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Abstract. We study extended associative semigroups (briefly, EAS), an algebraic structure
used to define generalizations of the operad of associative algebras, and the subclass of
commutative extended diassociative semigroups (briefly, CEDS), which are used to define
generalizations of the operad of pre-Lie algebras. We give families of examples based on
semigroups or on groups, as well as a classification of EAS of cardinality two. We then
define linear extended associative semigroups as linear maps satisfying a variation of the
braid equation. We explore links between linear EAS and bialgebras and Hopf algebras. We
also study the structure of non-degenerate finite CEDS and show that they are obtained by
semi-direct and direct products involving two groups.
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1 Introduction

It seems that the notion of family parameterization of a given type of algebraic structure ap-
peared firstly appears in the context of quantum field theory: in [6], the authors introduced Rota–
Baxter family algebras. This terminology is due to Li Guo [12]. In the same spirit, family pre-Lie,
dendriform or tridendriform algebras, among others have been introduced [10, 15, 16, 17, 18].
In all cases, the idea is to replace the operations defining the structure by a bunch of operations
indexed by a semigroup Ω; the relations between the axioms are deformed using this structure
on Ω. For example, if (Ω, ⋆) is a semigroup, an (Ω, ⋆)-family associative algebra A has a family
(∗α)α∈Ω of products, with the relations

x ∗α (y ∗β z) = (x ∗α y) ∗α⋆β z,

satisfied for any α, β, γ ∈ Ω and any x, y, z in A. In the same spirit, the notion of matching
parameterization can be used: for pre-Lie, it appears for example in the work of Bruned, Hairer
and Zambotti on regularity structures to solve stochastics PDEs [2, 3, 4, 9]. Matching Rota–
Baxter algebras, associative, dendriform, pre-Lie algebras are introduced in [9, 16], see also [10]
for a two-parameter versions for pre-Lie algebras. For example, a matching associative algebra
has a family (∗α)α∈Ω of products indexed by a set Ω, with the relations

x ∗α (y ∗β z) = (x ∗α y) ∗β z.

Note that no specific structure is required on Ω in this case. Attempts to unify these parame-
terizations have been done in [7, 8, 11]. For example, for associative, following [7], given a set Ω
with two binary operations → and ▷, an (Ω,→, ▷)-associative algebra has a family (∗α)α∈Ω of
products, with the relations

x ∗α (y ∗β z) = x ∗α▷β (y ∗α→β z).
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Of course, usually these structures do not have any convenient property, and some conditions
are imposed: roughly speaking, one imposes that the underlying combinatorics of the initial
object is conserved, modulo a parameterization by Ω. This gives some constraints on Ω. For
associative algebras, (Ω,→, ▷) has to be an extended associative semigroup (briefly, EAS):

∀α, β, γ ∈ Ω, α→ (β → γ) = (α→ β)→ γ,

(α ▷ (β → γ))→ (β ▷ γ) = (α→ β) ▷ γ, (α ▷ (β → γ)) ▷ (β ▷ γ) = α ▷ β.

In particular, (Ω,→) is an associative semigroup. Here are some examples:

� If Ω is a set, putting ∀α, β ∈ Ω, α → β = β, α ▷ β = α, we obtain an EAS, denoted by
EAS(Ω). This EAS gives back matching associative algebras.

� If (Ω,→) is an associative semigroup, it is an EAS with ∀α, β ∈ Ω, α ▷ β = α. This EAS
is denoted by EAS(Ω,→). It gives back (Ω,→)-family associative algebras.

� If (Ω, ⋆) is a group, it is an EAS, with ∀α, β ∈ Ω, α → β = β, α ▷ β = α ⋆ β⋆−1, It is
denoted by EAS′(Ω, ⋆).

The two first examples explain why Ω-matching and (Ω, ⋆)-family associative algebras are very
similar, in particular why the free objects are isomorphic as vector spaces: this is fact works for
the more general settings of Ω-associative algebras over an EAS. The same can be done with
pre-Lie algebras, leading to the notion of commutative extended diassociative semigroup (briefly,
CEDS). A CEDS is an EAS satisfying the complementary axioms

∀α, β, γ ∈ Ω, (α→ β)→ γ = (β → α)→ γ, α ▷ (β → γ) = α ▷ γ,

The Koszul duality of quadratic operads applied to Ω-pre-Lie algebras leads to the notion of
dual CEDS, which are EAS with the complementary axioms

∀α, β, γ ∈ Ω, (α ▷ β)→ γ = α→ γ, (α ▷ β) ▷ γ = (α ▷ γ) ▷ β.

For example, for any set Ω, EAS(Ω) is both a CEDS and a dual CEDS. For any semigroup (Ω, ⋆),
EAS(Ω, ⋆) is a dual CEDS and is a CEDS if and only if

∀α, β, γ ∈ Ω, α ⋆ (β ⋆ γ) = (α ⋆ β) ⋆ γ = (β ⋆ α) ⋆ γ.

For any group (Ω, ⋆), EAS′(Ω, ⋆) is a CEDS, and is a dual CEDS if and only if ⋆ is commutative.
The axioms of EAS can be reformulated using the maps

ϕ :

{
Ω2 −→ Ω2,

(α, β) −→ (α→ β, α ▷ β),
τ :

{
Ω2 −→ Ω2,

(α, β) −→ (β, α).

Then (Ω,→, ▷) is an EAS if and only if

(Id×ϕ) ◦ (ϕ× Id) ◦ (Id×ϕ) = (ϕ× Id) ◦ (Id×τ) ◦ (ϕ× Id).

Similar formulations can be done for CEDS and dual CEDS, see Lemma 2.10. This reformulation
naturally leads to the notion of linear EAS: an ℓEAS is pair (A,Φ), where A is a vector space
and Φ: A⊗A −→ A⊗A is a linear map satisfying the ℓEAS braid equation

(Id⊗Φ) ◦ (Φ⊗ Id) ◦ (Id⊗Φ) = (Φ⊗ Id) ◦ (Id⊗τ) ◦ (Φ⊗ Id).

In particular, let (Ω,→, ▷) be a set with two operations. We denote by KΩ the vector space
generated by Ω and we define Φ: KΩ⊗KΩ −→ KΩ⊗KΩ by

∀α, β ∈ Ω, Φ(α⊗ β) = (α→ β)⊗ (α ▷ β).
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Then (KΩ,Φ) is an ℓEAS if and only if (Ω,→, ▷) is an EAS. Not all the ℓEAS can be obtained
in this way, see Example 4.2 for two-dimensional examples. Similar presentations of ℓCEDS and
ℓCEDS can be established, see Definition 4.1.

The aim of this paper is a study of EAS, CEDS, and their linear versions. In the second
section, after recalling the main definitions, we give a classification of EAS of cardinality 2,
which gives 13 non-isomorphic examples, 11 being CEDS, 7 being dual CEDS, 3 being non-
degenerate (that is to say, with an invertible map ϕ). The third section is devoted to the
study of non-degenerate finite CEDS. We prove that the three examples defined earlier are
in fact fundamental bricks: Theorem 3.16 states that any finite non-degenerate CEDS can be
decomposed as the direct product of a semi-direct product EAS(Ω1, ∗) ⋊ EAS′(Ω2, ⋆) with
an EAS(Ω3), where (Ω1, ∗) is an abelian group, (Ω2, ⋆) is a group and Ω3 is a nonempty set.
The fourth section is devoted to linear versions of EAS. We give firstly a family of 18 examples
of ℓEAS in dimension 2, then study the duality of ℓEAS (see Proposition 4.4), and left units,
left counits and eigenvectors (see Definition 4.6). If (A,Φ) is an ℓEAS, an element a ∈ A is a left
unit if for any b ∈ A, Φ(a ⊗ b) = b ⊗ a. An element f ∈ A∗ is a left counit if for any a, b ∈ A,
(f ⊗ Id)◦Φ(a⊗ b) = f(b)a. In particular, we characterize left units and counits and eigenvectors
for linearization of non-degenerate CEDS in Proposition 4.10. In the last section, we introduce
two functors taking their values in the category of ℓEAS. The first one (see Proposition 5.1) is
defined on the category of bialgebras (not necessarily unitary nor counitary) and generalizes the
construction of EAS(Ω,→). The second one (see Proposition 5.10) is defined on the category
of Hopf algebras and generalizes the construction of EAS′(Ω, ∗). In the case of an ℓEAS coming
from a Hopf algebra, this is closely related to the notion of right integral (see Proposition 5.16).
We prove in Theorem 5.17 that we can associate to any convenient pair (a, f) of a unit and
a counit a bialgebra structure on A, recovering in this way ℓEAS coming from a bialgebra. This
is finally applied to ℓEAS defined from Hopf algebras of groups.

Notation 1.1. K is a commutative field. All the vector spaces in this text are taken over K.

2 Extended (di)associative semigroups

2.1 Commutative extended diassociative semigroups

Let us first recall this definition of [10], where it is related to a parameterization of the operad
of dendriform algebras.

Definition 2.1.

(1) A diassociative semigroup is a family (Ω,←,→), where Ω is a nonempty set and ←,
→ : Ω× Ω −→ Ω are maps such that, for any α, β, γ ∈ Ω,

(α← β)← γ = α← (β ← γ) = α← (β → γ), (2.1)

(α→ β)← γ = α→ (β ← γ), (2.2)

(α→ β)→ γ = (α← β)→ γ = α→ (β → γ). (2.3)

An extended diassociative semigroup (briefly, EDS) is a family (Ω,←,→, ◁, ▷), where Ω is
a nonempty set and ←,→, ◁, ▷ : Ω× Ω −→ Ω are maps such that

(a) (Ω,←,→) is a diassociative semigroup.

(b) For any α, β, γ ∈ Ω,

α ▷ (β ← γ) = α ▷ β, (2.4)

(α→ β) ◁ γ = β ◁ γ, (2.5)
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(α ◁ β)← ((α← β) ◁ γ) = α ◁ (β ← γ), (2.6)

(α ◁ β) ◁ ((α← β) ◁ γ) = β ◁ γ, (2.7)

(α ◁ β)→ ((α← β) ◁ γ) = α ◁ (β → γ), (2.8)

(α ◁ β) ▷ ((α← β) ◁ γ) = β ▷ γ, (2.9)

(α ▷ (β → γ))← (β ▷ γ) = (α← β) ▷ γ, (2.10)

(α ▷ (β → γ)) ◁ (β ▷ γ) = α ◁ β, (2.11)

(α ▷ (β → γ))→ (β ▷ γ) = (α→ β) ▷ γ, (2.12)

(α ▷ (β → γ)) ▷ (β ▷ γ) = α ▷ β. (2.13)

An EDS (Ω,←,→, ◁, ▷) is commutative if for any α, β ∈ Ω,

α← β = β → α, α ◁ β = β ▷ α. (2.14)

Let us reformulate the definition of commutative EDS.

Proposition 2.2. A commutative EDS (briefly, CEDS) is a triple (Ω,→, ▷), where Ω is a non-
empty set and →, ▷ : Ω2 −→ Ω are maps such that, for any α, β, γ ∈ Ω,

α→ (β → γ) = (α→ β)→ γ = (β → α)→ γ, (2.15)

α ▷ (β → γ) = α ▷ γ, (2.16)

(α ▷ γ)→ (β ▷ γ) = (α→ β) ▷ γ, (2.17)

(α ▷ γ) ▷ (β ▷ γ) = α ▷ β. (2.18)

Proof. Replacing ← and ◁ in (2.1)–(2.13) with the help of (2.14), we find (2.15)–(2.18). ■

Definition 2.3 ([7]). An extended associative semigroup (briefly, EAS) is a triple (Ω,→, ▷),
where Ω is a nonempty set and →, ▷ : Ω2 −→ Ω are maps such that, for any α, β, γ ∈ Ω,

α→ (β → γ) = (α→ β)→ γ, (2.19)

(α ▷ (β → γ))→ (β ▷ γ) = (α→ β) ▷ γ, (2.12)

(α ▷ (β → γ)) ▷ (β ▷ γ) = α ▷ β. (2.13)

Remark 2.4. Let (Ω,→,←, ▷, ◁) be an EDS. Then (Ω,→, ▷) is an EAS, called the right part
of the EDS (Ω,→,←, ▷, ◁). We obtain a commutative triangle of functors

CEDS �
� //� _

��

EAS.

EDS
right part

99ssssssssss

We shall see that not all the EAS are right parts of an EDS (see case C6 in the classification of
EAS of cardinality 2 in the next paragraph).

Example 2.5.

(1) Let Ω be a set. We put

∀(α, β) ∈ Ω2,

{
α→ β = β,

α ▷ β = α.

Then (Ω,→, ▷) is an EAS, denoted by EAS(Ω). It is a CEDS.
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(2) Let (Ω, ⋆) be an associative semigroup and let π : Ω −→ Ω be an endomorphism of (Ω, ⋆)
such that π2 = π. We put ∀(α, β) ∈ Ω2, α ▷ β = π(α). It is an EAS, which we denote
by EAS(Ω, ⋆, π). It is a CEDS if and only if for any α, β, γ ∈ Ω, (α ⋆ β) ⋆ γ = (β ⋆ α) ⋆ γ.
We shall simply denote EAS(Ω, ⋆) instead of EAS(Ω, ⋆, IdΩ). In particular, if (Ω, ⋆) is
a group, then EAS(Ω, ⋆) is a CEDS if and only if (Ω, ⋆) is abelian, which proves that not
all EAS are CEDS.

(3) Let Ω be a set with an operation ▷ such that, for any α, β, γ ∈ Ω, (α ▷ γ) ▷ (β ▷ γ) = α ▷ β.
We then put ∀(α, β) ∈ Ω2, α → β = β. Then (Ω,→, ▷) is a CEDS (so is an EAS). This
holds, for example, if (Ω, ⋆) is an associative semigroup with the right inverse condition

∀(β, γ) ∈ Ω2, ∃!α ∈ Ω, α ⋆ β = γ.

This unique α is denoted by γ ▷ β. Then, for any α, β, γ ∈ Ω,

((α ▷ γ) ▷ (β ▷ γ)) ⋆ β = ((α ▷ γ) ▷ (β ▷ γ)) ⋆ ((β ▷ γ) ⋆ γ)

= (((α ▷ γ) ▷ (β ▷ γ)) ⋆ (β ▷ γ)) ⋆ γ = (α ▷ γ) ⋆ γ = α,

so (α ▷ γ) ▷ (β ▷ γ) = α ▷ β. This EAS is denoted by EAS′(Ω, ⋆). The right inverse
condition holds for example if (Ω, ⋆) is a group, and then α ▷ β = α ⋆ β⋆−1. It also holds
for semigroups which are not groups. For example, if Ω is a nonempty set, we give it an
associative product defined by ∀α, β ∈ Ω, α⋆β = α. It satisfies the right inverse condition
and, for any α, β ∈ Ω, α ▷ β = α. Note that for this example, EAS′(Ω, ⋆) = EAS(Ω).

Definition 2.6. Let (Ω,→, ▷) be an EAS. We shall say that it is non-degenerate if the following
map is bijective:

ϕ :

{
Ω2 −→ Ω2,

(α, β) −→ (α→ β, α ▷ β).

If Ω is a non-degenerate EAS, the structure implied on Ω by ϕ−1 will be studied in the next
paragraph.

Example 2.7.

(1) Let Ω be a set. In EAS(Ω), for any α, β ∈ Ω, ϕ(α, β) = (β, α), so EAS(Ω) is non-
degenerate.

(2) Let (Ω, ⋆) be a group. Then EAS(Ω, ⋆) is non-degenerate. Indeed, in this case, ϕ(α, β) =
(α ⋆ β, α), so ϕ is a bijection, of inverse given by ϕ−1(α, β) =

(
β, β⋆−1 ⋆ α

)
.

(3) Let (Ω, ⋆) be an associative semigroup with the right inverse condition. Then EAS′(Ω, ⋆)
is non-degenerate. Indeed, in this case, ϕ(α, β) = (β, α ▷ β), so ϕ is a bijection, of inverse
given by ϕ−1(α, β) = (β ⋆ α, α).

2.2 Dual commutative extended semigroups

Definition 2.8. Let (Ω,→, ▷) be a set with two binary operations. We shall say that it is a dual
CEDS if, for any α, β, γ ∈ Ω,

(α→ β)→ γ = α→ (β → γ), (2.19)

(α ▷ (β → γ))→ (β ▷ γ) = (α→ β) ▷ γ, (2.12)

(α ▷ (β → γ)) ▷ (β ▷ γ) = α ▷ β, (2.13)

(α ▷ β)→ γ = α→ γ, (2.20)

(α ▷ β) ▷ γ = (α ▷ γ) ▷ β. (2.21)
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Example 2.9.

(1) If Ω is a set, then EAS(Ω) is a dual CEDS.

(2) If (Ω, ⋆) is a semigroup and π : Ω −→ Ω is a semigroup morphism such that π2 = π,
then EAS(Ω, ⋆, π) is a dual CEDS if and only if ∀α, β ∈ Ω, π(α)⋆β = α⋆β. In particular,
EAS(Ω, ⋆) is a dual CEDS.

(3) If (Ω, ⋆) is a semigroup with the right inverse condition, then EAS′(Ω, ⋆) is a dual CEDS
if and only if ∀α, β, γ ∈ Ω, (α ▷ β) ▷ γ = (α ▷ γ) ▷ β. This is equivalent to ∀α, β, γ ∈ Ω,
α ⋆ β ⋆ γ = α ⋆ γ ⋆ β. In the case where (Ω, ⋆) is a group, EAS′(Ω, ⋆) is a dual CEDS if
and only if (Ω, ⋆) is abelian.

The following lemma, proved in [8], is a reformulation of the axioms of EAS, CEDS and dual
CEDS with the help of the map ϕ.

Lemma 2.10. Let (Ω,→, ▷) be a set with two binary operations. We consider the maps

ϕ :

{
Ω2 −→ Ω2,

(α, β) −→ (α→ β, α ▷ β),
τ :

{
Ω2 −→ Ω2,

(α, β) −→ (β, α).

Then

(1) (Ω,→, ▷) is an EAS if and only if

(Id×ϕ) ◦ (ϕ× Id) ◦ (Id×ϕ) = (ϕ× Id) ◦ (Id×τ) ◦ (ϕ× Id). (2.22)

(2) (Ω,→, ▷) is a CEDS if and only if

(Id×ϕ) ◦ (ϕ× Id) ◦ (Id×ϕ) = (ϕ× Id) ◦ (Id×τ) ◦ (ϕ× Id), (2.22)

(Id×ϕ) ◦ (Id×τ) ◦ (τ × Id) ◦ (ϕ× Id)

= (τ × Id) ◦ (ϕ× Id) ◦ (Id×ϕ) ◦ (Id×τ). (2.23)

(Ω,→, ▷) is a dual CEDS if and only if

(Id×ϕ) ◦ (ϕ× Id) ◦ (Id×ϕ) = (ϕ× Id) ◦ (Id×τ) ◦ (ϕ× Id), (2.22)

(ϕ× Id) ◦ (τ × Id) ◦ (Id×τ) ◦ (Id×ϕ)
= (Id×τ) ◦ (Id×ϕ) ◦ (ϕ× Id) ◦ (τ × Id). (2.24)

With this reformulation, the following result becomes immediate, as the inversion of (2.22)
gives (2.22) again and the inversion of (2.23) gives (2.24).

Proposition 2.11. Let (Ω,→, ▷) be a set with two binary operations. We shall say that (Ω,→, ▷)
is non-degenerate if the map ϕ of Definition 2.6 is a bijection. If so, we put

ϕ−1 :

{
Ω2 −→ Ω2,

(α, β) −→ (α↷ β, α ▶ β).

Then (Ω,→, ▷) is an EAS (resp. a CEDS, a dual CEDS) if and only if (Ω,↷,▶) is an EAS
(resp. a dual CEDS, a CEDS).
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2.3 EAS of cardinality two

Here is a classification of EAS of cardinality two, which we obtained by an exhaustive study of
the 28 possibilities of pairs of operations. The underlying set is Ω = {X,Y } and the products
will be given by the pair of matrices(

X → X X → Y
Y → X Y → Y

)
,

(
X ▷X X ▷ Y
Y ▷ X Y ▷ Y

)
.

We shall use the two maps

πX :

{
Ω −→ Ω,

α −→ X,
πY :

{
Ω −→ Ω,

α −→ Y.

We respect the indexation of EDS of [10].

Case → ▷ Description Comments

A1

(
X X

X X

) (
X X

X X

)
EAS(Ω,→, πX)

CEDS, dual CEDS,

right part of D1

A2

(
X X

X X

) (
X X

Y Y

)
EAS(Ω,→)

CEDS, dual CEDS,

right part of D2

C1

(
X X

X Y

) (
X X

X X

)
EAS(Ω,→, πX) CEDS, right part of C4

C3

(
X X

X Y

) (
X X

Y Y

)
EAS(Z/2Z,×) CEDS, dual CEDS

C5

(
X X

X Y

) (
Y Y

Y Y

)
EAS((Z/2Z,×), πY ) CEDS, right part of C2

C6

(
X X

X Y

) (
X X

Y X

)

E1′–E2′

(
X X

Y Y

) (
X X

X X

)
EAS(Ω,→, πX) right part of E1 and E2

E3′

(
X X

Y Y

) (
X X

Y Y

)
EAS(Ω,→)

dual CEDS,

right part of E3

F1

(
X Y

X Y

) (
X X

X X

)
EAS(Ω,→, πX)

CEDS, dual CEDS,

right part of B1, F2, G1

and G2

F3

(
X Y

X Y

) (
X X

Y Y

)
EAS(Ω)

CEDS, dual CEDS,

non-degenerate,

right part of B2 and G3

F4

(
X Y

X Y

) (
X Y

Y X

)
EAS′(Z/2Z,+)

CEDS, dual CEDS,

non-degenerate,

right part of F5

H1

(
X Y

Y X

) (
X X

X X

)
EAS(Z/2Z,+, πX) CEDS

H2

(
X Y

Y X

) (
X X

Y Y

)
EAS(Z/2Z,+)

CEDS, dual CEDS,

non-degenerate

For the cases C3, C5, F4, H1 and H2, Ω is identified with Z/2Z, X being 0 and Y being 1.
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Remark 2.12. With similar methods, it is possible to prove that there are three non-degenerate
EAS of cardinality 3 up to isomorphism: EAS({1, 2, 3}), EAS(Z/3Z,+) and EAS′(Z/3Z,+).
All of them are both CEDS and dual CEDS.

3 Structure of non-degenerate finite CEDS

We now turn to CEDS, and prove the structure Theorem 3.16 after several intermediate results.

3.1 Preliminary results

Lemma 3.1. let Ω be a finite non-degenerate EAS.

(1) Let Ω′ be a sub-EAS of Ω. Then Ω′ is non-degenerate.

(2) Let ∼ be an equivalence on Ω, compatible with the EAS structure. Then the quotient EAS
Ω/∼ is non-degenerate.

Proof. (1) By restriction, ϕΩ′ = (ϕΩ)|Ω′2 is injective. As Ω′ is finite, it is a bijection. So Ω′ is
non degenerate.

(2) Let π : Ω −→ Ω/∼ be the canonical surjection. Then ϕΩ/∼ ◦ π = (π ⊗ π) ◦ ϕΩ. As ϕ is
surjective, ϕΩ/∼ is surjective. As Ω/∼ is finite, it is a bijection. So Ω/∼ is non-degenerate. ■

Definition 3.2. Let (Ω,→, ▷) be an EAS. For any α ∈ Ω, we put

ϕα :

{
Ω −→ Ω,

β −→ α→ β,
ψα :

{
Ω −→ Ω,

β −→ β ▷ α.

We shall say that (Ω,→, ▷) is strongly non-degenerate if for any α ∈ Ω, ϕα is bijective.

Remark 3.3. As the product → is associative, for any α, β ∈ Ω, ϕα ◦ ϕβ = ϕα→β.

Lemma 3.4. Let (Ω, ∗) be an associative semigroup. The following conditions are equivalent:

(1) EAS(Ω, ∗) is non-degenerate.

(2) EAS(Ω, ∗op) is strongly non-degenerate.

(3) (Ω, ∗op) has the right inverse condition.

Proof. Let α, β, γ, δ ∈ Ω. Then

ϕ(α, β) = (γ, δ)⇐⇒

{
α ∗ β = γ,

α = δ.

So

ϕ is bijective⇐⇒ ∀(γ, δ) ∈ Ω2, ∃!β ∈ Ω, δ ∗ β = γ

⇐⇒ in EAS(Ω, ∗op), ∀δ ∈ Ω, ϕδ is bijective

⇐⇒ (Ω, ∗op) has the right inverse condition. ■

Lemma 3.5. Let (Ω,→, ▷) be a finite non-degenerate CEDS. Then it is strongly non-degenerate.

Proof. Let α, γ, γ′ ∈ Ω such that ϕα(γ) = ϕα(γ
′). In other words, α→ γ = α→ γ′. By (2.16),

α ▷ γ = α ▷ (α→ γ) = α ▷ (α→ γ′) = α ▷ γ′.

Therefore, ϕ(α, γ) = ϕ(α, γ′). As ϕ is injective, γ = γ′, so ϕα is injective. As Ω is finite, ϕα is
bijective. ■
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Lemma 3.6. Let Ω = (Ω,→, ▷) be a non-degenerate EAS, such that ∀α, β ∈ Ω, α → β = β.
There exists a product ∗ on Ω, making it a semigroup with the right inverse condition, such
that Ω = EAS′(Ω, ∗). For any β ∈ Ω, ψβ is bijective and its inverse is

ϕ′β :

{
Ω −→ Ω,

α −→ α ∗ β.

Moreover, for any β, γ ∈ Ω,

ψβ ◦ ψγ = ψβ∗γ , ψβ▷γ = ψβ ◦ ψ−1
γ . (3.1)

Proof. Note that for any α ∈ Ω, ϕα = IdΩ. Let α, β, γ, δ ∈ Ω. Then

ϕ(α, β) = (γ, δ)⇐⇒

{
β = γ,

α ▷ β = δ.

Hence,

ϕ is bijective⇐⇒ ∀(γ, δ) ∈ Ω2, ∃!α ∈ Ω, α ▷ γ = δ ⇐⇒ ∀γ ∈ Ω, ψγ is bijective.

Putting ϕ−1(α, β) = (α ↷ β, α ▶ β), by Proposition 2.11 (Ω,↷,▶) is an EAS, so ↷ is as-
sociative. Moreover, ϕ−1(α, β) = (α ↷ β, α), so (Ω,↷,◀) = EAS(Ω,↷). By Lemma 3.4, if
∗ =↷op, then ∗ has the right inverse condition. Moreover, for any α, β ∈ Ω,

ϕ−1 ◦ ϕ(α, β) = ϕ−1(β, α ▷ β) = ((α ▷ β) ∗ β, β) = (α, β).

Hence, the unique element γ ∈ Ω such that γ ∗ β = α is α ▷ β: consequently, Ω = EAS′(Ω, ∗).
Moreover, for any α, β ∈ Ω, ϕ′β ◦ ψβ(α) = (α ▷ β) ∗ β = α. So ϕ′β ◦ ψβ = IdΩ. As ψβ is bijective,

ψ−1
β = ϕ′β.

Let β, γ ∈ Ω. Then, for any α ∈ Ω, ϕ′γ ◦ ϕ′β(α) = α ∗ β ∗ γ = ϕ′β∗γ . So ϕ′γ ◦ ϕ′β = ϕ′β∗γ .
Inverting, ψβ ◦ ψγ = ψβ∗γ . As a consequence, ψβ▷γ ◦ ψγ = ψ(β▷γ)∗γ = ψβ, which induces the last
formula. ■

Lemma 3.7. Let Ω = (Ω,→, ▷) be a non-degenerate EAS such that ∀α, β ∈ Ω, α → β = β.
Then Ωψ = {ψα, α ∈ Ω} is a subgroup of the group of permutations of Ω.

Proof. Direct consequence of (3.1). ■

Proposition 3.8. Let Ω = EAS′(Ω, ∗), where (Ω, ∗) is a finite semigroup with the right inverse
condition. We define an equivalence ∼ on Ω by α ∼ β if ψα = ψβ. Then

(1) ∼ is compatible with the EAS structure of Ω. Therefore, Ω/∼ is an EAS.

(2) There exists a product ⋆ on Ω/∼, making it a group, such that Ω/∼ = EAS′(Ω/∼, ⋆).
(3) There exists a sub-EAS Ω0 of Ω, such that the restriction to Ω0 of the canonical surjec-

tion π : Ω −→ Ω/∼ is an isomorphism.

Proof. (1) Let α, β ∈ Ω, such that α ∼ β. Then ψα = ψβ. Let γ ∈ Ω. Then α→ γ = β → γ =
γ, and γ → α = α ∼ β = γ → β. As ψα = ψβ, γ ▷ α = γ ▷ β. Moreover, by Lemma 3.6,

ψα▷γ = ψα ◦ ψ−1
γ = ψβ ◦ ψ−1

γ = ψβ▷γ ,

so α ▷ γ ∼ β ▷ γ: ∼ is compatible with the EAS structure.
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(2) By Lemma 3.1, Ω/∼ is non-degenerate. By Lemma 3.6, there exists a product ⋆ satisfying
the right inverse condition, such that Ω/∼ = EAS′(Ω/∼, ⋆). We consider the map

ψ :

{
(Ω/∼, ⋆) −→ (SΩ/∼, ◦),
α −→ ψα.

By Lemma 3.6, this is a semigroup morphism. Let us prove that it is injective. We assume that
ψα = ψβ. In other words, for any γ ∈ Ω, γ ▷ α ∼ γ ▷ β, or equivalently, ψγ▷α = ψγ▷β. Moreover,

ψγ▷α = ψγ ◦ ψ−1
α = ψγ▷β = ψγ ◦ ψ−1

β .

As ψγ is bijective, ψα = ψβ, so α = β.
By Lemma 3.7, there exists e ∈ Ω/∼, such that ψe = IdΩ/∼. For any α ∈ Ω/∼,

ψe▷α = ψe ◦ ψ−1
α = ψ−1

α ,

so ψ(Ω/∼) is a subgroup of SΩ/∼. Consequently, (Ω/∼, ⋆) is a group.
(3) By Lemma 3.7, there exists β0 ∈ Ω such that ψβ0 = IdΩ. We put

Ω0 = {β0 ▷ α, α ∈ Ω} = {ψα(β0), α ∈ Ω}.

As the product → of Ω is trivial, this is a sub-semigroup of (Ω,→). Let β0 ▷ α, β0 ▷ β ∈ Ω0.

(β0 ▷ α) ▷ (β0 ▷ β) = ψβ0▷γ ◦ ψα(β0) = ψ(β0▷γ)∗α(β0) ∈ Ω0,

so Ω0 is a sub-EAS of Ω.
Let us assume that β0 ▷ α ∼ β0 ▷ β. Then

ψβ0▷α = ψβ0 ◦ ψ−1
α = ψ−1

α = ψβ0▷β = ψβ0 ◦ ψ
−1
β = ψ−1

β ,

so ψα = ψβ. Hence, β0 ▷ α = β0 ▷ β, which proves that π|Ω0
is injective. By Lemma 3.7, there

exists β ∈ Ω such that ψβ = ψ−1
α . We consider β0 ▷ β ∈ Ω0. Then ψβ0▷β = ψβ0 ◦ ψ

−1
β = ψα, so

β0 ▷ β ∼ α. Hence, π|Ω0
is surjective. ■

Theorem 3.9. Let Ω = EAS′(Ω, ∗), where (Ω, ∗) is a finite semigroup with the right inverse
condition. There exists a group (Ω0, ⋆) and a set Ω1 such that Ω ≈ EAS(Ω1)×EAS′(Ω0, ⋆).

Proof. We keep the notations of the proof of Proposition 3.8. As the sub-EAS Ω0 is isomor-
phic to Ω/∼, it is a group for the law ∗, and Ω0 = EAS′(Ω0, ∗). Let e be the unit of the
group (Ω/∼, ⋆). We consider Ω1 = {α ∈ Ω, α = e}. Let us prove that Ω1 = {α ∈ Ω, ψα = IdΩ}.
⊇: if ψα = IdΩ, for any β ∈ Ω, β ⋆ α∗−1 = ψα(β) = β, so α = e and α ∈ Ω1.
⊆: if α = e, then for any β ∈ Ω, β ▷ α = β, so β ▷ α ∼ β: in other words, ψβ▷α = ψβ. Then

ψβ▷α = ψβ ◦ ψ−1
α = ψβ.

As ψβ is bijective, ψα = IdΩ.
Therefore, for any α ∈ Ω, for any β ∈ Ω1, α ▷ β = ψβ(α) = α. As a consequence, Ω1 =

EAS(Ω1). We consider the map

θ :

{
Ω1 × Ω0 −→ Ω,

(α, β) −→ α ∗ β.

Let us prove that θ is injective. If θ(α, β) = θ(α′, β′), in Ω/∼, α ⋆ β = β = α′ ⋆ β′ = β′. As π|Ω0

is injective, β = β′. Because of the right inverse condition for ∗, α = α′.
Let us prove that θ is surjective. Let γ ∈ Ω. There exists a unique β ∈ Ω0 such that ψγ = ψβ.

We put α = γ▷β, so γ = α∗β. Moreover, ψα = ψγ ◦ ψ−1
β

= IdΩ/∼. So e ▷ α = α⋆−1 = ψα(e) = e,
and finally α ∈ Ω1.

Let (α, β) and (α′, β′) ∈ Ω1 × Ω0. In Ω, as α′ ∈ Ω1, α ∗ β ∗ α′ ∗ β′ = α ∗ (β ∗ β′), which
implies that (α ∗ β) ▷ (α′ ∗ β′) = α ∗

(
β ∗ β′∗−1

)
. So θ is an isomorphism of EAS from EAS(Ω1)×

EAS′(Ω0, ∗) to Ω. ■
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3.2 Non-degenerate finite CEDS

Lemma 3.10. Let (Ω,→, ▷) be a strongly non-degenerate finite EAS. Then Ωϕ = ({ϕα, α ∈
Ω}, ◦) is a group. The following map is a surjective morphism of semigroups:

ϕ :

{
(Ω,→) −→ Ωϕ,

α −→ ϕα.

Proof. We already observed that for any α, β ∈ Ω, ϕα ◦ ϕβ = ϕα→β, so ϕ is a semigroup
morphism. By hypothesis, for any α ∈ Ω, ϕα is a bijection, so belongs to the symmetric groupSΩ

of permutations of Ω. As Ω is finite, for any α ∈ Ω, there exists n ⩾ 2 such that ϕnα = IdΩ.
Then ϕα→n = IdΩ, so Ωϕ is a monoid. Putting β = α→(n−1), ϕβ ◦ ϕα = ϕα ◦ ϕβ = IdΩ, so Ωϕ is
a group. ■

Proposition 3.11. Let Ω = (Ω,→, ▷) be a finite non-degenerate EAS, such that for any α ∈ Ω,
ϕα is a bijection. We put Ω→ = {α ∈ Ω, ϕα = IdΩ}, Ω▷ = {β ∈ Ω, ψβ = IdΩ}. Then

(1) Ω→ is a non-degenerate sub-EAS of Ω.

(2) If Ω▷ is nonempty, it is a non-degenerate sub-EAS of Ω.

(3) If Ω▷ is nonempty, then Ω▷ ∩ Ω→ is nonempty.

(4) If Ω is a CEDS, Ω▷ is nonempty.

Proof. (1) Recall that for any α, β ∈ Ω, ϕα ◦ ϕβ = ϕα→β. This easily implies that Ω→ is stable
under →. By Lemma 3.10, there exists α ∈ Ω, such that ϕα = IdΩ, so Ω→ is nonempty.

Let α, β ∈ Ω→. Let us consider γ ∈ Ω. As ϕ is bijective, there exist β′, γ′ ∈ Ω such that

(β′ → γ′, β′ ▷ γ′) = (β, γ).

Then

ϕα▷β(γ) = (α ▷ β)→ γ =
(
α ▷

(
β′ → γ′

))
→
(
β′ ▷ γ′

)
= β′ ▷ γ′ = γ.

So ϕα▷β = IdΩ and α ▷ β ∈ Ω→. By Lemma 3.1, Ω→ is a non-degenerate sub-EAS.
(2) Let β, γ ∈ Ω▷. As ψγ = IdΩ, β ▷ γ = β ∈ Ω▷. For any α ∈ Ω, by (2.12) and (2.13),

(α ▷ (β → γ))→ (β ▷ γ) = (α→ β) ▷ γ = α→ β,

(α ▷ (β → γ)) ▷ (β ▷ γ) = α ▷ β.

So ϕ(α ▷ (β → γ), β ▷ γ) = ϕ(α, β). As ϕ is injective, α ▷ (β → γ) = α, so ψβ→γ = IdΩ
and β → γ ∈ Ω▷. If Ω▷ is nonempty, by Lemma 3.1, it is non-degenerate.

(3) Let us take α ∈ Ω▷. The permutation ϕα is of finite order as Ω is finite, so there
exists n ⩾ 2, such that ϕnα = ϕα→n = IdΩ. Putting β = α→n, then β ∈ Ω▷ (as it is a sub-CEDS)
and β ∈ Ω→ as ϕβ = IdΩ.

(4) Let us consider the EAS associated to the inverse of ϕ (see Proposition 2.11), which we
denote by (Ω,↷,▶). By the first point, there exists α ∈ Ω such that for any β ∈ Ω, α↷ β = β.
In other words, for any β ∈ Ω, ϕ−1(α, β) = (β, α ▶ β). This implies that ϕβ(α ▶ β) = α. The
inverse of the bijection ϕβ is the map

ϕ′β :

{
Ω −→ Ω,

α −→ α ▶ β.

As Ω is finite, there exists β′ ∈ Ω such that ϕ−1
β = ϕβ′ . Hence,

β = β ▷ (α ▶ β) = β ▷
(
β′ → α

)
= β ▷ α,

by (2.16). So α ∈ Ω▷. ■
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Proposition 3.12. Let (Ω,→, ▷) be a finite non-degenerate CEDS.

(1) We define an equivalence ≡ on Ω by β ≡ β′ if ∃α ∈ Ω, β′ = α → β. This equivalence is
compatible with the CEDS structure. Therefore, Ω/ ≡ is a CEDS.

(2) The restriction to Ω→ of the canonical surjection π : Ω −→ Ω/ ≡ is an isomorphism.

(3) Ω = Ω▷ → Ω→.

Proof. (1) The relation ≡ can be reformulated as: there exists ϕα ∈ Ωϕ, such that ϕα(β) = β′.
By Lemmas 3.5 and 3.10, Ωϕ is a group. This easily implies that ≡ is an equivalence: its classes
are the orbits of the action of the group Ωϕ over Ω.

Let us assume that β ≡ β′: we put β′ = α→ β. Let γ ∈ Ω. Then γ → β ≡ β ≡ β′ ≡ γ → β′

by definition of ≡. Moreover, β′ → γ = α→ (β → γ), so β′ → γ ≡ β → γ. By (2.13),

β′ ▷ γ = (α→ γ) ▷ γ = (α ▷ (β → γ))→ (β ▷ γ) ≡ β ▷ γ,
γ ▷ β′ = γ ▷ (α→ β) = γ ▷ β.

So ≡ is compatible with the CEDS structure.
(2) Let α ∈ Ω. As ϕα is bijective, there exists a unique β ∈ Ω such that α → β = α. Then

ϕα = ϕα→β = ϕα ◦ ϕβ. As ϕα is bijective, ϕβ = IdΩ, so β ∈ Ω→ and α ≡ β. This proves
that π|Ω→ is surjective.

Let β, β′ ∈ Ω→, such that β ≡ β′. There exists α ∈ Ω such that α→ β = β′. Then

IdΩ = ϕβ′ = ϕα ◦ ϕβ = ϕα,

so ϕα = IdΩ. We deduce that β′ = ϕα(β) = β. Hence, π|Ω→ is injective.
(3) By Proposition 3.11, there exists β0 ∈ Ω▷ ∩ Ω→. Let β ∈ Ω. As π|Ω→ is bijective, there

exists β1 ∈ Ω→, such that β ≡ β1. We put β = α → β1. As β0 ∈ Ω→, β = α → β0 → β1.
Moreover, for any γ ∈ Ω, as β0 ∈ Ω▷, by (2.16), γ ▷ (α→ β0) = γ ▷ β0 = γ, so α→ β0 ∈ Ω▷. ■

Proposition 3.13. Let (Ω,→, ▷) be a finite non-degenerate CEDS. We define an equivalence
on Ω▷ by

α′ ∼ α′′ ⇐⇒ ∃α ∈ Ω→, α′′ = α′ → α.

(1) This equivalence is compatible with the CEDS structure, and Ω′ = Ω▷/∼ is a non-degen-
erate CEDS. Moreover, (Ω′,→) is an abelian group and Ω′ = EAS(Ω′,→).

(2) The following map is a semigroup isomorphism:

θ :

{
(Ω′ × Ω→,→) −→ (Ω,→),

(α, β) −→ α→ β.

Proof. We firstly introduce an auxiliary map, defined by

Θ:

{
Ω▷ × Ω→ −→ Ω,

(α, β) −→ α→ β.

By Proposition 3.12, it is surjective. Let us prove that Θ(α′, β′) = Θ(α′′, β′′) if and only if
α′ ∼ α′′ and β′ = β′′.

Let us assume that Θ(α′, β′) = Θ(α′′, β′′). As ϕα′ is bijective, there exists α ∈ Ω, α′′ = α′ →
α. As α′ → β′ = α′′ → β′′ and β′, β′′ ∈ Ω→,

ϕα′ = ϕα′ ◦ ϕβ′ = ϕα′→β′ = ϕα′′→β′′ = ϕα′′ .
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Hence, ϕα′′ = ϕα′ ◦ ϕα = ϕα′ . As ϕα′ is bijective, ϕα = IdΩ, so α ∈ Ω→: we obtain that α′ ≡ α′′.
As ϕα′ = ϕα′′ , ϕα′(β′) = ϕα′′(β′′) = ϕ′α(β

′′). As ϕα′ is injective, β = β′. Conversely, if α ∈ Ω→,
α′ → α→ β′ = α′ → β′.

As a consequence, ∼ is indeed an equivalence, θ is well-defined and is a bijection. It remains
to show that ∼ is compatible with the CEDS structure of Ω▷. Let α′, α′′ ∈ Ω▷, such that α′ ∼ α′′.
We put α′′ = α′ → α, with α ∈ Ω→. Let β ∈ Ω▷. Then

α′ ▷ β = α′ ∼ α′′ = α′′ ▷ β, β ▷ α′ = β = β ▷ α′′.

Moreover,

α′′ → β = α′′ → α→ β = α′′ → β, β → α′′ = β → α′ → α ∼ β → α′.

Therefore, Ω▷/∼ is a CEDS. By Lemma 3.1, it is non-degenerate.
Let α, α′ ∈ Ω▷ and β, β′ ∈ Ω→. As β ∈ Ω→,

θ(α, β)→ θ
(
α′, β′

)
= α→ β → α′ → β′ = α→ α′ → β′

= α→ α′ → β → β′ = θ
(
α→ α′, β → β′

)
.

So θ is an isomorphism for the products →.
Let us now study the CEDS Ω′. By definition of Ω▷, for any α, β ∈ Ω′, α ▷ β = α, so

Ω′ = EAS′(Ω′,→). By Proposition 3.11, Ω→ is nonempty. Let us prove that

Ω′→ =
{
α, α ∈ Ω▷ ∩ Ω→}.

⊇ is obvious. Let us take α ∈ Ω′→. Then, for any β ∈ Ω▷, α → β = β: there exists γ ∈ Ω→,
α→ β = β → γ. Therefore, ϕα ◦ϕβ = ϕβ ◦ϕγ = ϕβ, as ϕγ = IdΩ. As ϕβ is a bijection, ϕα = IdΩ,
so α ∈ Ω→. Let α, β ∈ Ω▷ ∩ Ω→. As ϕα is bijective, there exists β′ ∈ Ω, α→ β′ = β. Then

IdΩ = ϕβ = ϕα ◦ ϕβ′ = ϕβ′ ,

so β′ ∈ Ω→: we proved that α ∼ β. As a conclusion, there exists a unique e ∈ Ω′, such that for
any α ∈ Ω′, e→ α = α.

Let us choose α ∈ Ω′. As ϕα is bijective, there exists e′ ∈ Ω′ such that α → e′ = α.
Let β ∈ Ω′. Then α → e′ → β = α → β: in other words, α → e′ → β ∼ α → β, and there
exists γ ∈ Ω→, such that α → e′ → β = α → β → γ. As ϕα is injective, e′ → β = β → γ ∼ β,
so e′ → β = β for any β ∈ Ω′. By unicity of e, e′ = e: for any α ∈ Ω′, α → e = α, so e is a
unit of (Ω′,→). By (2.15), for γ = e, we deduce that (Ω′,→) is an abelian monoid. Let α ∈ Ω′.
As ϕα is surjective, there exists α′ ∈ Ω′ such that α→ α′ = e. So (Ω′,→) is a group. ■

Proposition 3.14. Let (Ω, ∗) be an associative semigroup such that for any α, β, γ ∈ Ω,

α ∗ β ∗ γ = β ∗ α ∗ γ.

Let (Ω′,→, ▷) be a CEDS, and ≺ : Ω × Ω′ −→ Ω be a map such that for any α, β ∈ Ω, for
any β′, γ′ ∈ Ω′,

α ≺
(
β′ → γ′

)
= α ≺ γ′, (3.2)(

α ∗ β
)
≺ γ′ =

(
α ≺ γ′

)
∗
(
β ≺ γ′

)
, (3.3)(

α ≺ γ′
)
≺
(
β′ ▷ γ′

)
= α ≺ β′, (3.4)

we define two products → and ▷ on Ω×Ω′ in the following way: for any (α, α′), (β, β′) ∈ Ω×Ω′,(
α, α′)→ (

β, β′
)
=
(
α ∗ β, α′ → β′

)
,

(
α, α′) ▷ (β, β′) = (α ≺ β′, α′ ▷ β′

)
.

Then (Ω× Ω,′→, ▷) is a CEDS, which we denote by Ω⋊≺ Ω′.

Proof. Direct verifications. ■
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Remark 3.15. If for any (α, α′) ∈ Ω×Ω′, α ≺ α′ = α, we recover the direct product Ω×Ω′ of
EAS.

Theorem 3.16. Let Ω be a finite non-degenerate CEDS. There exist an abelian group (Ω1, ∗),
a group (Ω2, ⋆), a left action ≻ : Ω2 × Ω1 −→ Ω1 of (Ω2, ⋆) on (Ω1, ∗) by group automorphisms,
and a nonempty set Ω3 such that Ω is of the form

(EAS(Ω1, ∗)⋊≻ EAS′(Ω2, ⋆))×EAS(Ω3),

with the products given by

(α1, α2, α3)→ (β1, β2, β3) = (α1 ∗ β1, β2, β3),
(α1, α2, α3) ▷ (β1, β2, β3) =

(
β2 ≻ α1, α2 ⋆ β

⋆−1
2 , α3

)
.

Proof. Let us consider the map θ of Proposition 3.13. For any α, α′ ∈ Ω▷, and for any β, β′ ∈
Ω→, by (2.16) and (2.17),

(α→ β) ▷
(
α′ → β′

)
= (α→ β) ▷ β′ =

(
α ▷ β′

)
→
(
β ▷ β′

)
.

Let β0 ∈ Ω▷ ∩ Ω→. Then, as β0 ∈ Ω→,

(α→ β) ▷
(
α′ → β′

)
=
(
α ▷ β′

)
→ β0︸ ︷︷ ︸

=γ1

→
(
β ▷ β′

)︸ ︷︷ ︸
=γ2

.

Obviously, γ2 ∈ Ω→. For any γ ∈ Ω, by (2.16), γ ▷ γ1 = γ ▷ β0 = γ, so γ1 ∈ Ω▷. We then put,
for any α ∈ Ω′, and for any β ∈ Ω→, α ≺ β = α ▷ β → β0. Then, for any α, α′ ∈ Ω′, and for
any β, γ ∈ Ω→, θ(α, β) ▷ θ

(
α′, β′

)
= θ
(
α ≺ β′, β ▷ β′

)
. Then

α ≺ (β → γ) = α ▷ (β → γ)→ β0 = α ▷ γ → β0 = α ≺ γ,

which proves (3.2). As β0 ∈ Ω→,

(α→ β) ≺ γ = (α→ β) ▷ γ → β0 = α ▷ γ → β ▷ γ → β0

= α ▷ γ → β0 → β ▷ γ → β0 = (α ≺ γ)→ (β ≺ γ),

which proves (3.3). Then

(α ≺ γ) ≺ (β ▷ γ) = (α ▷ γ) ▷ (β ▷ γ)→ β0 ▷ (β ▷ γ)→ β0 = α ▷ β → β0 ▷ (β ▷ γ)→ β0

= α ▷ β → β0 = α ≺ β,

which proves (3.4). For the last equality, we used that β0 ▷ (β ▷ γ) ∈ Ω→, as β, β0 and γ belong
to Ω→.

We finally obtain that θ is an isomorphism between Ω′ ⋊≺ Ω→ and Ω. We put Ω′ =
EAS(Ω1, ∗). From Theorem 3.9, we obtain a decomposition of Ω→ of the form EAS′(Ω2, ⋆) ×
EAS(Ω3). The map ≺ : Ω1 × Ω2 × Ω3 −→ Ω1 satisfies (3.2)–(3.4). In this particular case,
(3.2) becomes trivial, and (3.3), (3.4) can be reformulated in this way: for any α1, β1 ∈ Ω1,
β2, γ2 ∈ Ω2, β3, γ3 ∈ Ω3,

(α1 ∗ β1) ≺ (γ2, γ3) = (α1 ≺ (γ2, γ3)) ∗ (β1 ≺ (γ2, γ3)),

(α1 ≺ (γ2, γ3)) ≺ (β2, β3) = α1 ≺ (β2 ⋆ γ2, β3).

The products of Ω are given in this way: for any αi, βi ∈ Ωi, with 1 ⩽ i ⩽ 3,

(α1, α2, α3)→ (β1, β2, β3) = (α1 ∗ β1, β2, β3),
(α1, α2, α3) ▷ (β1, β2, β3) =

(
α1 ≺ (β2, β3), α2 ⋆ β

⋆−1
2 , α3

)
.
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For any (β2, β3) ∈ Ω2 × Ω3, we consider

ψ≺
β2,β3

:

{
Ω1 −→ Ω1,

α1 −→ α1 ≺ (β2, β3).

As Ω is non-degenerate, necessarily ψβ2,β3 is injective. As Ω is finite, ψβ2,β3 is a bijection.
Moreover, by (4.1), for any (β2, β3), (γ2, γ3) ∈ Ω2 × Ω3, ψ

≺
β2,β3

◦ ψ≺
γ2,γ3 = ψ≺

β2⋆γ2,β3
. For β2 = γ2

being the unit e of Ω2 and β3 = γ3, we obtain that
(
ψ≺
e,β3

)2
= ψ≺

e,β3
. As it is a bijection,

ψ≺
e,β3

= IdΩ1 for any β3 ∈ Ω3. Hence,

ψ≺
e,β3
◦ ψ≺

γ2,γ3 = ψ≺
γ2,γ3 = ψ≺

γ2,β3
,

so ψβ2,β3 does not depend on β3. We denote this map by ψβ2 . Note that we proved that
ψβeΩ2

= IdΩ1 . We put, for any α1 ∈ Ω1, β2 ∈ Ω2, α1 ≺ β2 = ψ≺
β2
(α1). We finally obtain that

the products in Ω are given by

(α1, α2, α3)→ (β1, β2, β3) = (α1 ∗ β1, β2, β3),
(α1, α2, α3) ▷ (β1, β2, β3) =

(
α1 ≺ β2, α2 ⋆ β

⋆−1
2 , α3

)
.

So Ω = (EAS(Ω1, ∗)⋊≺ EAS′(Ω2, ⋆))×EAS(Ω3).

In the particular case of EAS(Ω1, ∗)⋊≺ EAS′(Ω2, ⋆), (3.2) is trivial, and (3.3), (3.4) can be
reformulated in this way: for any α1, β1 ∈ Ω1, β2, γ2 ∈ Ω2,

(α1 ∗ β1) ≺ γ2 = (α1 ≺ γ2) ∗ (β1 ≺ γ2), (α1 ≺ γ2) ≺ β2 = α1 ≺ (β2 ⋆ γ2).

As ψeΩ2
= IdΩ1 , the following map is a left action of (Ω2, ⋆) on (Ω1, ∗) by group automorphisms:

≻ :

{
Ω2 × Ω1 −→ Ω1,

(β2, α1) −→ β2 ≻ α1 = α1 ≺ β2.

The formulas for the products in Ω are then immediate. ■

Remark 3.17. Consequently, we have a semi-direct product of groups (Ω1, ∗)⋊≻ (Ω2, ⋆).

Inverting the corresponding maps ϕ, we obtain the following corollary.

Corollary 3.18. Let Ω be a finite non-degenerate dual CEDS. There exists an abelian group
(Ω1, ∗), a group (Ω2, ⋆), a right action ≺ : Ω1 × Ω2 −→ Ω1 of (Ω2, ⋆) on (Ω1, ∗) by group auto-
morphisms, and a nonempty set Ω3 such that Ω is of the form

(EAS(Ω2, ⋆)⋉≺
(
EAS′(Ω1, ∗)

)
×EAS(Ω3),

with the products given by

(α2, α1, α3)→ (β2, β1, β3) = (α2 ⋆ β2, β1 ≺ α2, β3),

(α2, α1, α3) ▷ (β2, β1, β3) =
(
α2, α1 ∗

(
β−1
1 ≺ α−1

2

)
, α3

)
.

Remark 3.19. The inverse dual CEDS of the CEDS (EAS(Ω1, ∗)⋊≻EAS′(Ω2, ⋆))×EAS(Ω3)
is (EAS(Ω2, ⋆

op)⋉≻op (EAS′(Ω1, ∗))×EAS(Ω3).
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4 Linear extended associative semigroups

4.1 Definitions and examples

The notions of ℓEAS, ℓCEDS and dual ℓCEDS are introduced in [8, Definition 1.5], as a linear
version of Lemma 2.10.

Definition 4.1. Let A be a vector space and let Φ: A⊗A −→ A⊗A be a linear map.

(1) We shall say that (A,Φ) is a linear extended associative semigroup (briefly, ℓEAS) if

(Id⊗Φ) ◦ (Φ⊗ Id) ◦ (Id⊗Φ) = (Φ⊗ Id) ◦ (Id⊗τ) ◦ (Φ⊗ Id). (4.1)

(2) We shall say that (A,Φ) is a linear commutative extended diassociative semigroup (briefly,
ℓCEDS) if

(Id⊗Φ) ◦ (Φ⊗ Id) ◦ (Id⊗Φ) = (Φ⊗ Id) ◦ (Id⊗τ) ◦ (Φ⊗ Id), (4.1)

(Id⊗Φ) ◦ (Id⊗τ) ◦ (τ ⊗ Id) ◦ (Φ⊗ Id)

= (τ ⊗ Id) ◦ (Φ⊗ Id) ◦ (Id⊗Φ) ◦ (Id⊗τ). (4.2)

(3) We shall say that (A,Φ) is a linear dual commutative extended diassociative semigroup
(briefly, dual ℓCEDS) if

(Id⊗Φ) ◦ (Φ⊗ Id) ◦ (Id⊗Φ) = (Φ⊗ Id) ◦ (Id⊗τ) ◦ (Φ⊗ Id), (4.1)

(Φ⊗ Id) ◦ (τ ⊗ Id) ◦ (Id⊗τ) ◦ (Id⊗Φ)
= (Id⊗τ) ◦ (Id⊗Φ) ◦ (Φ⊗ Id) ◦ (τ ⊗ Id). (4.3)

If (A,Φ) is an ℓEAS (resp. an ℓCEDS or a dual ℓCEDS), we shall say that it is non-degenerate
if Φ is bijective.

Note that, by definition, ℓCEDS and dual ℓCEDS are ℓEAS.

Example 4.2.

(1) Let (Ω,→, ▷) be an EAS (resp. a CEDS, a dual CEDS). Let A = KΩ be the vector space
generated by Ω. We define

Φ:

{
A⊗A −→ A⊗A,
a⊗ b −→ (a→ b)⊗ (a ▷ b).

Then (A,Φ) is an ℓEAS (resp. an ℓCEDS, a dual ℓCEDS), which we call the linearization
of (Ω,→, ▷). It is a non-degenerate ℓEAS if and only if Ω is a non-degenerate EAS.

(2) Not all the ℓEAS are of the form KΩ. For example, if A is a two-dimensional space with
basis (x, y), the maps given by the following matrices in the basis (x⊗x, x⊗y, y⊗x, y⊗y)
are ℓEAS

M1 =


0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

 , M2 =


0 0 0 0
0 0 a 0
0 0 0 0
0 0 0 0

 , M3 =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,

M4 =


1 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 , M5 =


1 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0

 , M6 =


1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 ,
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M7 =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0

 , M8 =


1 0 0 0
0 0 1 0
0 0 1 0
0 0 0 0

 , M9 =


1 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0

 ,

M10 =


1 0 0 0
0 0 0 0
0 1 1 0
0 0 0 0

 , M11 =


1 0 0 0
0 0 1 0
0 0 1 0
0 0 1 0

 , M12 =


1 0 0 0
0 0 0 0
0 1 0 0
0 1 −1 0

 ,

M13 =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 , M14 =


1 0 0 0
0 0 0 0
0 1 0 0
0 0 0 1

 , M15 =


1 1 0 0
0 0 0 0
0 0 0 0
0 0 1 1

 ,

M16 =


1 0 0 0
0 0 0 0
0 1 0 0
0 0 1 1

 , M17 =


1 0 1 0
0 0 −1 0
0 1 −1 0
0 0 2 1

 , M18 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 ,

where a is a scalar. Moreover,

� The ℓCEDS in this list are the Mi’s with

i ∈ {1, 2, 3, 4, 5, 9, 10, 13, 14, 16, 17, 18}.

� The dual ℓCEDS in this list are the Mi’s with

i ∈ {1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 14, 15, 16, 17, 18}.

These ℓEAS are in fact the EAS of dimension 2 which have a basis of special vectors, see
Definition 4.6.

Notation 4.3. Let (A,Φ) be an ℓEAS. We use Sweedler’s-like notation

Φ(a⊗ b) =
∑

a′ → b′ ⊗ a′′ ▷ b′′.

Note that the operations → and ▷ do not necessarily exist, nor the coproducts a′⊗ a′′ or b′⊗ b′′.
With this notation, (4.1) can be rewritten as∑∑∑

a′ →
(
b′ → c′

)′ ⊗ (a′′ ▷ (b′ → c′
)′′)′ → (

b′′ ▷ c′′
)′ ⊗ (a′′ ▷ (b′ → c′

))′′
▷
(
b′′ ▷ c′′

)′′
=
∑∑(

a′ → b′
)′ → c′ ⊗

(
a′ → b′

)′′
▷ c′′ ⊗ a′′ ▷ b′′. (4.1′)

Similarly, (4.2) and (4.3) are rewritten as∑∑
a′′ ▷

(
c′ → b′

)′′ ⊗ a′ → (
c′′ → b′′

)′ ⊗ c′′ ▷ b′′
=
∑∑

a′′ ▷ b′′ ⊗ c′ →
(
a′ → b′

)′ ⊗ c′′ ▷ (a′ → b′
)′′
, (4.2′)

∑∑(
b′′ ▷ c′′

)′ → a′ ⊗
(
b′′ ▷ c′′

)′′
▷ a′′ ⊗ b′ → c′

=
∑∑

b′ → a′ ⊗
(
b′′ ▷ a′′

)′′
▷ c′′ ⊗

(
b′′ ▷ a′′

)′ → c′. (4.3′)

By transposition of (4.1), (4.2) and (4.3), we have the following.
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Proposition 4.4. Let V be a finite-dimensional space and

Φ: V ⊗ V −→ V ⊗ V

be a linear map. We consider

Φ∗ : V ∗ ⊗ V ∗ = (V ⊗ V )∗ −→ (V ⊗ V )∗ = V ∗ ⊗ V ∗.

Then (V,Φ) is an ℓEAS (resp. an ℓCEDS, a dual ℓCEDS) if and only if (V ∗,Φ∗) is an ℓEAS
(resp. a dual ℓCEDS, an ℓCEDS).

Example 4.5.

(1) As their matrices are symmetric, the ℓEAS M3, M6, M13 and M18 are self-dual, through
the pairing which matrix in the basis (x, y) is

(
1 0
0 1

)
. With the same pairing, the dual ofM4

is M5 and the dual of M8 is M10. The ℓEAS M2 and M14 are also self-dual, through the
pairing which matrix in the basis (x, y) is

(
0 1
1 0

)
. The ℓEAS M16 and M17 are self-dual,1

through the pairings which matrix in the basis (x, y) are respectively
(
1 1
1 0

)
,
(
2 2
2 1

)
. The

duals of M1, M7, M9, M11, M12 and M15 are not isomorphic to any Mi’s.

(2) Let Ω be a finite EAS and A = KΩ be the associated ℓEAS. The dual A∗ is identified with
the space KΩ of maps from Ω to K, with the dual basis (δα)α∈Ω of the basis Ω of KΩ.
Then, for any α, β ∈ Ω,

Φ∗(δα ⊗ δβ) =
∑

(γ,δ)∈ϕ−1(α,β)

δγ ⊗ δδ.

This is usually not the linearization of an EAS, except if Ω is non-degenerate: in this case,
we recover the linearization of (Ω,↷,▶) of Proposition 2.11.

4.2 Special vectors, left units and counits

Definition 4.6. Let (A,Φ) be an ℓEAS.

(1) Let a ∈ A. We shall say that a is a left unit of (A,Φ) if for any b ∈ A,

Φ(a⊗ b) = b⊗ a.

(2) Let f ∈ A∗. We shall say that f is a left counit of (A,Φ) if

(f ⊗ Id) ◦ Φ = Id⊗f.

(3) Let a ∈ A and λ ∈ K. We shall say that a is a special vector of (A,Φ) of eigenvalue λ if

Φ(a⊗ a) = λa⊗ a.

Remark 4.7. Let (A,Φ) be an ℓEAS.

(1) Any left unit of (A,Φ) is a special vector of eigenvalue 1.

(2) If A is finite-dimensional, its left counits are the left units of (A∗,Φ∗).

(3) The set of left units is a subspace of A and the set of left counits a subspace of A∗. The
set of special vectors of a given eigenvalue is generally not a subspace of A.

1For M17, this holds if the characteristic of the base field is not 2.
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Lemma 4.8. Let (A,Φ) be an ℓEAS and a ∈ A be a nonzero special vector of (A,Φ). Then its
eigenvalue λ is 0 or 1.

Proof. Let us apply (4.1) to a⊗ a⊗ a. This gives

λ3a⊗ a⊗ a = λ2a⊗ a⊗ a.

As a ̸= 0, λ = 0 or 1. ■

Example 4.9.

(1) Let us give special vectors, left units and left counits for the thirteen ℓEAS associated
to the thirteen EAS of cardinality 2. In each case, we give a basis of the spaces of left
units and left counits; λ, µ and ν are scalars. The dual basis of the basis (X,Y ) of KΩ is
denoted by (X∗, Y ∗).

Case Special vectors Special vectors Left units Left conits

of eigenvalue 1 of eigenvalue 0

A1 λX ν(X − Y ) ∅ ∅
A2 λX ν(X − Y ) ∅ (X∗ + Y ∗)

C1 λX 0 ∅ ∅
C3 λX, µY 0 (Y ) (X∗ + Y ∗)

C5 µY 0 (Y ) ∅
C6 λX 0 ∅ ∅

E′1–E′2 λX ν(X − Y ) ∅ ∅
E′3 λX, µY ν(X − Y ) ∅ (X∗ + Y ∗)

F1 λX ν(X − Y ) (X) ∅
F3 λX + µY 0 (X,Y ) (X∗, Y ∗)

F4 λX, ν(X + Y ) 0 (X + Y ) (X∗)

H1 λX 0 (X) ∅
H2 λX, ν(X + Y ) 0 (X) (X∗ + Y ∗)

Some of them have a basis of special vectors: let us determine their matrices in such
a basis. We recover in this way some matrices of Example 4.2:

� For A1, in the basis (X,X − Y ), we obtain M3.

� For A2, in the basis (X,X − Y ), and for F1, in the basis (X − Y,X), we obtain M4.

� For C3, in the basis (Y,X), we obtain M16.

� For E′1–E′2, in the basis (X,X − Y ), we obtain M6.

� For E′3, in the basis (X,Y −X), we obtain M11.

� For F3, in the basis (X,Y ), we obtain M18.

� For F4 and H2, in the basis (X − Y,X), we obtain M17.

Hence, the ℓEAS associated to A2 and F1 are isomorphic, whereas the EAS A2 and F1
are not. As similar situation holds for F4 and H2.

(2) It is possible to show that any 2-dimensional ℓEAS with a basis of special vectors is
isomorphic to one of the eighteen cases of Example 4.2. For all of them, let us give special
vectors, left units and left counits for the eighteen cases of Example 4.2. In each case, we
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give a basis of the spaces of left units and left counits; λ, µ and ν are scalars. For M2,
we assume that the parameter a is nonzero (otherwise, Φ = 0).

Case Special vectors Special vectors Left units Left counits

of eigenvalue 1 of eigenvalue 0

M1 0 λx, µy ∅ ∅
M2 0 λx, µy ∅ ∅
M3 λx µy ∅ ∅
M4 λx µy ∅ (x∗)

M5 λx µy (x) ∅
M6 λx µy ∅ ∅
M7 λx µy ∅ ∅
M8 λx µy ∅ (x∗)

M9 λx µy (x) ∅
M10 λx µy (x) ∅
M11 λx, ν(x+ y) µy ∅ (x∗)

M12 λx µy ∅ ∅
M13 λx, µy 0 ∅ ∅
M14 λx, µy 0 (x) (y∗)

M15 λx, µy ν(x− y) ∅ (x∗ + y∗)

M16 λx, µy 0 (x) (x∗ + y∗)

M17 λx, µy 0 (x) (x∗ + y∗)

M18 λx+ µy 0 (x, y) (x∗, y∗)

Among them, M11 has three lines of special vectors. In the basis (x + y, x) its matrix
is M15, so M11 and M15 are isomorphic.

4.3 Left units and counits of finite non-degenerate CEDS

Proposition 4.10. Let (Ω1, ∗) be an abelian finite group, (Ω2, ⋆) be a finite group, and Ω3 be
a finite set. We denote by e1 and e2 the units of Ω1 and Ω2.

(1) Let (A,Φ) be the linearization of the CEDS (EAS(Ω1, ∗)⋊≻ EAS′(Ω2, ⋆))×EAS(Ω3) of
Theorem 3.16.

(a) The special vectors of eigenvalue 1 of (A,Φ) are the vectors of the form

a =
∑

(α1,α2,α3)∈H1×H2×Ω3

g(α3)(α1, α2, α3),

where H1 is a subgroup of Ω1, H2 is a subgroup of Ω2, such that H2 ≻ H1 ⊆ H1,
and g : Ω3 −→ K is a map.

(b) The left units of (A,Φ) are the vectors of the form

a =
∑

(α2,α3)∈Ω2×Ω3

g(α3)(e1, α2, α3),

where g : Ω3 −→ K is a map.
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(c) The left counits of (A,Φ) are the linear forms f such that for any (α1, α2, α3) ∈ Ω,
f(α1, α2, α3) = δα2,e2g(α3), where g : Ω3 −→ K is a map.

(2) Let (A,Φ) be the linearization of the CEDS (EAS(Ω2, ⋆)⋉≺ EAS′(Ω1, ∗))×EAS(Ω3) of
Corollary 3.18.

(a) The special vectors of eigenvalue 1 of (A,Φ) are the vectors of the form

a =
∑

(α1,α2,α3)∈H1×H2×Ω3

g(α3)(α2, α1, α3),

where H1 is a subgroup of Ω1, H2 is a subgroup of Ω2, such that H1 ≺ H2 ⊆ H1,
and g : Ω3 −→ K is a map.

(b) The left units of (A,Φ) are the vectors of the form

a =
∑

(α1,α3)∈Ω1×Ω3

g(α3)(e2, α1, α3),

where g : Ω3 −→ K is a map.

(c) The left counits of (A,Φ) are the linear forms f such that for any (α1, α2, α3) ∈ Ω,
f(α1, α2, α3) = δα1,e1g(α3), where g : Ω3 −→ K is a map.

Proof. (1)(a) Let a be a nonzero vector of A, which we write as

a =
∑

(α1,α2,α3)∈Ω

a(α1,α2,α3)(α1, α2, α3).

Then a is a special vector of eigenvalue 1 if and only if for any (α1, α2, α3), (β1, β2, β3) ∈ Ω,

a(α1,α2,α3)a(β1,β2,β3) = a(α−1
2 ≻β1,β2⋆α2,β3)

a((α−1
2 ≻β−1

1 )∗α1,α2,α3)
. (4.4)

We put

∀(α2, α3) ∈ Ω2 × Ω3, H1(α2, α3) = {α1 ∈ Ω1, a(α1,α2,α3) ̸= 0},
∀α3 ∈ Ω3, H2(α3) = {α2 ∈ Ω2, H1(α2, α3) ̸= ∅}, H3 = {α3 ∈ Ω3, H2(α3) ̸= ∅}.

We shall also consider the map

g :

{
Ω3 −→ K,
α3 −→ g(α3) = ae1,e2,α3 .

Let us first prove that if α3 ∈ H3, then H2(α3) is a subgroup of Ω2. Let α2, β2 ∈ H2(α3)
(which is nonempty as α3 ∈ H3). Let α1, β1 ∈ Ω1, such that a(α1,α2,α3) ̸= 0 and a(β1,β2,α3) ̸= 0.
By (4.4), a(α−1

2 ≻β1,β2⋆α2,α3)
̸= 0, so β2 ⋆α2 ∈ H2(α3). As Ω2 is finite, H2(α3) is a subgroup of Ω2.

Let us prove that if α3 ∈ H3, then H1(e2, α3) is a subgroup of Ω1 and, moreover, for any α1 ∈
H1(e2, α3), a(α1,e2,α3) = g(α3). As H2(α3) is a subgroup of Ω2, it contains e2, so H1(e2, α3) ̸= ∅.
Let α1, β1 ∈ H1(e2, α3). By (4.4),

a(α1,e2,α3)a(β1,e2,α3) = a(β1,e2,α3)a(β−1
1 ∗α1,e2,α3)

̸= 0.

Hence, β−1
1 ∗ α1 ∈ H1(e2, α3). Taking α1 = β1, we obtain

a(α1,e2,α3)a(α1,e2,α3) = a(α1,e2,α3)a(e1,e2,α3) ̸= 0,

so a(α1,e2,α3) = a(e1,e2,α3) = g(α3).
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Let us prove that if α3, β3 ∈ H3 and β2 ∈ H2(β3), then H1(β2, β3) ⊆ H1(e2, α3). Let
β1 ∈ H1(β2, β3). Then a(β1,β2,β3) ̸= 0. As H1(e1, β2) is a subgroup of Ω1, it contains e1,
so a(e1,e2,α3) ̸= 0. By (4.4),

a(e1,e2,α3)a(β1,β2,β3) = g(α3)a(β1,β2,β3) = a(β1,β2,β3)a(β−1
1 ,e2,α3)

̸= 0,

so β−1
1 ∈ H1(e2, α3). As this is a subgroup of Ω1, β1 ∈ H1(e2, α3). As a consequence, for

β2 = e2, we obtain by symmetry that for any α3, β3 ∈ H3, H1(e2, α3) = H1(e2, β3). Therefore,
there exists a subgroup H1 of Ω1 such that for any α3 ∈ Ω3, H1(e2, α3) = H1.

Let us prove that for any α3 ∈ H3, H2(α3) ≻ H1 ⊆ H1. Let β1 ∈ H1 = H1(e2, α3), then
a(β1,e2,α3) ̸= 0. Let α′

2 ∈ H2(α3). We put α2 = α′−1
2 ∈ H2(α3). There exists α1 ∈ H1(α2, α3),

such that a(α1,α2,α3) ̸= 0. By (4.4),

a(α1,α2,α3)a(β1,e2,α3) = a(β1,α2,α3)a((α−1
2 ≻β−1

1 )∗α1,e2,α3)
̸= 0,

so
(
α−1
2 ≻ β

−1
1

)
∗ α1 ∈ H1(e2, α3) = H1. Moreover, as H1(α2, α2) ⊆ H1,

α−1
2 ≻ β

−1
1 = α′

2 ≻ β−1
1 ∈ H1.

Its inverse α′
2 ≻ β1 is also an element of H1, so H2(α3) ≻ H1 ⊆ H1.

Let us prove that for any α3 ∈ H3, for any α2 ∈ H2(α3), H1(α2, α3) = H1. Let α1 ∈ H1 =
H1(e2, α3) and β1 ∈ H1(α2, α3). By (4.4),

a(α1,e2,α3)a(β1,α2,α3) = a(β1,α2,α3)a(β−1
1 ∗α1,α2,α3)

̸= 0,

so β−1
1 ∗ α1 ∈ H1(α2, α3). We obtain an injective map{

H1 −→ H1(α2, α3),

α1 −→ β−1
1 ∗ α1.

Hence, |H1| ⩽ |H1(α2, α3)|. We already proved that H1(α2, α3) ⊆ H1, so H1 = H1(α2, α3).
We now prove that there exists a subgroup H2 of Ω2 such that for any α3 ∈ H3, H2(α3) = H2,

and that, moreover, for any α2 ∈ H2, for any α3 ∈ H3, a(e1,α2,α3) = g(α3). Let α3, β3 ∈ H3.
Let α2 ∈ H2(α3). As e1 ∈ H1(α2, α3) = H1, a(e1,α2,α3) ̸= 0. As e2 ∈ H2(α3), a(e1,e2,β3) ̸= 0.
By (4.4),

a(e1,α2,α3)a(e1,e2,β3) = a(e1,α2,β3)a(e1,α2α3) ̸= 0,

so α2 ∈ H2(β3). We proved that H2(α3) ⊆ H2(β3): by symmetry, H2(α3) = H2(β3), which
prove the existence of H2. Moreover, as a(e1,α2,α3) ̸= 0 and a(e1,e2,β3) = g(β3), we obtain that
a(e1,α2,β3) = g(β3).

We proved that for any (α1, α2, α3) ∈ Ω,

a(α1,α2,α3) ̸= 0⇐⇒ (α1, α2, α3) ∈ H1 ×H2 ×H3.

Let α3, β3 ∈ H3, β1 ∈ H1, α2 ∈ H2. We put α1 = α−1
2 ≻ β1. Then, by (4.4),

g(α3)g(β3) = a(β1,α2,α3)a(e1,α2,β3) = a(β1,α2,α3)g(β3),

so a(β1,α2,α3) = g(α3). We proved that a has the announced form.
Conversely, if a is of the announced form,

Φ(a⊗ a) =
∑

(α1,α2,α3),(β1,β2,β3)∈H1×H2×Ω3

g(α3)g(β3)(α1 ∗ β1, β2, β3)
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⊗
(
β2 ≻ α2, α2 ∗ β−1

2 , α3

)
=

∑
(α1,α2,α3),(β1,β2,β3)∈H1×H2×Ω3

(β1, β2, β3)⊗ (α1, α2, α3) = a⊗ a.

(2)(a) If (A,Φ) is the linearization of (EAS(Ω2, ⋆)⋉≺EAS′(Ω1, ∗))×EAS(Ω3), then
(
A,Φ−1

)
is the linearization of (EAS(Ω1, ∗)⋊≺opEAS′(Ω2, ⋆

op))×EAS(Ω3). The result then comes from
the observation that the special vectors of (A,Φ) and

(
A,Φ−1

)
are the same.

(1)(b) Let a be a left unit of A. Then it is a special vector, which we write as

a =
∑

(α1,α1,α3)∈H1×H2×Ω3

g(α3)(α1, α1, α3).

For any b = (β1, β2, β3) ∈ Ω,

Φ(a⊗ b) =
∑

(α1,α1,α3)∈H1×H2×Ω3

g(α3)(α1 ∗ β1, β2, β3)⊗
(
β2 ≻ α1, α2 ∗ β−1

2 , α3

)
= b⊗ a =

∑
(α1,α1,α3)∈H1×H2×Ω3

g(α3)(β1, β2, β3)⊗ (α1, α1, α3).

Taking β1 = e1, we obtain that for any α1 ∈ H1, α1 = e1, so H1 = {e1}. Moreover, for any
β2 ∈ Ω2, ∑

(α2,α3)∈H2×Ω3

g(α3)
(
α2 ⋆ β

−1
2 , α3

)
=

∑
(α2,α3)∈H2×Ω3

g(α3)(α2, α3),

so for any α2 ∈ H2, α2 ⋆ β
−1
2 ∈ H2. In particular, for α2 = e2, β

−1
2 ∈ H2 and finally β2 ∈ H2:

H2 = Ω2. The converse application is immediate.

(2)(b) Similar proof.

(1)(c) and (2)(c) The left counits of (A,Φ) are the left units of (A∗,Φ∗), which is isomorphic
to
(
A,Φ−1

)
.The result comes from(2)(b). and (1)(b). ■

5 From bialgebras to ℓEAS

We refer to [1, 5, 13] for classical results and notations on bialgebras and Hopf algebras.

5.1 A functor from bialgebras to ℓEAS

Proposition 5.1. Let (A,m,∆) be a bialgebra, not necessarily unitary nor counitary. For any
a, b ∈ A, we define Φ: A⊗A −→ A⊗A by

Φ(a⊗ b) = (m⊗ IdA) ◦ (IdA⊗τ) ◦ (∆⊗ IdA)(a⊗ b) =
∑

a(1)b⊗ a(2),

with Sweedler’s notation ∆(a) =
∑
a(1) ⊗ a(2). Then (A,Φ) is an ℓEAS, denoted by ℓEAS(A,

m,∆).

Proof. For any a, b, c ∈ A,

(Id⊗Φ) ◦ (Φ⊗ Id) ◦ (Id⊗Φ)(a⊗ b⊗ c) = (Φ⊗ Id) ◦ (Id⊗τ) ◦ (Φ⊗ Id)(a⊗ b⊗ c)

=
∑∑

a(1)b(1)c⊗ a(2)b(2) ⊗ a(3). ■
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Example 5.2.

(1) Let (Ω, ⋆) be a semigroup. We take A = KΩ, with its usual bialgebra structure: the
product m obtained by linearization of ⋆ and the coproduct ∆ defined by ∀α ∈ Ω, ∆(α) =
α ⊗ α. Then (A,m,∆) is a counitary bialgebra, unitary if and only if Ω is a monoid.
In ℓEAS(A,m,∆), for any α, β ∈ Ω, Φ(α ⊗ β) = α ⋆ β ⊗ α. We recover the linearization
of EAS(Ω, ⋆).

(2) Let A be a vector space, 1A ∈ A and ε ∈ A∗ such that ε(1A) = 1. We define a product
and a coproduct on A by ∀a, b ∈ A, a · b = ε(a)b, ∀a ∈ A, ∆(a) = 1A ⊗ a. Then (A,m,∆)
is a bialgebra, with a left unit 1A and a left counit ε. It is unitary if and only if A is
one-dimensional; it is counitary if, and only if, A is one-dimensional. In ℓEAS(A,m,∆),
for any a, b ∈ A, Φ(a⊗ b) = b⊗ a.

Proposition 5.3. Let (A,m,∆) be a bialgebra, not necessarily unitary nor counitary.

(1) Let us consider the following conditions:

(a) ℓEAS(A,m,∆) is an ℓCEDS.

(b) For any a, b, c ∈ A,
∑∑

a(1)b(1)c⊗ a(2) ⊗ b(2) =
∑∑

b(1)a(1)c⊗ a(2) ⊗ b(2).
(c) For any a, b, c ∈ A, abc = bac.

(d) m is commutative.

Then (d) =⇒ (c) =⇒ (b) ⇐⇒ (a). If (A,∆) has a right counit, then (c) ⇐⇒ (a). If
(A,m,∆) has a right counit and a right unit, then (d)⇐⇒ (a).

(2) Let us consider the following conditions:

(a) ℓEAS(A,m,∆) is a dual ℓCEDS.

(b) For any a, b, c ∈ A,
∑
a(1)b⊗ a(2)c⊗ a(3) =

∑
a(2)b⊗ a(1)c⊗ a(3).

(c) (∆⊗ Id) ◦∆ = (τ ⊗ Id) ◦ (∆⊗ Id) ◦∆.

(d) ∆ is cocommutative.

Then (d) =⇒ (c) =⇒ (b) ⇐⇒ (a). If (A,m) has a right unit, then (c) ⇐⇒ (a). If
(A,m,∆) has a right counit and a right unit, then (d)⇐⇒ (a).

Proof. (1) Obviously, (d) =⇒ (c) =⇒ (b). Let a, b, c ∈ A. Then

(Id⊗Φ) ◦ (Id⊗τ) ◦ (τ ⊗ Id) ◦ (Φ⊗ Id)(b⊗ c⊗ a) =
∑∑

b(2) ⊗ a(1)b(1)c⊗ a(2),

(τ ⊗ Id) ◦ (Φ⊗ Id) ◦ (Id⊗Φ) ◦ (Id⊗τ)(b⊗ c⊗ a) =
∑∑

b(2) ⊗ b(1)a(1)c⊗ a(2),

so (a)⇐⇒ (b). If (b) is satisfied and if (A,∆) has a right counit ε, applying (Id⊗ε⊗ε) to (b), we
obtain (c). If (c) is satisfied and (A,m) has a right unit 1A, taking c = 1A in (c), we obtain (d).

(2) Obviously, (d) =⇒ (c) =⇒ (b). Let a, b, c ∈ A. Then

(Φ⊗ Id) ◦ (τ ⊗ Id) ◦ (Id⊗τ) ◦ (Id⊗Φ)(b⊗ a⊗ c) =
∑

a(2)b⊗ a(3) ⊗ a(1)c,

(Id⊗τ) ◦ (Id⊗Φ) ◦ (Φ⊗ Id) ◦ (τ ⊗ Id)(b⊗ a⊗ c) =
∑

a(1)b⊗ a(3) ⊗ a(2)c,

so (a) ⇐⇒ (b). If (b) is satisfied and if (A,m) has a right unit 1A, taking b = c = 1A in (b),
we obtain (c). If (c) is satisfied and (A,∆) has a right counit ε, applying (Id⊗ Id⊗ε) to (c),
we obtain (d). ■

Proposition 5.4. Let (A,m,∆) be a finite-dimensional bialgebra, not necessarily unitary nor
counitary. Then ℓEAS(A,m,∆)∗ = ℓEAS(A∗,∆∗,m∗).
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Proof. Let f, g ∈ A∗. For any a, b ∈ A,

Φ∗ = ((m⊗ IdA) ◦ (IdA⊗τ) ◦ (∆⊗ IdA))
∗ = (∆∗ ⊗ IdA∗) ◦ (IdA∗ ⊗τ) ◦ (m∗ ⊗ IdA∗).

Therefore, ℓEAS(A,m,∆)∗ = ℓEAS(A∗,∆∗,m∗). ■

Proposition 5.5. Let (A,m,∆) be a bialgebra.

(1) We assume that (A,m) has a right unit 1A.

� If 1A is not a unit of (A,m), the unique left unit of ℓEAS(A,m,∆) is 0. If 1A is
a unit of (A,m), then the left units of ℓEAS(A,m,∆) are the elements a ∈ A such
that ∆(a) = 1A ⊗ a.

(2) We assume that (A,∆) has a right counit εA.

� If εA is not a unit of (A,∆), the unique left counit of ℓEAS(A,m,∆) is 0. If εA is
a counit of (A,∆), then the left counits of ℓEAS(A,m,∆) are the elements λ ∈ A∗

such that λ ◦m = ε⊗ λ.

Proof. (1) Let us assume that ℓEAS(A,m,∆) has a nonzero left unit a. Let us choose λ ∈ A∗

such that λ(a) = 1. For any b ∈ A,

(Id⊗λ) ◦ Φ(a⊗ b) =
(∑

a(1)λ
(
a(2)
))︸ ︷︷ ︸

=a′

b = (Id⊗λ)(b⊗ a) = bλ(a) = b,

so a′ is a left unit of (A,m). Then a′1A = a′ = 1A, so a
′ = 1A is a unit. Moreover, for b = 1A,

Φ(a⊗ 1A) =
∑

a(1)1A ⊗ a(2) = ∆(a) = 1A ⊗ a.

Conversely, if 1A is a unit of (A,m) and ∆(a) = 1A ⊗ a, then a is clearly a left unit of
ℓEAS(A,m,∆).

(2) Let us assume that ℓEAS(A,m,∆) has a nonzero left counit λ. Let us choose b ∈ A such
that λ(b) = 1. For any a ∈ A,

(λ⊗ Id) ◦ Φ(a⊗ b) =
∑

λ
(
a(1)b

)
a(2) = aλ(b) = a.

If we define λ′ : A −→ K by λ′(a) = λ(ab), then λ′ is a left counit of (A,∆). As εA is a right
counit of (A,∆), (λ′ ⊗ εA) ◦ ∆ = λ′ = εA, so λ

′ = εA is a counit of (A,∆). Moreover, for
any a, b ∈ A,

(λ⊗ εA) ◦ Φ(a⊗ b) = εA(a)λ(b) =
∑

λ
(
a(1)b

)
εA
(
a(2)
)
= λ(ab),

so λ ◦m = εA ⊗ λ. Conversely, if εA is a counit of (A,∆) and λ ◦m = εA ⊗ λ, then for any
a, b ∈ A,

(λ⊗ Id) ◦ Φ(a⊗ b) =
∑

λ
(
a(2)b

)
a(2) =

∑
εA
(
a(1)
)
λ(b)a = λ(b)a,

so λ is a left counit of ℓEAS(A,m,∆). ■

More generally, we can obtain other ℓEAS with the help of a bialgebra projection or with
certain linear forms.
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Proposition 5.6. Let (A,m,∆) be a bialgebra, not necessarily unitary nor counitary, and
π : A −→ A be a bialgebra morphism such that π2 = π. For any a, b ∈ A, we define Φ: A⊗A −→
A⊗A by

Φ(a⊗ b) = (m⊗ π) ◦ (IdA⊗τ) ◦ (∆⊗ IdA)(a⊗ b) =
∑

a(1)b⊗ π
(
a(2)
)
.

Then (A,Φ) is an ℓEAS.

Proof. We define δ = (Id⊗π) ◦∆. Then (A,m, δ) is a bialgebra. Note that it is not counitary,
except if (A,∆) is counitary and π = IdA. We can then apply Proposition 5.1 to (A,m, δ). ■

Example 5.7. Let (Ω, ⋆) be a semigroup and π : Ω −→ Ω be a semigroup morphism such
that π2 = π. We take A = KΩ, with its usual bialgebra structure. Then in ℓEAS(A,m,∆), for
any α, β ∈ Ω, Φ(α⊗ β) = α ⋆ β ⊗ π(α). We recover the linearization of EAS(Ω, ⋆, π).

Proposition 5.8. Let (A,∆) be a coalgebra, not necessarily counitary, and f ∈ A∗ such that
(f ⊗ f) ◦∆ = f . We put, for any a, b ∈ A,

Φ(a⊗ b) =
∑

f
(
a(1)
)
b⊗ a(2).

Then (A,Φ) is an ℓCEDS.

Proof. We define a product on A by a⋆b = f(a)b. It is associative. Moreover, for any a, b ∈ A,
as (f ⊗ f) ◦∆ = f ,

∆(a ⋆ b) = f(a)
∑

b(1) ⊗ b(2) =
∑

f
(
a(1)
)
f
(
a(2)
)∑

b(1) ⊗ b(2)

=
∑∑

f
(
a(1)
)
b(1) ⊗ f

(
a(2)
)
b(2) = ∆(a) ⋆∆(b),

so (A, ⋆,∆) is a bialgebra, and (A,Φ) = ℓEAS(A, ⋆,∆). Moreover, for any a, b, c ∈ A,

a ⋆ b ⋆ c = f(a)f(b)c = f(b)f(c)a = b ⋆ a ⋆ c.

By Proposition 5.3, (A,Φ) is an ℓCEDS. ■

Example 5.9. Let Ω be a set, A = KΩ be the associated coalgebra (where any α ∈ Ω is
a group-like element), and Ω′ ⊆ Ω be any set. We define the linear form f : A −→ K by

∀α ∈ Ω, f(α) =

{
1 if α ∈ Ω′,

0 otherwise.

For any α ∈ Ω, (f ⊗ f) ◦ ∆(α) = f(α)2 = f(α), so we obtain an ℓCEDS such that for any
α, β ∈ Ω,

Φ(α⊗ β) =

{
β ⊗ α if α ∈ Ω′,

0 otherwise.

5.2 A functor from Hopf algebras to ℓEAS

Proposition 5.10. Let (A,m,∆) be a Hopf algebra, of antipode S. For any a, b ∈ A, we define
Φ: A⊗A −→ A⊗A by

Φ(a⊗ b) = (IdA⊗m) ◦ (IdA⊗S ⊗ IdA) ◦ (∆⊗ Id) ◦ τ(a⊗ b) =
∑

b(1) ⊗ S
(
b(2)
)
a.

Then (A,Φ) is an ℓEAS, denoted by ℓEAS′(A,m,∆). It is non-degenerate, and
(
A,Φ−1

)
=

ℓEAS(A,m,∆op).
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Proof. Let a, b, c ∈ A. Then

(Id⊗Φ) ◦ (Φ⊗ Id) ◦ (Id⊗Φ)(a⊗ b⊗ c)

=
∑∑

c(1) ⊗ S
(
c(3)
)(1)

b(1) ⊗ S
(
S
(
c(3)
)(2)

b(2)
)
S
(
c(2)
)
a

=
∑∑

c(1) ⊗ S
(
c(4)
)
b(1) ⊗ S

(
S
(
c(3)
)
b(2)
)
S
(
c(2)
)
a

=
∑∑

c(1) ⊗ S
(
c(4)
)
b(1) ⊗ S

(
c(2)S

(
c(3)
)
b(2)
)
a

=
∑∑

c(1) ⊗ S
(
c(2)
)
b(1) ⊗ S

(
b(2)
)
a

= (Φ⊗ Id) ◦ (Id⊗τ) ◦ (Φ⊗ Id)(a⊗ b⊗ c),

so (A,Φ) is an ℓEAS.
Let (A,Ψ) = ℓEAS(A,m,∆op): for any a, b ∈ A, Ψ(a⊗ b) =

∑
a(2)b⊗ a(1). Then

Φ ◦Ψ(a⊗ b) =
∑

a(1) ⊗ S
(
a(2)
)
a(3)b = a⊗ b,

Ψ ◦ Φ(a⊗ b) =
∑

b(1)S
(
b(2)
)
a⊗ b(3) = a⊗ b,

so Φ is bijective, of inverse Ψ. ■

Example 5.11. Let (G, ⋆) be a group and let A = KGop be the Hopf algebra of the opposite
of this group. A basis of ℓEAS′(A,m,∆) is given by G itself and, for any α, β ∈ G, Φ(α⊗ β) =
β ⊗ α ⋆ β−1. We recover in this way the linearization of EAS′(G, ⋆).

Corollary 5.12. Let (A,m,∆) be a bialgebra, such that (A,m,∆op) is a bialgebra. Then
(A,Φ) = ℓEAS(A,m,∆) is non-degenerate and

(
A,Φ−1

)
= ℓEAS′(A,m,∆op).

Proposition 5.13. Let (A,m,∆) be a Hopf algebra.

(1) Then ℓEAS′(A,m,∆) is an ℓCEDS if and only if ∆ ◦ S = ∆op ◦ S.
(2) Then ℓEAS′(A,m,∆) is a dual ℓCEDS if and only if S ◦m = S ◦mop.

Proof. (1) Let a, b, c ∈ A.

(Id⊗Φ) ◦ (Id⊗τ) ◦ (τ ⊗ Id) ◦ (Φ⊗ Id)(b⊗ c⊗ a) =
∑

S
(
b(3)
)
a⊗ b(1) ⊗ S

(
b(2)
)
c, (5.1)

(τ ⊗ Id) ◦ (Φ⊗ Id) ◦ (Id⊗Φ) ◦ (Id⊗τ)(b⊗ c⊗ a) =
∑

S
(
b(2)
)
a⊗ b(1) ⊗ S

(
b(3)
)
c.

If ∆ ◦ S = ∆op ◦ S, then∑
b(1) ⊗ S

(
b(2)
)
⊗ S

(
b(3)
)
=
∑∑

b(1) ⊗ S
(
b(2)
)(2) ⊗ S(b(2))(1)

=
∑∑

b(1) ⊗ S
(
b(2)
)(1) ⊗ S(b(2))(2)

=
∑

b(1) ⊗ S
(
b(3)
)
⊗ S

(
b(2)
)
,

which implies that (A,Φ) is an ℓCEDS. Conversely, taking a = c = 1A, we obtain, in (5.1),∑
S
(
b(3)
)
⊗ b(1) ⊗ S

(
b(2)
)
=
∑

S
(
b(2)
)
⊗ b(1) ⊗ S

(
b(3)
)
.

Applying Id⊗ε⊗ Id, we obtain

∆ ◦ S(b) =
∑

S(b)(1) ⊗ S(b)(2) =
∑

S
(
b(2)
)
⊗ S

(
b(1)
)

=
∑

S
(
b(1)
)
⊗ S

(
b(2)
)
=
∑

S(b)(2) ⊗ S(b)(1) = ∆op ◦ S(b).
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(2) Let a, b, c ∈ A. Then

(Φ⊗ Id) ◦ (τ ⊗ Id) ◦ (Id⊗τ) ◦ (Id⊗Φ)(b⊗ a⊗ c) =
∑∑

a(1) ⊗ S
(
a(2)
)
S
(
c(2)
)
b⊗ c(1),

(Id⊗τ) ◦ (Id⊗Φ) ◦ (Φ⊗ Id) ◦ (τ ⊗ Id)(b⊗ a⊗ c) =
∑∑

a(1) ⊗ S
(
c(2)
)
S
(
a(2)
)
b⊗ c(1).

If S ◦ m = S ◦ mop, then mop ◦ (S ⊗ S) = m ◦ (S ⊗ S), which implies that (A,Φ) is a dual
ℓCEDS. Conversely, taking b = 1 and applying ε ⊗ Id⊗ε, we obtain S(a)S(c) = S(c)S(a),
so mop ◦ S = m ◦ (S ⊗ S) = mop ◦ (S ⊗ S) = S ◦m. ■

Remark 5.14. In particular, if S is invertible, then ℓEAS′(A,m,∆) is an ℓCEDS if and only
if (A,m) is commutative; it is a dual ℓCEDS if and only if (A,∆) is cocommutative.

Proposition 5.15. Let (A,m,∆) be a finite-dimensional Hopf algebra. Then

ℓEAS′(A,m,∆)∗ = ℓEAS′(A∗,∆∗,op,m∗,op).

Proof. Let f, g ∈ A∗. For any a, b ∈ A,

Φ∗(f ⊗ g)(a⊗ b) = (f ⊗ g)(Φ(a⊗ b)) =
∑

(f ⊗ g)
(
b(1) ⊗ S

(
b(2)a

))
=
∑∑(

f ⊗ g(1) ⊗ g(2)
)(
b(1) ⊗ S

(
b(2)
)
⊗ a
)

=
∑(

f ⊗ S∗(g(1))⊗ g(2))(b(1) ⊗ b(2) ⊗ a)
=
∑(

g(2) ⊗ fS∗(g(1)))(a⊗ b),
so Φ∗(f ⊗ g) =

∑
g(2) ⊗ fS∗(g(1)), which is the ℓEAS attached to the Hopf algebra (A∗,∆∗,op,

m∗,op), whose antipode is S∗. ■

Recall from [14] that a right integral of a Hopf algebra (A,m,∆) is a linear map f ∈ A∗ such
that for any µ ∈ A∗, (λ⊗ µ) ◦∆ = µ(1A)λ.

Proposition 5.16. Let (A,m,∆) be a Hopf algebra.

(1) Let a ∈ A. It is a left unit of ℓEAS′(A,m,∆) if and only if for any b ∈ A, S(b)a = ε(b)a.

(2) Let λ ∈ A∗. It is a left counit of ℓEAS′(A,m,∆) if and only if for any a ∈ A,∑
λ
(
b(1)
)
S
(
b(2)
)
= λ(b)1A. In particular, right integrals on (A,m,∆) are left counit of

ℓEAS′(A,m,∆); if S is invertible, then the converse is true.

Proof. (1) Let a ∈ A. Then its a left unit if and only if for any b ∈ A,
∑
b(1)⊗S

(
b(2)
)
a = b⊗a.

Applying ε ⊗ Id, if a is a left unit, for any b ∈ B, S(b)a = ε(b) ⊗ a. Conversely, if this holds,
then for any b ∈ B,

Φ(a⊗ b) =
∑

b(1) ⊗ S
(
b(1)
)
a =

∑
b(1) ⊗ ε

(
b(2)
)
a = b⊗ a.

(2) Let λ ∈ A∗. It is a left counit if and only if for any a, b ∈ A,∑
λ
(
b(1)
)
S
(
b(2)
)
a = aλ(b).

If λ is a left counit, taking a = 1A, we obtain that for any b ∈ A, λ
(
b(1)
)
S
(
b(2)
)
= λ(b)1A.

Conversely, if this holds, then for any a, b ∈ A,

(λ⊗ Id) ◦ Φ(a⊗ b) =
∑

λ
(
b(1)
)
S
(
b(2)
)
a = λ(b)a = (Id⊗λ)(a⊗ b),

so λ is a left counit.
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Let us assume that λ is a right integral of (A,m,∆). For any b ∈ A, for any µ ∈ A∗,∑
λ
(
b(1)
)
µ
(
S
(
b(2)
))

= (λ⊗ µ ◦ S) ◦∆(b) = µ ◦ S(1A)λ(b) = µ(1A)λ(b).

As this holds for any µ ∈ A∗,
∑
λ
(
b(1)
)
S
(
b(2)
)
= λ(b)1A, so λ is a right integral. Let us now

assume that S is invertible and that λ is a left counit. Let ν ∈ A∗. For any b ∈ A, if µ = ν ◦S−1,∑
λ
(
b(1)
)
ν
(
b(2)
)
=
∑

λ
(
b(1)
)
µ ◦ S

(
b(2)
)
= λ(b)µ(1A)

= λ(b)ν ◦ S−1(1A) = λ(b)ν(1A).

So λ is a right integral. ■

5.3 From left units and counits to bialgebras

Theorem 5.17. Let (A,Φ) be an ℓEAS.

(1) If a is a special vector of eigenvalue 1 of (A,Φ), then ∆a : A −→ A⊗A defined by ∆a(b) =
Φ(b⊗ a) is a coassociative coproduct.

(2) If ε is a special vector of eigenvalue 1 of (A,Φ)∗, that is to say if (ε⊗ ε) ◦Φ = ε⊗ ε, then
mε : A⊗A −→ A defined by mε = (Id⊗ε) ◦ Φ is an associative product.

(3) If a is a left unit of (A,Φ) and ε is a left counit of (A,Φ) such that ε(a) = 1, then
(A,mε,∆a) is a bialgebra, with a as a left unit and ε as a left counit. Moreover, (A,Φ) =
ℓEAS(A,mε,∆a).

Proof. (1) For any b ∈ A,

(Id⊗Φ) ◦ (Φ⊗ Id) ◦ (Id⊗Φ)(b⊗ a⊗ a) = (Id⊗Φ) ◦ (Φ⊗ Id)(b⊗ a⊗ a)
= (Id⊗Φ)(∆a(b)⊗ a) = (Id⊗∆a) ◦∆a(b),

(Φ⊗ Id) ◦ (Id⊗τ) ◦ (Φ⊗ Id)(b⊗ a⊗ a) = (Φ⊗ Id) ◦ (Id⊗τ)(∆a(b)⊗ a)
= (∆a ⊗ Id) ◦∆a(b).

Hence, ∆a is coassociative.
(2) We obtain, as ε is a special vector of eigenvalue 1 of (A,Φ)∗,

(Id⊗ε⊗ ε) ◦ (Id⊗Φ) ◦ (Φ⊗ Id) ◦ (Id⊗Φ) = (Id⊗ε⊗ ε) ◦ (Φ⊗ Id) ◦ (Id⊗Φ)
= (Id⊗ε) ◦ Φ ◦ ((Id⊗ε) ◦ Φ))
= mε ◦ (Id⊗mε),

(Id⊗ε⊗ ε) ◦ (Φ⊗ Id) ◦ (Id⊗τ) ◦ (Φ⊗ Id) = (Id⊗ε) ◦ Φ ◦ ((Id⊗ε)⊗ Id)

= mε ◦ (mε ⊗ Id).

As a consequence, mε is associative.
(3) As a is a left unit, it is a special vector of eigenvalue 1 of (A,Φ), so ∆a is coassociative.

Moreover, for any b ∈ A,

(ε⊗ Id) ◦∆a(b) = (ε⊗ Id) ◦ Φ(b⊗ a) = (Id⊗ε)(b⊗ a) = bε(a) = b,

so ε is a left counit of ∆a. As ε is a left counit, it is a special vector of eigenvalue 1 of (A,Φ)∗,
so mε is associative. Moreover, for any b ∈ A,

mε(a⊗ b) = (Id⊗ε) ◦ Φ(a⊗ b) = (Id⊗ε)(b⊗ a) = bε(a) = b,

so a is a left unit of mε.
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Let b1, b2 ∈ A.

∆a(b1b2) = (Id⊗ε⊗ Id⊗ε) ◦ (Φ⊗ Φ) ◦ (Id⊗τ ⊗ Id) ◦ (Φ⊗ Φ)

◦ (Id⊗τ ⊗ Id)(b1 ⊗ b2 ⊗ a⊗ a)
= (Id⊗ε⊗ Id⊗ε) ◦ (Id⊗ Id⊗Φ) ◦ (Φ⊗ Id⊗ Id) ◦ (Id⊗τ ⊗ Id) ◦ (Φ⊗ Id⊗ Id)

◦ (Id⊗ Id⊗Φ) ◦ (Id⊗τ ⊗ Id)(b1 ⊗ b2 ⊗ a⊗ a)
= (Id⊗ε⊗ Id⊗ε) ◦ (Id⊗ Id⊗Φ) ◦ (Id⊗Φ⊗ Id) ◦ (Φ⊗ Id⊗ Id) ◦ (Id⊗Φ⊗ Id)

◦ (Id⊗ Id⊗Φ) ◦ (Id⊗τ ⊗ Id)(b1 ⊗ b2 ⊗ a⊗ a)
= (Id⊗ Id⊗ε) ◦ (Id⊗Φ) ◦ (Id⊗((ε⊗ Id) ◦ Φ)⊗ Id) ◦ (Φ⊗ Id⊗ Id)

◦ (Id⊗Φ⊗ Id) ◦ (Id⊗ Id⊗Φ) ◦ (Id⊗τ ⊗ Id)(b1 ⊗ b2 ⊗ a⊗ a)
= (Id⊗ Id⊗ε) ◦ (Id⊗Φ) ◦ (Id⊗ Id⊗ε⊗ Id) ◦ (Φ⊗ Id⊗ Id)

◦ (Id⊗Φ⊗ Id) ◦ (Id⊗ Id⊗Φ) ◦ (Id⊗τ ⊗ Id)(b1 ⊗ b2 ⊗ a⊗ a)
= (Id⊗ Id⊗ε) ◦ (Id⊗Φ) ◦ (Φ⊗ Id⊗ Id) ◦ (Id⊗(Id⊗ε) ◦ Φ⊗ Id)

◦ (Id⊗ Id⊗Φ)(b1 ⊗ a⊗ b2 ⊗ a)
= (Id⊗ Id⊗ε) ◦ (Id⊗Φ) ◦ (Φ⊗ Id) ◦ (Id⊗Φ)(b1 ⊗ b2 ⊗ a)
= Φ ◦ ((Id⊗ε) ◦ Φ⊗ Id)(b1 ⊗ b2 ⊗ a)
= Φ(mε(b1 ⊗ b2)⊗ a) = ∆a(mε(b1 ⊗ b2)).

So (A,mε,∆a) is a bialgebra. Let (A,Ψ) = ℓEAS(A,mε,∆a). For any b1, b2 ∈ A,

Ψ(b1 ⊗ b2) = (Id⊗ε⊗ Id) ◦ (Φ⊗ Id) ◦ (Id⊗τ) ◦ (Φ⊗ Id)(b1 ⊗ a⊗ b2)
= (Id⊗ε⊗ Id) ◦ (Id⊗Φ) ◦ (Φ⊗ Id) ◦ (Id⊗Φ)(b1 ⊗ a⊗ b2)
= (Id⊗ Id⊗ε) ◦ (Φ⊗ Id)(b1 ⊗ b2 ⊗ a) = Φ(b1 ⊗ b2)ε(a) = Φ(b1 ⊗ b2).

Therefore, (A,Φ) = ℓEAS(A,mε,∆a). ■

Example 5.18. This can be applied for ℓEAS M16, M17 and M18 of Example 4.2.

� For M16, taking a = x and ε = x∗ + y∗, we obtain

∆a(x) = x⊗ x, ∆a(y) = y ⊗ y,
mε(x⊗ x) = x, mε(x⊗ y) = y,

mε(y ⊗ x) = y, mε(y ⊗ y) = y.

This is the bialgebra of the semigroup (Z/2Z,×), with x = 1 and y = 0: we recover the
linearization of C3.

� For M17, taking a = x and ε = x∗ + y∗, we obtain

∆a(x) = x⊗ x, ∆a(y) = x⊗ x− x⊗ y − y ⊗ x+ 2y ⊗ y,
mε(x⊗ x) = x, mε(x⊗ y) = y,

mε(y ⊗ x) = x, mε(y ⊗ y) = y.

Putting y′ = −x+ 2y,2 we obtain

∆a(x) = x⊗ x, ∆a(y
′) = y′ ⊗ y′,

mε(x⊗ x) = x, mε(x⊗ y′) = y′,

mε(y
′ ⊗ x) = y′, mε(y

′ ⊗ y′) = x.

This is the bialgebra of the semigroup (Z/2Z,+), with x = 0 and y = 1: we recover the
linearization of H2.

2If the characteristic of the base field K is not 2.
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� For M18, we can take any a ∈ A and any ε ∈ A∗ such that ε(a) = 1. For any b, c ∈ A,
∆a(b) = a⊗ b, mε(b⊗ c) = ε(b)c.

5.4 Applications to non-degenerate finite CEDS

From Proposition 4.10, we have the following.

Proposition 5.19. Let (Ω,→, ▷) be a non-degenerate finite CEDS, which we write following
Theorem 3.16 under the form (EAS(Ω1, ∗)⋊≻ EAS′(Ω2, ⋆))×EAS(Ω3). Let g, h : Ω3 −→ K be
two maps such that∑

α3∈Ω3

g(α3)h(α3) = 1.

We define a product and a coproduct on KΩ, putting, for any (α1, α2, α3), (β1, β2, β3) ∈ Ω,

(α1, α2, α3) · (β1, β2, β3) = δα2,β2g(α3)(α1 ∗ β1, β2, β3),

∆(α1, α2, α3) =
∑

(β2,β3)∈Ω2×Ω3

h(β3)(α1, β2, β3)⊗
(
β2 ≻ α1, α2 ⋆ β

−1
2 , α3

)
.

Then (KΩ, ·,∆) is a bialgebra and the linearization of Ω is ℓEAS(KΩ, ·,∆).

Proof. By Proposition 4.10, the following is a left unit of KΩ:

a =
∑

(α2,α3)∈Ω2×Ω3

h(α3)(e1, α2, α3),

and the following map is a left counit of KΩ:

ε :

{
KΩ −→ K,
(α1, α2, α3) −→ δα2,e2g(α3).

By hypothesis, ε(a) = 1. The result comes from a direct application of Theorem 5.17. ■

Similarly, we have the following.

Proposition 5.20. Let (Ω,→, ▷) be a non-degenerate finite dual CEDS, which we write following
Corollary 3.18 under the form (EAS(Ω2, ⋆) ⋉≺ (EAS′(Ω1, ∗)) × EAS(Ω3), Let g, h : Ω3 −→ K
be two maps such that∑

α3∈Ω3

g(α3)h(α3) = 1.

We define a product and a coproduct on KΩ, putting, for any (α1, α2, α3), (β1, β2, β3) ∈ Ω,

(α1, α2, α3) · (β1, β2, β3) = δα1,β1g(α3)(α2 ∗ β2, β1 ≺ α2, β3),

∆(α2, α1, α3) =
∑

(β1,β3)∈Ω1×Ω3

h(β3)(α2, β1 ≺ α2, β3)⊗
(
α2, α1 ⋆

(
β−1
1 ≺ α−1

2

)
, α3

)
.

Then (KΩ, ·,∆) is a bialgebra and the linearization of Ω is ℓEAS(KΩ, ·,∆).
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5.5 Applications to Hopf algebras of groups

In all this paragraph, G is a group. We denote by KG the associated Hopf algebra. If G is
finite, we denote by KG the Hopf algebra of functions over G, with its basis (δg)g∈G, dual of the
basis G of KG.

Corollary 5.21. If G is finite, then ℓEAS′(KG) is isomorphic to ℓEAS
(
KG
)
, and ℓEAS′(KG

)
is isomorphic to ℓEAS(KGop).

Proof. As G is finite, a =
∑

g∈G g is a right integral of KG, so is a left unit of ℓEAS′(KG).
If eG is the unit of the group G, then ε = δeG is a right integral of KG, so is a left counit
of ℓEAS′(KG). As ε(a) = 1, ℓEAS′(KG) = ℓEAS(KG,mε,∆a). For any g, h ∈ G,

mε(g ⊗ h) = (Id⊗δeG) ◦ Φ(g ⊗ h) = hδeG
(
h−1g

)
= δg,hh.

For any g ∈ G,

∆a(g) =
∑
h∈G

Φ(g ⊗ h) =
∑
h∈G

h⊗ h−1g =
∑

g1,g2∈G,
g1g2=g

g1 ⊗ g2.

So (KG,mε,∆a) is isomorphic to KG, via the map sending g to δg, for any g ∈ G.
By duality, a is a left counit of ℓEAS′(KG

)
and ε is a left unit of ℓEAS′(KG

)
. For any

g, h ∈ G,

ma(δg ⊗ δh) = (Id⊗a) ◦ Φ(g ⊗ h) =
∑

h1,h2∈G,
h1h2=h

δh1 ⊗ δh−1
2
δg(a) = δhg.

For any g ∈ G,

∆ε(δg) = Φ(δg ⊗ δeG) =
∑
h∈G

δh ⊗ δhδg =
∑
h∈G

δh ⊗ δg,hδh = δg ⊗ δg.

So
(
KG,ma,∆ε

)
is isomorphic to KGop via the map sending δg to g, for any g ∈ G. ■

Proposition 5.22.

(1) The nonzero special vectors of eigenvalue 1 of ℓEAS(KG) and of ℓEAS′(KG) are the
elements λ

∑
α∈H α, where λ is a nonzero scalar and H is a subgroup of G.

(2) If G is finite, the nonzero special vectors of eigenvalue 1 of ℓEAS
(
KG
)
and of ℓEAS′(KG

)
are the elements λ

∑
α∈H δα, where λ is a nonzero scalar and H is a subgroup of G.

Proof. Any a ∈ A can be written under the form a =
∑

α∈G λαα. Then

a is a special vector of eigenvalue 1 of ℓEAS(KG)

⇐⇒
∑
α,β∈G

aαaβα⊗ β =
∑
α,β∈G

aαaβαβ ⊗ α

⇐⇒
∑
α,β∈G

aαaβα⊗ β =
∑
α,β∈G

aβaβ−1ααβ ⊗ α

⇐⇒ ∀α, β ∈ G, aβ(aα − aβ−1α) = 0.

Let a be a nonzero special vector of eigenvalue 1 of ℓEAS(KG). Let us put a1G = λ and
H = {α ∈ G, aα ̸= 0}. Let α = β ∈ H. As aβ ̸= 0, we obtain aα = a1G = λ, so 1G ∈ H
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and λ ̸= 0. For any β ∈ H, taking α = 1G, we obtain aβ−1 = λ, so β−1 ∈ H. If α, β ∈ H,
we obtain that aβ−1α = aα ̸= 0, so β−1α ∈ H. Hence, H is a subgroup and a = λ

∑
α∈H α,

a is a special vector of eigenvalue 1 of ℓEAS′(KG)

⇐⇒
∑
α,β∈G

aαaβα⊗ β =
∑
α,β∈G

aαaββ ⊗ β−1α

⇐⇒
∑
α,β∈G

aαaβα⊗ β =
∑
α,β∈G

aβaαβαβ ⊗ α

⇐⇒ ∀α, β ∈ G, aα(aβ − aαβ) = 0.

Let a be a nonzero special vector of eigenvalue 1 of ℓEAS′(KG). Let us put a1G = λ and
H = {α ∈ G, aα ̸= 0}. Let α = β ∈ H. If α ∈ H, for β = 1G, we obtain a1G = aα = λ, so
1G ∈ H and λ ̸= 0; for β = α−1, we obtain aα−1 = a1G = λ ̸= 0, so α−1 ∈ G. If α, β ∈ H, we
obtain that aαβ = aβ ̸= 0, so αβ ∈ H. Hence, H is a subgroup and a = λ

∑
α∈H α.

Let f ∈ KG. We put f(α) = aα for any α ∈ G,

f is a special vector of eigenvalue 1 of ℓEAS
(
KG
)

⇐⇒ ∀α, β ∈ G, aαaβ = aαβ

⇐⇒ ∀α, β ∈ G, aα(aβ − aαβ) = 0;

f is a special vector of eigenvalue 1 of ℓEAS′(KG
)

⇐⇒ ∀α, β ∈ G, aαaβ = aβaβ−1α

⇐⇒ ∀α, β ∈ G, aβ(aα − aβ−1α) = 0.

The conclusion is the same as for KG. ■

Remark 5.23.

(1) From Proposition 5.5, the left units of ℓEAS(KG) are the multiples of eG, and its left
counits are the multiples of its counit. If G is finite, the left units of ℓEAS

(
KG
)
are the

multiple of
∑

g∈G g,and its left counits are the multiples of eG.

(2) From Proposition 5.16, it is not difficult to show that if G is finite, the left units of
ℓEAS′(KG) are the multiples of

∑
g∈G g; if G is not finite, ℓEAS′(KG) has no nonzero

left unit. The left counits of ℓEAS′(KG) are the multiples of δeG . By duality, if G is finite,
the left units of ℓEAS′(KG

)
are the multiples of δeG and its left counits are the multiples

of
∑

g∈G g.
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