Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 21 (2025), 091, 21 pages      arXiv:2412.02042      https://doi.org/10.3842/SIGMA.2025.091

$\Delta$ Invariants of Plumbed Manifolds

Shimal Harichurn a, András Némethi bcde and Josef Svoboda f
a) School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, South Africa
b) Alfréd Rényi Institute of Mathematics, Reáltanoda utca 13-15, 1053 Budapest, Hungary
c) Department of Mathematics, University of Budapest (ELTE), Pázmány Péter Sétány 1/A, 1117, Budapest, Hungary
d) Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania
e) Basque Center for Applied Mathematics (BCAM), Alameda de Mazarredo 14, 48009 Bilbao, Spain
f) Department of Mathematics, California Institute of Technology, Pasadena, CA 91125, USA

Received February 15, 2025, in final form October 17, 2025; Published online October 24, 2025

Abstract
We study the minimal $q$-exponent $\Delta$ in the BPS $q$-series $\widehat{Z}$ of negative definite plumbed 3-manifolds equipped with a spin$^{\rm c}$-structure. We express $\Delta$ of Seifert manifolds in terms of an invariant commonly used in singularity theory. We provide several examples illustrating the interesting behaviour of $\Delta$ for non-Seifert manifolds. Finally, we compare $\Delta$ invariants with correction terms in Heegaard-Floer homology.

Key words: 3-manifold topology; quantum invariant; $q$-series; splice diagram.

pdf (605 kb)   tex (332 kb)  

References

  1. Akhmechet R., Johnson P.K., Krushkal V., Lattice cohomology and $q$-series invariants of 3-manifolds, J. Reine Angew. Math. 2023 (2023), 269-299, arXiv:2109.14139.
  2. Borodzik M., Némethi A., Heegaard-Floer homologies of $(+1)$ surgeries on torus knots, Acta Math. Hungar. 139 (2013), 303-319, arXiv:1105.5508.
  3. Eisenbud D., Neumann W., Three-dimensional link theory and invariants of plane curve singularities, Ann. of Math. Stud., Vol. 110, Princeton University Press, Princeton, NJ, 1985.
  4. Gompf R.E., Handlebody construction of Stein surfaces, Ann. of Math. 148 (1998), 619-693, arXiv:math.GT/9803019.
  5. Gukov S., Katzarkov L., Svoboda J., $\widehat{Z}$ and splice diagrams, SIGMA 21 (2025), 073, 30 pages, arXiv:2304.00699.
  6. Gukov S., Manolescu C., A two-variable series for knot complements, Quantum Topol. 12 (2021), 1-109, arXiv:1904.06057.
  7. Gukov S., Park S., Putrov P., Cobordism invariants from BPS $q$-series, Ann. Henri Poincaré 22 (2021), 4173-4203, arXiv:2009.11874.
  8. Gukov S., Pei D., Putrov P., Vafa C., BPS spectra and 3-manifold invariants, J. Knot Theory Ramifications 29 (2020), 2040003, 85 pages, arXiv:1701.06567.
  9. Gukov S., Putrov P., Vafa C., Fivebranes and 3-manifold homology, J. High Energy Phys. 2017 (2017), no. 7, 071, 81 pages, arXiv:1602.05302.
  10. Harichurn S., On the $\Delta_a$ invariants in non-perturbative complex Chern-Simons theory, arXiv:2306.11298.
  11. Johnson P.K., Plum, a Sage module, 2023, aviable at https://peterkj1.github.io/plum/plum.html#plum.Plumbing.zhat.
  12. Laufer H.B., On $\mu $ for surface singularities, in Several Complex Variables, Proc. Sympos. Pure Math., Part 1, Vol. 30, American Mathematical Society, Providence, RI, 1977, 45-49.
  13. Liles L., $(t, q)$-series invariants of Seifert manifolds, arXiv:2410.10561.
  14. Murakami Y., A proof of a conjecture of Gukov-Pei-Putrov-Vafa, Comm. Math. Phys. 405 (2024), 274, 23 pages, arXiv:2302.13526.
  15. Némethi A., On the Ozsváth-Szabó invariant of negative definite plumbed 3-manifolds, Geom. Topol. 9 (2005), 991-1042, arXiv:math.GT/0310083.
  16. Némethi A., Lattice cohomology of normal surface singularities, Publ. Res. Inst. Math. Sci. 44 (2008), 507-543, arXiv:0709.0841.
  17. Némethi A., Normal surface singularities, Ergeb. Math. Grenzgeb. (3), Vol. 74, Springer, Cham, 2022.
  18. Némethi A., Nicolaescu L.I., Seiberg-Witten invariants and surface singularities, Geom. Topol. 6 (2002), 269-328, arXiv:math.AG/0111298.
  19. Neumann W.D., A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves, Trans. Amer. Math. Soc. 268 (1981), 299-344.
  20. Neumann W.D., Raymond F., Seifert manifolds, plumbing, $\mu $-invariant and orientation reversing maps, in Algebraic and Geometric Topology (Proc. Sympos., Univ. California, Santa Barbara, Calif., 1977), Lecture Notes in Math., Vol. 664, Springer, Berlin, 1978, 163-196.
  21. Neumann W.D., Wahl J., Universal abelian covers of surface singularities, in Trends in Singularities, Trends Math., Birkhäuser, Basel, 2002, 181-190, arXiv:math.AG/0110167.
  22. Neumann W.D., Wahl J., Complete intersection singularities of splice type as universal abelian covers, Geom. Topol. 9 (2005), 699-755, arXiv:math.AG/0407287.
  23. Saveliev N., Invariants for homology $3$-spheres, Encyclopaedia Math. Sci., Vol. 140, Springer, Berlin, 2002.
  24. Siebenmann L., On vanishing of the Rohlin invariant and nonfinitely amphicheiral homology $3$-spheres, in Topology Symposium, Siegen 1979 (Proc. Sympos., Univ. Siegen, Siegen, 1979), Lecture Notes in Math., Vol. 788, Springer, Berlin, 1980, 172-222.

Previous article  Next article  Contents of Volume 21 (2025)