¢ @ Id®1d) o (Id®r @ Id) o (& ® Id ® 1d)
o (Id®1d®@®) o (Id @7 @ Id)(by ® by ® a ® a)
= (Id®e®@Id®e) o (Id®1d®@®) o (Id®@P ®Id) o (P ® Id®Id) o (Id ®P ® Id)
o (Id®Id®@®) o (Id®T ®1d)(b; ® by ® a ® a)
= (Id®Id®e) o (Id®@®) o (Id®((e ® Id) 0o ®) ® Id) o (? ® Id ®1d)
o(Id®® ®1d) o (Id®Id®@®) o (Id®T ® Id)(b; ® bs ® a ® a)
= (Id®Id®e) o (Id®@®) o (Id®Id ®e ® Id) o (P ® Id ® Id)
o(ld@®®Id)o (Id®Id®@®) o (Id®7 @ Id) (b1 ® by ® a ® a)
= (Id®Id®e) o (Id@®) o (? ® Id®1d) o (Id ®(Id ®e) o  ® Id)
o (Id®Id®®)(b; ® a ® ba ® a)
= (ld®Id®e) o (Id@®P) o (¢ ®1d) o (Id @P) (b ® by ® a)
=Po((Id®e) o ®®Id)(h ® by ® a)
= ®(me(by @ ba) ® a) = Ay(me (b1 ® ba)).
So (A,mg,A,) is a bialgebra. Let (A, ¥) = (EAS(A, me,A,). For any b1, by € A,
V(b ®b2) = (Id®e ®1d) o (P ®@Id) o (Id®7) 0o (® ®Id)(b; ® a ® ba)
= (Id®e ®Id) o (Id@®) o (® @ Id) o (Id @P)(b; ® a ® by)
= (Id®Id®e) o (P ®@1d)(b1 ® by ® a) = ®(by ® ba)e(a) = (b1 ® ba).
Therefore, (A, ®) = (EAS(A, m., A,). [
Example 5.18. This can be applied for fEAS Mg, My7 and Myg of Example 4.2.
e For Mg, taking a =  and € = =* + y*, we obtain
Ao(z) =z @z,  Ady)=y®Y,
me(z®@z) =z, m(r@y) =y,
m(y®z) =y, m(y®y)=y.
This is the bialgebra of the semigroup (Z/2Z, x), with z = 1 and y = 0: we recover the
linearization of C3.

e For M7, taking a = z and € = =* + y*, we obtain

Ay(z) =z @z, Ay =2 —-—2Qy—yRzr+2yy,

me(r®@z) =1z, m(rey) =y,

me(y@z) =z, Mm(y®y)=y.
Putting v/ = —x + 2y,? we obtain

Ag(z) =z@z,  Ady) =y @Y,

me(r@z) =z, m(z@y)=y,

ms(y/ Q)= ?J,a ms(y/ ® y/) = Z.

This is the bialgebra of the semigroup (Z/2Z,+), with z = 0 and y = 1: we recover the
linearization of H2.

21f the characteristic of the base field K is not 2.
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e For Mg, we can take any a € A and any € € A* such that e(a) = 1. For any b,c € A,
Ag(b) =a®b, me(b®c) = e(b)e.

5.4 Applications to non-degenerate finite CEDS

From Proposition 4.10, we have the following.

Proposition 5.19. Let (2, —,>) be a non-degenerate finite CEDS, which we write following
Theorem 3.16 under the form (EAS(Q21, %) x. EAS'(Q9,%)) x EAS(Q3). Let g,h: Q3 — K be
two maps such that

> glag)h(as) = 1.

a3 EQ3

We define a product and a coproduct on K, putting, for any (a1, a9, as), (61,52, 03) € Q,

(a1, a9, a3) - (B1, B2, 3) = Oas,po9(3) (1 * B1, B2, B3),
Aoz, ag,a3) = Z h(B3)(a1, B2, B3) @ (B2 = a1, 0 % B3 1, 3).

(B2,83)€Q2xQ3

Then (KQ, -, A) is a bialgebra and the linearization of Q is (EAS(KQ, -, A).

Proof. By Proposition 4.10, the following is a left unit of K(2:

a= Z h(az)(e1, a2, a3),

(a2,03)EN2 X3

and the following map is a left counit of KQ:

{KQ—>K,
[

(a1, 2, @3) — Oy er9(Q3)-
By hypothesis, e(a) = 1. The result comes from a direct application of Theorem 5.17. |

Similarly, we have the following.

Proposition 5.20. Let (2, —,>) be a non-degenerate finite dual CEDS, which we write following
Corollary 3.18 under the form (EAS(Qq,%) x< (EAS'(Q1,%)) x EAS(Q3), Let g,h: Q3 — K
be two maps such that

> glag)h(az) = 1.

az€Nsg

We define a product and a coproduct on KQ, putting, for any (a1, a2, as), (81, P2, 83) € £,

(a1, a9, a3) - (B1, 2, 3) = 0oy, 9(3) (2 * B2, B1 < aa, £3),

Az, a1, 03) = Z h(Bs)(az, B1 < a2, 83) ® (ag, a1 x (B7 ' < ag'), ).
(B1,83)€Q1 % Q3

Then (KQ, -, A) is a bialgebra and the linearization of Q is (EAS(KQ, -, A).
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5.5 Applications to Hopf algebras of groups

In all this paragraph, G is a group. We denote by KG the associated Hopf algebra. If G is
finite, we denote by K& the Hopf algebra of functions over G, with its basis (0g)geq, dual of the
basis GG of KG.

Corollary 5.21. If G is finite, then fEAS'(KG) is isomorphic to fEAS (KG), and EEAS’(KG)
is isomorphic to (EAS(KG®P).

Proof. As G is finite, a = }_ ;g is a right integral of K&, 5o is a left unit of /EAS'(KG).
If e is the unit of the group G, then € = d., is a right integral of KG, so is a left counit
of (EAS'(KG). As e(a) =1, fEAS'(KG) = fFEAS(KG, mc, A,). For any g,h € G,

me(g @ h) = (Id@bey;) 0 ®(g ® h) = hée., (R~ 1g) = 54 ph.

For any g € G,

Aog) =D Qgah)=> hahlg= > gog.
heG heG 91,92€G,
g192=9g

So (KG,m.,A,) is isomorphic to K&, via the map sending ¢ to dg, for any g € G.
By duality, a is a left counit of FEAS'(K®) and ¢ is a left unit of FEAS'(K®). For any
g,h € G,

Ma(8y @ 0p) = Id®a)o B(g@h) = > 0p, @ 8),189(a) = Gpg-
h1,ho€G,
hiho=h

For any g € G,

Ac(8g) = (6g @ be) = D 6n @ Opg = > 0 @ S0 = 8 ® 8.
heG heG

So (KG, M, AE) is isomorphic to KG°P via the map sending 4 to g, for any g € G. |
Proposition 5.22.

(1) The nonzero special vectors of eigenvalue 1 of fEAS(KG) and of (EAS'(KG) are the
elements X\~ o o, where X is a nonzero scalar and H is a subgroup of G.

(2) If G is finite, the nonzero special vectors of eigenvalue 1 of (EAS (KG) and ofEEAS’(KG)
are the elements Ny 6o, where A is a nonzero scalar and H is a subgroup of G.

Proof. Any a € A can be written under the form a =) .» Aoa. Then

a is a special vector of eigenvalue 1 of FEAS(KG)
— Z aqago @ B = Z aqagofl @ o

a7B€G CY,,BEG
= Z aa00 @ 3 = Z agag-1,08 @ a
a7B€G CY,,BEG

Vo, € G,ag(aa — ag-1,) = 0.

Let a be a nonzero special vector of eigenvalue 1 of FEAS(KG). Let us put a1, = A and
H ={a € G,aq # 0}. Let « = 3 € H. As ag # 0, we obtain aq = a1, = A, s0 1g € H
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and A # 0. For any 8 € H, taking a = 1g, we obtain ag-1 = A, so BteH Ifa,p € H,
we obtain that ag-1, = a # 0, so B~ta € H. Hence, H is a subgroup and a = A aeH @

a is a special vector of eigenvalue 1 of /EAS'(KG)
—= Z aqage @ 3 = Z aqagfB @ B la

05756G a,ﬁEG
—= Z aqaga @ 3 = Z agaagof @ o
avﬁeG a,ﬁEG

= Vo, € G,aq(ag — anp) = 0.

Let a be a nonzero special vector of eigenvalue 1 of /EAS'(KG). Let us put a1, = A and
H={a € Gaq, #0}. Let a = € H. If a € H, for § = 1¢, we obtain a1, = aq = A, s0
lg € H and X # 0; for 8 = a1, we obtain a,-1 = a1, = A # 0, so aleG Ifa,B e H, we
obtain that a,s = ag # 0, so a8 € H. Hence, H is a subgroup and a = A} . a.

Let f € K& We put f(a) = aq for any o € G,

f is a special vector of eigenvalue 1 of /EAS (KG)
= Va,B € G,aqa8 = aqp

Vo, € G,aq(ag — aqg) = 0;

f is a special vector of eigenvalue 1 of EEAS’(]KG)
Vo, € G,aqag = agag-1,

Vo, € G,a5(aa —ag-1,) = 0.

The conclusion is the same as for KG. [ |
Remark 5.23.

(1) From Proposition 5.5, the left units of FEAS(KG) are the multiples of e, and its left
counits are the multiples of its counit. If G is finite, the left units of /EAS (KG) are the
multiple of > gec g-and its left counits are the multiples of eg.

(2) From Proposition 5.16, it is not difficult to show that if G is finite, the left units of
(EAS'(KG) are the multiples of }° ; g; if G is not finite, /EAS’(KG) has no nonzero
left unit. The left counits of FEAS'(KG) are the multiples of d.,. By duality, if G is finite,
the left units of fEAS’ (KG) are the multiples of d., and its left counits are the multiples

of deG g.
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