Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 21 (2025), 092, 34 pages      arXiv:2105.01326      https://doi.org/10.3842/SIGMA.2025.092

On Extended Associative Semigroups

Loïc Foissy
Université Littoral Côte d'Opale, UR 2597 LMPA, Laboratoire de Mathématiques Pures et Appliquées Joseph Liouville, 62100 Calais, France

Received June 12, 2025, in final form October 15, 2025; Published online October 26, 2025

Abstract
We study extended associative semigroups (briefly, EAS), an algebraic structure used to define generalizations of the operad of associative algebras, and the subclass of commutative extended diassociative semigroups (briefly, CEDS), which are used to define generalizations of the operad of pre-Lie algebras. We give families of examples based on semigroups or on groups, as well as a classification of EAS of cardinality two. We then define linear extended associative semigroups as linear maps satisfying a variation of the braid equation. We explore links between linear EAS and bialgebras and Hopf algebras. We also study the structure of non-degenerate finite CEDS and show that they are obtained by semi-direct and direct products involving two groups.

Key words: semigroups; diassociative semigroups; braid equation.

pdf (505 kb)   tex (31 kb)  

References

  1. Abe E., Hopf algebras, Cambridge Tracts in Math., Vol. 74, Cambridge University Press, Cambridge, 1980.
  2. Bruned Y., Hairer M., Zambotti L., Algebraic renormalisation of regularity structures, Invent. Math. 215 (2019), 1039-1156, arXiv:1610.08468.
  3. Bruned Y., Katsetsiadis F., Post-Lie algebras in regularity structures, Forum Math. Sigma 11 (2023), e98, 20 pages, arXiv:2208.00514.
  4. Bruned Y., Manchon D., Algebraic deformation for (S)PDEs, J. Math. Soc. Japan 75 (2023), 485-526, arXiv:2011.05907.
  5. Cartier P., Patras F., Classical Hopf algebras and their applications, Algebr. Appl., Vol. 29, Springer, Cham, 2021.
  6. Ebrahimi-Fard K., Gracia-Bondía J.M., Patras F., A Lie theoretic approach to renormalization, Comm. Math. Phys. 276 (2007), 519-549, arXiv:hep-th/0609035.
  7. Foissy L., Generalized associative algebras, arXiv:2104.00908.
  8. Foissy L., Generalized prelie and permutative algebras, arXiv:2104.00909.
  9. Foissy L., Algebraic structures on typed decorated rooted trees, SIGMA 17 (2021), 086, 28 pages, arXiv:1811.07572.
  10. Foissy L., Typed binary trees and generalized dendrifom algebras, J. Algebra 586 (2021), 1-61, arXiv:2002.12120.
  11. Foissy L., Manchon D., Zhang Y., Families of algebraic structures, arXiv:2005.05116.
  12. Guo L., Operated semigroups, Motzkin paths and rooted trees, J. Algebraic Combin. 29 (2009), 35-62, arXiv:0710.0429.
  13. Sweedler M.E., Hopf algebras, Math. Lect. Note Ser., W.A. Benjamin, Inc., New York, 1969.
  14. Sweedler M.E., Integrals for Hopf algebras, Ann. of Math. 89 (1969), 323-335.
  15. Zhang Y., Gao X., Free Rota-Baxter family algebras and (tri)dendriform family algebras, Pacific J. Math. 301 (2019), 741-766.
  16. Zhang Y., Gao X., Guo L., Matching Rota-Baxter algebras, matching dendriform algebras and matching pre-Lie algebras, J. Algebra 552 (2020), 134-170, arXiv:1909.10577.
  17. Zhang Y., Gao X., Manchon D., Free (tri)dendriform family algebras, J. Algebra 547 (2020), 456-493, arXiv:1909.08946.
  18. Zhang Y., Manchon D., Free pre-Lie family algebras, Ann. Inst. Henri Poincaré D 11 (2024), 331-361, arXiv:2003.00917.

Previous article  Next article  Contents of Volume 21 (2025)