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Abstract. Bearing in mind the potential physical applicability of multicomponent com-
pletely integrable nonlinear dynamical models on quasi-one-dimensional lattices we have de-
veloped the novel twelve-component and six-component semi-discrete nonlinear inregrable
systems in the framework of semi-discrete Ablowitz–Kaup–Newell–Segur scheme. The set of
lowest local conservation laws found by the generalized direct recurrent technique was shown
to be indispensable constructive tool in the reduction procedure from the prototype to actual
field variables. Two types of admissible symmetries for the twelve-component system and one
type of symmetry for the six-component system have been established. The mathematical
structure of total local current was shown to support the charge transportation only by four
of six subsystems incorporated into the twelve-component system under study. The twelve-
component system is able to model the actions of external parametric drive and external
uniform magnetic field via time dependencies and phase factors of coupling parameters.
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1 Introduction

Since the fundamental works by Toda [24, 25, 26] as well as by Ablowitz and Ladik [1, 4, 5] the in-
tegrable nonlinear dynamical systems on one-dimensional and quasi-one-dimensional lattices are
steadily gaining a significant influence on modeling a wide variety of diverse nonlinear phenom-
ena in physical, biological and applied sciences. In this respect, the multicomponent differential-
difference (semi-discrete) nonlinear integrable systems [6, 7, 17, 28, 29, 31, 32, 39, 45, 48] acquire
an important place due to their physical importance and mathematical reliability.

Sometimes, however, the lack of physical imagination inspires the semi-discrete nonlinear
integrable systems allegedly claimed to be multicomponent but actually composed of several
physically uncoupled one-component or two-component basic systems [8, 9, 10, 12, 50, 51, 52].
The critical overview of semi-discrete nonlinear integrable systems characterized by the false
multicomponentness is given in our recent paper [47].

The progress in the development of new differential-differential multicomponent nonlinear in-
tegrable systems has been prompted by the guiding rules known as the Ablowitz–Kaup–Newell–
Segur scheme [2, 3]. The spatially discretized version of Ablowitz–Kaup–Newell–Segur rules is
now widely recognized as the prospective tool for the construction of new differential-difference
(semi-discrete) multicomponent nonlinear integrable systems. The key points of spatially dis-
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cretized Ablowitz–Kaup–Newell–Segur scheme are summarized in our previous papers [43, 44].
We followed this constructive procedure while developing the integrable twelve-component non-
linear dynamical system on a quasi-one-dimensional lattice suggested in the present paper.

2 Semi-discrete zero-curvature equation and the mutually
consistent ansätze for the auxiliary spectral
and evolutionary matrices

Any classic nonlinear evolutionary system on an infinite quasi-one-dimensional lattice is said to
be integrable in the Lax sense provided it admits a matrix-valued semi-discrete zero-curvature
representation [15, 30]

d

dτ
L(n|z) = A(n+ 1|z)L(n|z)− L(n|z)A(n|z) (2.1)

with the auxiliary square matrices L(n|z) and A(n|z) referred to as the spectral and evolutionary
matrices, respectively. Here τ denotes the continuous time variable, n stands for the discrete
space variable running through the integer numbers from minus infinity to plus infinity, while z
marks the time- and space-independent spectral parameter. The spectral matrix L(n|z) is
assumed to be the non-degenerate one (detL(n|z) ̸= 0).

In this paper, we suggest the auxiliary matrices L(n|z) and A(n|z) in the following forms:

L(n|z) =


0 t12(n) u13(n)z

−1 0
t21(n) r22(n)z

2 + t22(n) s23(n)z + u23(n)z
−1 s24(n)z

u31(n)z
−1 s32(n)z + u32(n)z

−1 t33(n) + v33(n)z
−2 t34(n)

0 s42(n)z t43(n) 0

 , (2.2)

A(n|z) =


c11(n) c12(n) d13(n)z

−1 0
c21(n) a22(n)z

2 + c22(n) b23(n)z + d23(n)z
−1 b24(n)z

d31(n)z
−1 b32(n)z + d32(n)z

−1 c33(n) + e33(n)z
−2 c34(n)

0 b42(n)z c43(n) c44(n)

 , (2.3)

where the ansatz (2.3) for the evolutionary matrix A(n|z) is extended by the additional terms
c11(n) and c44(n) as compared with the ansatz considered previously [34, 35].

The adopted ansätze (2.2) and (2.3) in combination with the zero-curvature equation (2.1)
allow to fix the majority of matrix elements Ajk(n|z) of evolutionary matrix A(n|z) in terms
of prototype field functions t12(n), u13(n), t21(n), r22(n), t22(n), s23(n), u23(n), s24(n), u31(n),
s32(n), u32(n), t33(n), v33(n), t34(n), s42(n), t43(n) as well as to recover the set of primary
semi-discrete nonlinear equations for the prototype field functions. Under certain plausible
assumptions prompted by the on-site local conservation laws, the primary semi-discrete nonlinear
equations are convertible into the one or another semi-discrete nonlinear integrable system of
preferable interest. In this sense, the suggested ansätze (2.2) and (2.3) for the auxiliary matrices
are proved to be mutually consistent.

Let us note that the choice of proper ansatz for the evolutionary matrix A(n|z) is not unique
and it manifests a particular integrable system in an infinite hierarchy related to the generic
spectral matrix (2.2).

3 Primary semi-discrete nonlinear equations

To proceed with developing the semi-discrete nonlinear integrable systems of our present interest,
we have to rely upon the primary (prototype) set of semi-discrete equations

d

dτ
t12(n) = c11(n+ 1)t12(n) + c12(n+ 1)t22(n) + d13(n+ 1)s32(n)



Integrable Twelve-Component Nonlinear Dynamical System 3

− t12(n)c22(n)− u13(n)b32(n), (3.1)

d

dτ
u13(n) = c11(n+ 1)u13(n) + c12(n+ 1)u23(n) + d13(n+ 1)t33(n)

− t12(n)d23(n)− u13(n)c33(n), (3.2)

d

dτ
t21(n) = c22(n+ 1)t21(n) + b23(n+ 1)u31(n)

− t21(n)c11(n)− t22(n)c21(n)− s23(n)d31(n), (3.3)

d

dτ
r22(n) = c22(n+ 1)r22(n) + b23(n+ 1)s32(n) + b24(n+ 1)s42(n)

− r22(n)c22(n)− s23(n)b32(n)− s24(n)b42(n), (3.4)

d

dτ
t22(n) = c21(n+ 1)t12(n) + c22(n+ 1)t22(n)− t21(n)c12(n)− t22(n)c22(n)

+ b23(n+ 1)u32(n) + d23(n+ 1)s32(n)− s23(n)d32(n)− u23(n)b32(n), (3.5)

d

dτ
s23(n) = a22(n+ 1)u23(n) + c22(n+ 1)s23(n)− r22(n)d23(n)− t22(n)b23(n)

+ b23(n+ 1)t33(n) + b24(n+ 1)t43(n)− s23(n)c33(n)− s24(n)c43(n), (3.6)

d

dτ
u23(n) = c21(n+ 1)u13(n) + c22(n+ 1)u23(n)− t21(n)d13(n)− t22(n)d23(n)

+ b23(n+ 1)v33(n) + d23(n+ 1)t33(n)− s23(n)e33(n)− u23(n)c33(n), (3.7)

d

dτ
s24(n) = c22(n+ 1)s24(n) + b23(n+ 1)t34(n)

− t22(n)b24(n)− s23(n)c34(n)− s24(n)c44(n), (3.8)

d

dτ
u31(n) = d32(n+ 1)t21(n) + c33(n+ 1)u31(n)

− u31(n)c11(n)− u32(n)c21(n)− t33(n)d31(n), (3.9)

d

dτ
s32(n) = b32(n+ 1)t22(n) + d32(n+ 1)r22(n)− s32(n)c22(n)− u32(n)a22(n)

+ c33(n+ 1)s32(n) + c34(n+ 1)s42(n)− t33(n)b32(n)− t34(n)b42(n), (3.10)

d

dτ
u32(n) = d31(n+ 1)t12(n) + d32(n+ 1)t22(n)− u31(n)c12(n)− u32(n)c22(n)

+ c33(n+ 1)u32(n) + e33(n+ 1)s32(n)− t33(n)d32(n)− v33(n)b32(n), (3.11)

d

dτ
t33(n) = b32(n+ 1)u23(n) + d32(n+ 1)s23(n)− s32(n)d23(n)− u32(n)b23(n)

+ c33(n+ 1)t33(n) + c34(n+ 1)t43(n)− t33(n)c33(n)− t34(n)c43(n), (3.12)

d

dτ
v33(n) = d31(n+ 1)u13(n) + d32(n+ 1)u23(n) + c33(n+ 1)v33(n)

− u31(n1)d13(n)− u32(n)d23(n)− v33(n)c33(n), (3.13)

d

dτ
t34(n) = d32(n+ 1)s24(n) + c33(n+ 1)t34(n)

− u32(n)b24(n)− t33(n)c34(n)− t34(n)c44(n), (3.14)

d

dτ
s42(n) = b42(n+ 1)t22(n) + c43(n+ 1)s32(n) + c44(n+ 1)s42(n)

− s42(n)c22(n)− t43(n)b32(n), (3.15)

d

dτ
t43(n) = b42(n+ 1)u23(n) + c43(n+ 1)t33(n) + c44(n+ 1)t43(n)

− s42(n)d23(n)− t43(n)c33(n). (3.16)
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Here fourteen functions specifying the matrix elements Ajk(n|z) are fixed by formulas

a22(n) = a22, (3.17)

c21(n) = a22t21(n)/r22(n), (3.18)

c12(n+ 1) = t12(n)a22/r22(n), (3.19)

b23(n) = a22s23(n)/r22(n), (3.20)

b32(n+ 1) = s32(n)a22/r22(n), (3.21)

b24(n) = a22s24(n)/r22(n), (3.22)

b42(n+ 1) = s42(n)a22/r22(n), (3.23)

e33(n) = e33, (3.24)

c34(n) = e33t34(n)/v33(n), (3.25)

c43(n+ 1) = t43(n)e33/v33(n), (3.26)

d32(n) = e33u32(n)/v33(n), (3.27)

d23(n+ 1) = u23(n)e33/v33(n), (3.28)

d31(n) = e33u31(n)/v33(n), (3.29)

d13(n+ 1) = u13(n)e33/v33(n), (3.30)

whilst the rest four functions c11(n), c22(n), c33(n), c44(n) remain as yet being unfixed.
The above written sixteen semi-discrete equations (3.1)–(3.16) and fourteen specification

formulas (3.17)–(3.30) are obtainable by the simple algebraic manipulations involving the zero-
curvature equation (2.1) and the ansätze (2.2) and (2.3) for the auxiliary matrices.

In general, the spatially independent parameters a22 and e33 can be arbitrary functions of
time. Thus, the obtained set of semi-discrete nonlinear equations (3.1)–(3.16) deciphered by
the shorthand formulas (3.17)–(3.30) can in general be the parametrically driven one. Such an
evident but physically important property potentially admissible for a wide class of semi-discrete
nonlinear integrable systems is usually overlooked or ignored by the scientific community.

4 Constructive part of the on-site local conservation laws

The most constructive way to fix four arbitrary functions c11(n), c22(n), c33(n), c44(n) is based
on the use of lowest local conservation laws

d

dτ
ρ11(n) = c11(n+ 1) + c22(n+ 1) + c33(n+ 1)− c11(n)− c22(n)− c33(n), (4.1)

d

dτ
ρ22(n) = c22(n+ 1) + a22

s23(n+ 1)s32(n)

r22(n+ 1)r22(n)
+ a22

s24(n+ 1)s42(n)

r22(n+ 1)r22(n)

− c22(n)− a22
s23(n)s32(n− 1)

r22(n)r22(n− 1)
− a22

s24(n)s42(n− 1)

r22(n)r22(n− 1)
, (4.2)

d

dτ
ρ(n) = c11(n+ 1) + c22(n+ 1) + c33(n+ 1) + c44(n+ 1)

− c11(n)− c22(n)− c33(n)− c44(n), (4.3)

d

dτ
ρ33(n) = c33(n+ 1) + e33

u32(n+ 1)u23(n)

v33(n+ 1)v33(n)
+ e33

u31(n+ 1)u13(n)

v33(n+ 1)v33(n)

− c33(n)− e33
u32(n)u23(n− 1)

v33(n)v33(n− 1)
− e33

u31(n)u13(n− 1)

v33(n)v33(n− 1)
, (4.4)

d

dτ
ρ44(n) = c22(n+ 1) + c33(n+ 1) + c44(n+ 1)− c22(n)− c33(n)− c44(n) (4.5)
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associated with the respective on-site local conserved densities

ρ11(n) = ln[t12(n)v33(n)t21(n) + u13(n)t22(n)u31(n)

− t12(n)u23(n)u31(n)− u13(n)u32(n)t21(n)], (4.6)

ρ22(n) = ln[r22(n)], (4.7)

ρ(n) = ln[u13(n)s42(n)− t12(n)t43(n)] + ln[u31(n)s24(n)− t21(n)t34(n)], (4.8)

ρ33(n) = ln[v33(n)], (4.9)

ρ44(n) = ln[t43(n)r22(n)t34(n) + s42(n)t33(n)s24(n)

− t43(n)s32(n)s24(n)− s42(n)s23(n)t34(n)]. (4.10)

These ten formulas (4.1)–(4.10) are obtainable mainly within the modified direct recursive proce-
dure [34, 35, 36, 37] originated as the generalization of Tsuchida–Ujino–Wadati direct recursive
approach [28, 29]. Only two of them, namely formulas (4.3) and (4.8), arise as a simple para-
phrase of so-called universal local conservation law

d

dτ
ln [detL(n|z)] = SpA(n+ 1|z)− SpA(n|z)

following directly from the zero-curvature equation (2.1).
In order to fix four arbitrary functions c11(n), c22(n), c33(n), c44(n) we must impose four

constraints onto the left-hand sides of five on-site local conservation laws (4.1)–(4.5). Of course,
such a procedure admits a number of diverse realizations giving rise to one or another particular
sample of semi-discrete nonlinear integrable system. For this reason, the functions c11(n), c22(n),
c33(n), c44(n) can be referred to as the sampling ones.

Meanwhile, our previous papers [34, 35] have substantially restricted the range of claimed
diversity by ignoring the functions c11(n) and c44(n) in ansatz for the evolutionary matrix A(n|z).
In our present consideration, this ignorance is tantamount to the following two constrains:

d

dτ
ρ11(n) =

d

dτ
ρ(n) =

d

dτ
ρ44(n).

The variability of another two admissible constrains has been thoroughly analyzed in the sec-
ond [35] of just mentioned papers.

In what follows we try to grasp the key features of a particular semi-discrete nonlinear
integrable system specified by four the most natural demands

d

dτ
ρ22(n) = 0 =

d

dτ
ρ33(n), (4.11)

d

dτ
ρ11(n) = 0 =

d

dτ
ρ44(n). (4.12)

Then the local conservation laws (4.1), (4.2) and (4.4), (4.5) yield

c11(n) = c11 + a22
s23(n)s32(n− 1)

r22(n)r22(n− 1)
+ a22

s24(n)s42(n− 1)

r22(n)r22(n− 1)

+ e33
u32(n)u23(n− 1)

v33(n)v33(n− 1)
+ e33

u31(n)u13(n− 1)

v33(n)v33(n− 1)
, (4.13)

c22(n) = c22 − a22
s23(n)s32(n− 1)

r22(n)r22(n− 1)
− a22

s24(n)s42(n− 1)

r22(n)r22(n− 1)
, (4.14)

c33(n) = c33 − e33
u32(n)u23(n− 1)

v33(n)v33(n− 1)
− e33

u31(n)u13(n− 1)

v33(n)v33(n− 1)
, (4.15)

c44(n) = c44 + e33
u32(n)u23(n− 1)

v33(n)v33(n− 1)
+ e33

u31(n)u13(n− 1)

v33(n)v33(n− 1)
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+ a22
s23(n)s32(n− 1)

r22(n)r22(n− 1)
+ a22

s24(n)s42(n− 1)

r22(n)r22(n− 1)
. (4.16)

Here the time-dependent free parameters c11, c22, c33, c44 can be safely removed by the proper
gauge transformations of field functions. Therefore, without the loss of generality we equalize
each of four parameters cjj to zero.

As a result of adopted constraints (4.11) and (4.12), the number of independent field functions
is reduced from the sixteen to the twelve ones. The choice of functions t12(n), u13(n), t21(n),
s23(n), u23(n), s24(n), u31(n), s32(n), u32(n), t34(n), s42(n), t43(n) as being truly independent
appears to be the most convenient. Thus, the functions r22(n), t22(n) and v33(n), t33(n) acquire
the status of concomitant functions.

The arbitrary spatial dependencies of time independent concomitant functions r22(n) and
v33(n) could in principle imitate the action of external substrate, but here we discard this idea
in order to preserve the uniformity of space. Thus, the concomitant functions r22(n) and v33(n)
are reduced to the sheer constant parameters. The subsequent proper scaling procedure of field
functions and the coupling parameters a22 and e33 gives rise to the equations of motion invariant
to the primary equations of motion specified by the equalities

r22(n) = 1 = v33(n). (4.17)

As to the concomitant functions t22(n) and t33(n), they are determined by the simple algebraic
equations

t12(n)v33(n)t21(n) + u13(n)t22(n)u31(n)

− t12(n)u23(n)u31(n)− u13(n)u32(n)t21(n) = T22(n), (4.18)

t43(n)r22(n)t34(n) + s42(n)t33(n)s24(n)

− t43(n)s32(n)s24(n)− s42(n)s23(n)t34(n) = T33(n) (4.19)

in accordance with the adopted differential constraints (4.12) accompanied by the explicit ex-
pressions (4.6) and (4.10) for the on-site local conserved densities ρ11(n) and ρ44(n). Here T22(n)
and T22(n) are time-independent arbitrary functions of spatial variable n.

In the present research, we restrict ourselves to the simplest possible variant

T22(n) = 0 = T33(n) (4.20)

supplemented by the earlier adopted normalizations (4.17) for r22(n) and v33(n). In addition,
we introduce the transformation formulas

t12(n) = u13(n)ū32(n), (4.21)

t21(n) = ū23(n)u31(n), (4.22)

t43(n) = s42(n)s̄23(n), (4.23)

t34(n) = s̄32(n)s24(n) (4.24)

serving to replace the field functions t12(n), t21(n), t43(n), t34(n) by the more suitable ones
ū32(n), ū23(n), s̄23(n), s̄32(n). Then, the equations (4.18) and (4.19) for the concomitant func-
tions t22(n) and t33(n) yield very simple results

t22(n) = u23(n)ū32(n) + ū23(n)u32(n)− ū23(n)ū32(n),

t33(n) = s23(n)s̄32(n) + s̄23(n)s32(n)− s̄23(n)s̄32(n).

We finalize this section by presenting four important local conserved densities [34, 35]

ρ+22(n) =
t22(n)

r22(n)
+

s23(n+ 1)s32(n)

r22(n+ 1)r22(n)
+

s24(n+ 1)s42(n)

r22(n+ 1)r22(n)
, (4.25)
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ρ−22(n) =
t22(n)

r22(n)
+

s23(n)s32(n− 1)

r22(n)r22(n− 1)
+

s24(n)s42(n− 1)

r22(n)r22(n− 1)
, (4.26)

ρ+33(n) =
t33(n)

v33(n)
+

u32(n+ 1)u23(n)

v33(n+ 1)v33(n)
+

u31(n+ 1)u13(n)

v33(n+ 1)v33(n)
, (4.27)

ρ−33(n) =
t33(n)

v33(n)
+

u32(n)u23(n− 1)

v33(n)v33(n− 1)
+

u31(n)u13(n− 1)

v33(n)v33(n− 1)
(4.28)

that can be useful in constructing the appropriate Hamiltonian function for one or another
particular realization of semi-discrete nonlinear integrable system associated with the adopted
ansätze (2.2) and (2.3) for the auxiliary spectral and evolutionary matrices.

The above listed local conserved densities (4.25)–(4.28) are written in the most general form
admitting any feasible fixation of sampling functions cjj(n).

5 Appropriate reductions of field functions
and coupling parameters

Now all preliminary preparations have been completed and we are able to make appropriate
reductions in the prototype set of semi-discrete equations (3.1)–(3.16) by having taken into
account the specification formulas (3.17)–(3.30), (4.13)–(4.16) for the functional elements of
evolutionary matrix, the transformation formulas (4.21)–(4.24) for more suitable field functions,
as well as the expressions (4.17)–(4.20) for the concomitant quantities.

The proper consideration gives rise to the two types of reductions characterized by the twelve
and six actual field functions, respectively. In both of the announced reduction procedures, the
parameter σ is set to distinguish two admissible types of nonlinearities, namely, the attractive
(focusing) σ = +1 and repulsive (defocusing) σ = −1 ones.

5.1 Reduction to twelve field functions and two coupling parameters

The first type of reductions is specified by the following formulas:

s23(n) = +q+(n), u32(n) = −σr+(n), (5.1)

u23(n) = −q−(n), s32(n) = +σr−(n), (5.2)

s̄23(n) = +q̄+(n), ū32(n) = −σr̄+(n), (5.3)

ū23(n) = −q̄−(n), s̄32(n) = +σr̄−(n), (5.4)

s24(n) = +f+(n), u31(n) = −σg+(n), (5.5)

u13(n) = −f−(n), s42(n) = +σg−(n), (5.6)

t22(n) = +σµ(n), t33(n) = +σν(n), (5.7)

a22 = −iα, e33 = +iβ. (5.8)

The twelve-component semi-discrete nonlinear integrable system written in terms of above
introduced quantities (5.1)–(5.8) is presented in Section 6.

5.2 Reduction to six field functions and one coupling parameter

The second type of reductions is specified by the following formulas:

s23(n) = +w+(n), u32(n) = −σw+(n), (5.9)

u23(n) = −w−(n), s32(n) = +σw−(n), (5.10)

s̄23(n) = +w̄+(n), ū32(n) = −σw̄+(n), (5.11)
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ū23(n) = −w̄−(n), s̄32(n) = +σw̄−(n), (5.12)

s24(n) = +h+(n), u31(n) = −σh+(n), (5.13)

u13(n) = −h−(n), s42(n) = +σh−(n), (5.14)

t22(n) = +σπ(n), t33(n) = +σπ(n), (5.15)

a22 = κ, e33(n) = κ. (5.16)

The six-component semi-discrete nonlinear integrable system written in terms of above in-
troduced quantities (5.9)–(5.16) is presented in Section 7.

6 Twelve-component semi-discrete nonlinear integrable system
and its admissible symmetries

The reduction formulas (5.1)–(5.8) listed in Section 5.1 as applied to the prototype set of semi-
discrete equations (3.1)–(3.16) accompanied by the formulas referred in the first paragraph of
Section 5 give rise to the following twelve-component semi-discrete nonlinear integrable system:

+i
d

dτ
q+(n) = −αq−(n)− βq−(n− 1)[1 + σr+(n)q+(n)]− ασµ(n)q+(n)

+ ασq+(n+ 1)[ν(n)− r−(n)q+(n)]− ασf+(n+ 1)g−(n)[q+(n)− q̄+(n)]

− βσf−(n− 1)g+(n)q+(n) + βσf+(n)g−(n− 1)q̄+(n− 1), (6.1)

−i
d

dτ
r+(n) = −βr−(n)− αr−(n− 1)[1 + σq+(n)r+(n)]− βσν(n)r+(n)

+ βσr+(n+ 1)[µ(n)− q−(n)r+(n)]− βσg+(n+ 1)f−(n)[r+(n)− r̄+(n)]

− ασg−(n− 1)f+(n)r+(n) + ασg+(n)f−(n− 1)r̄+(n− 1), (6.2)

+i
d

dτ
q−(n) = −βq+(n)− αq+(n+ 1)[1 + σr−(n)q−(n)]− βσν(n)q−(n)

+ βσq−(n− 1)[µ(n)− r+(n)q−(n)]− βσf−(n− 1)g+(n)[q−(n)− q̄−(n)]

− ασf+(n+ 1)g−(n)q−(n) + ασf−(n)g+(n+ 1)q̄−(n+ 1), (6.3)

−i
d

dτ
r−(n) = −αr+(n)− βr+(n+ 1)[1 + σq−(n)r−(n)]− ασµ(n)r−(n)

+ ασr−(n− 1)[ν(n)− q+(n)r−(n)]− ασg−(n− 1)f+(n)[r−(n)− r̄−(n)]

− βσg+(n+ 1)f−(n)r−(n) + βσg−(n)f+(n+ 1)r̄−(n+ 1), (6.4)

+i
d

dτ
q̄+(n) = −αq−(n)− βq−(n− 1)[1 + σr+(n)q̄+(n)]− ασµ(n)q̄+(n)

− βσq̄+(n)[ν(n)− r−(n)q̄+(n)]− ασq̄+(n)r−(n− 1)[q+(n)− q̄+(n)]

− ασf+(n)g−(n− 1)q̄+(n)− βσf−(n− 1)g+(n)q̄+(n), (6.5)

−i
d

dτ
r̄+(n) = −βr−(n)− αr−(n− 1)[1 + σq+(n)r̄+(n)]− βσν(n)r̄+(n)

− ασr̄+(n)[µ(n)− q−(n)r̄+(n)]− βσr̄+(n)q−(n− 1)[r+(n)− r̄+(n)]

− βσg+(n)f−(n− 1)r̄+(n)− ασg−(n− 1)f+(n)r̄+(n), (6.6)

+i
d

dτ
q̄−(n) = −βq+(n)− αq+(n+ 1)[1 + σr−(n)q̄−(n)]− βσν(n)q̄−(n)

− ασq̄−(n)[µ(n)− r+(n)q̄−(n)]− βσq̄−(n)r+(n+ 1)[q−(n)− q̄−(n)]

− βσf−(n)g+(n+ 1)q̄−(n)− ασf+(n+ 1)g−(n)q̄−(n), (6.7)

−i
d

dτ
r̄−(n) = −αr+(n)− βr+(n+ 1)[1 + σq−(n)r̄−(n)]− ασµ(n)r̄−(n)
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− βσr̄−(n)[ν(n)− q+(n)r̄−(n)]− ασr̄−(n)q+(n+ 1)[r−(n)− r̄−(n)]

− ασg−(n)f+(n+ 1)r̄−(n)− βσg+(n+ 1)f−(n)r̄−(n), (6.8)

+iσ
d

dτ
ln[f+(n)] = −αµ(n) + βq+(n)r̄−(n)

+ βq−(n− 1)r+(n)− αq+(n)r−(n− 1)− αq+(n+ 1)[r−(n)− r̄−(n)]

− αf+(n+ 1)g−(n)− αf+(n)g−(n− 1) + βf−(n− 1)g+(n), (6.9)

−iσ
d

dτ
ln[g+(n)] = −βν(n) + αr+(n)q̄−(n)

+ αr−(n− 1)q+(n)− βr+(n)q−(n− 1)− βr+(n+ 1)[q−(n)− q̄−(n)]

− βg+(n+ 1)f−(n)− βg+(n)f−(n− 1) + αg−(n− 1)f+(n), (6.10)

+iσ
d

dτ
ln[f−(n)] = −βν(n) + αq−(n)r̄+(n)

+ αq+(n+ 1)r−(n)− βq−(n)r+(n+ 1)− βq−(n− 1)[r+(n)− r̄+(n)]

− βf−(n− 1)g+(n)− βf−(n)g+(n+ 1) + αf+(n+ 1)g−(n), (6.11)

−iσ
d

dτ
ln[g−(n)] = −αµ(n) + βr−(n)q̄+(n)

+ βr+(n+ 1)q−(n)− αr−(n)q+(n+ 1)− αr−(n− 1)[q+(n)− q̄+(n)]

− αg−(n− 1)f+(n)− αg−(n)f+(n+ 1) + βg+(n+ 1)f−(n). (6.12)

Here the concomitant field functions µ(n) and ν(n) are given by formulas

µ(n) = q−(n)r̄+(n) + q̄−(n)r+(n)− q̄−(n)r̄+(n), (6.13)

ν(n) = r−(n)q̄+(n) + r̄−(n)q+(n)− r̄−(n)q̄+(n). (6.14)

We would like to remind that the spatially independent parameters α and β can be arbitrary
functions of time, while the parameter σ defined as σ2 = 1 serves to distinguish two types of
nonlinearities.

It is worth noticing that the twelve-component system (6.1)–(6.14) can be treated as settled
on two mutually coupled chains marked by indices + and −. In this sense, the lattice as a whole
is proved to be a quasi-one-dimensional one. The system’s spatial quasi-one-dimensionality and
multicomponentness could be very prospective attributes in modeling transport properties of
long macromolecules both natural and synthetic origins [13, 22, 23].

The obtained dynamical system (6.1)–(6.14) admits at least two types of symmetries.

6.1 Symmetry under the complex conjugation

Thus, the system’s symmetry under the complex conjugation is based on the complex conjugate
symmetries of field functions

r∗+(n) = q+(n), (6.15)

r∗−(n) = q−(n), (6.16)

r̄∗+(n) = q̄+(n), (6.17)

r̄∗−(n) = q̄−(n), (6.18)

g∗+(n) = f+(n), (6.19)

g∗−(n) = f−(n), (6.20)

ν∗(n) = µ(n) (6.21)
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that are valid provided the parameters α, −i, β meet the conditions of complex conjugation

β∗ = α, (6.22)

(−i)∗ = +i. (6.23)

Due to their complexvalueness, the coupling parameters α and β are able to model the impact
of external uniform magnetic field in terms of Peierls phase factors [16, 21, 33].

6.2 Symmetry under the space and time reversal

The system’s symmetry under the space and time reversal is more sophisticated and it is based
on the dynamical properties of following transformed field functions

q+(n) ≡ q+(n|τ) = r−(−n| − τ), (6.24)

r+(n) ≡ r+(n|τ) = q−(−n| − τ), (6.25)

q−(n) ≡ q−(n|τ) = r+(−n| − τ), (6.26)

r−(n) ≡ r−(n|τ) = q+(−n| − τ), (6.27)

q̄+(n) ≡ q̄+(n|τ) = r̄−(−n| − τ), (6.28)

r̄+(n) ≡ r̄+(n|τ) = q̄−(−n| − τ), (6.29)

q̄−(n) ≡ q̄−(n|τ) = r̄+(−n| − τ), (6.30)

r̄−(n) ≡ r̄−(n|τ) = q̄+(−n| − τ), (6.31)

f̄+(n) ≡ f̄+(n|τ) = g−(−n| − τ), (6.32)

ḡ+(n) ≡ ḡ+(n|τ) = f−(−n| − τ), (6.33)

f̄−(n) ≡ f̄−(n|τ) = g+(−n| − τ), (6.34)

ḡ−(n) ≡ ḡ−(n|τ) = f+(−n| − τ), (6.35)

µ(n) ≡ µ(n|τ) = µ(−n| − τ),

ν(n) ≡ ν(n|τ) = ν(−n| − τ).

The simple comparison shows that the transformed field functions (6.24)–(6.35) are governed
by the set of twelve semi-discrete nonlinear equations invariant to the twelve-component semi-
discrete nonlinear integrable equations of our interest (6.1)–(6.12).

Here any additional requirements on parameters α, i, β are seen to be unnecessary. In this
sense the space-time reversal symmetry of inspected semi-discrete nonlinear integrable system
(6.1)–(6.12) turns out to be more general than the usual parity-time (PT ) symmetry [11, 19].

7 Six-component semi-discrete nonlinear integrable system
and its symmetry under the space and time reversal

The reduction formulas (5.9)–(5.16) listed in Section 5.2 as applied to the prototype set of semi-
discrete equations (3.1)–(3.16) accompanied by the formulas referred in the first paragraph of
Section 5 give rise to the following six-component semi-discrete nonlinear integrable system:

d

dτ
w+(n) = −κw−(n) + κw−(n− 1)[1 + σw+(n)w+(n)]− κσπ(n)w+(n)

+ κσw+(n+ 1)[π(n)− w−(n)w+(n)]− κσh+(n+ 1)h−(n)[w+(n)− w̄+(n)]

+ κσh+(n)h−(n− 1)[w+(n)− w̄+(n− 1)], (7.1)

d

dτ
w−(n) = +κw+(n)− κw+(n+ 1)[1 + σw−(n)w−(n)] + κσπ(n)w−(n)
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− κσw−(n− 1)[π(n)− w+(n)w−(n)] + κσh−(n− 1)h+(n)[w−(n)− w̄−(n)]

− κσh−(n)h+(n+ 1)[w−(n)− w̄−(n+ 1)], (7.2)

d

dτ
w̄+(n) = −κw−(n)[1 + σw̄+(n)w̄+(n)] + κw−(n− 1)[1 + σw̄+(n)w̄+(n)], (7.3)

d

dτ
w̄−(n) = +κw+(n)[1 + σw̄−(n)w̄−(n)]− κw+(n+ 1)[1 + σw̄−(n)w̄−(n)], (7.4)

σ
d

dτ
ln[h+(n)] = −κπ(n)− κw+(n)w̄−(n)− 2κw−(n− 1)w+(n) (7.5)

− κw+(n+1)[w−(n)− w̄−(n)]−κh+(n+ 1)h−(n)− 2κh−(n− 1)h+(n),

σ
d

dτ
ln[h−(n)] = +κπ(n) + κw−(n)w̄+(n) + 2κw+(n+ 1)w−(n) (7.6)

+ κw−(n− 1)[w+(n)− w̄+(n)] + κh−(n− 1)h+(n) + 2κh+(n+1)h−(n).

Here the concomitant field function π(n) is given by formula

π(n) = w−(n)w̄+(n) + w̄−(n)w+(n)− w̄−(n)w̄+(n).

The system’s symmetry under the space and time reversal is based on the dynamical properties
of following transformed field functions:

w+(n) ≡ w+(n|τ) = w−(−n| − τ), (7.7)

w−(n) ≡ w−(n|τ) = w+(−n| − τ), (7.8)

w̄+(n) ≡ w̄+(n|τ) = w̄−(−n| − τ), (7.9)

w̄−(n) ≡ w̄−(n|τ) = w̄+(−n| − τ), (7.10)

h̄+(n) ≡ h̄+(n|τ) = h−(−n| − τ), (7.11)

h̄−(n) ≡ h̄−(n|τ) = h+(−n| − τ), (7.12)

π(n) ≡ π(n|τ) = π(−n| − τ).

The simple comparison shows that the transformed field functions (7.7)–(7.12) are governed
by the set of six semi-discrete nonlinear equations invariant to the six-component semi-discrete
nonlinear integrable equations of our interest (7.1)–(7.6).

8 Discussion

The semi-discrete nonlinear integrable systems (6.1)–(6.12) and (7.1)–(7.6) presented in Sec-
tions 6 and 7 are proved to be essentially multicomponent ones inasmuch either of them cannot
be split into several physically uncoupled subsystems.

Thus, the twelve-component semi-discrete integrable system (6.1)–(6.12) is composed of six
subsystems coupled by linear and nonlinear types of interactions. These subsystems are formal-
ized by the six pairs of field functions. The set of plausible pairs are as follows q+(n) ↔ r+(n),
q̄+(n) ↔ r̄+(n), f+(n) ↔ g+(n), q−(n) ↔ r−(n), q̄−(n) ↔ r̄−(n), f−(n) ↔ g−(n). Here the
symbol ↔ is inserted to point out on a suppositional canonical relationship between the field
functions of a particular pair. The problems of adequate Hamiltonian treatment and reliable
Poisson structure characterizing the twelve-component semi-discrete nonlinear integrable sys-
tem (6.1)–(6.12) appear to be very complicated and presently they are opened for the future
investigations. The general principles of Hamiltonian and Poisson approaches as applied to
the multicomponent semi-discrete nonlinear integrable systems have been approbated in our
previous papers [37, 38, 39, 40, 41]. The difficult aspects in establishing the Hamiltonian and
Poisson structures for the systems of present interest (6.1)–(6.12) and (7.1)–(7.6) are summarized
in Appendix A.
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Though the Hamiltonian treatment of twelve-component semi-discrete integrable system
(6.1)–(6.12) is waiting for its rigorous formulation the analysis of universal local conservation
law (4.3) provides us with certain fruitful information about plausible physical sense of involved
subsystems at least in the case of system’s complex conjugate symmetry.

To be precise, we should inspect the expressions for the local conserved density ρ(n) (4.8)
and the local current J(n) having been adapted to the needs of reduced semi-discrete nonlinear
integrable system (6.1)–(6.12) under the premise of complex conjugation symmetry (6.15)–(6.23).
The announced adapted quantities as well as the respective local conservation law read as follows:

ρ(n) = ln[1 + σq̄+(n)r̄+(n)] + ln[1 + σq̄−(n)r̄−(n)] + ln[f+(n)g+(n)f−(n)g−(n)],

J(n) = iασq+(n)r−(n− 1) + iασf+(n)g−(n− 1)

− iβσr+(n)q−(n− 1)− iβσg+(n)f−(n− 1), (8.1)

d

dτ
ρ(n) = J(n)− J(n+ 1).

Here the partial local densities

ρ̄+(n) = ln[1 + σq̄+(n)r̄+(n)], (8.2)

ρ̄−(n) = ln[1 + σq̄−(n)r̄−(n)] (8.3)

are essentially separate characteristics related to subsystems q̄+(n) ↔ r̄+(n) and q̄−(n) ↔ r̄−(n),
respectively. On the other hand, the net local density

ρ±(n) = ln[f+(n)g+(n)f−(n)g−(n)] (8.4)

is related to two subsystems f+(n) ↔ g+(n) and f−(n) ↔ g−(n) combined.

In the case of attractive nonlinearity σ = +1, the first two local densities (8.2) and (8.3)
are seen to be the real-valued nonnegative quantities treatable as the local densities of positive
charges associated with the respective fields q̄+(n) ↔ r̄+(n) and q̄−(n) ↔ r̄−(n). In contrast,
the third real-valued quantity (8.4) can acquire either positive or negative magnitude. This
quantity can be treated as the net local density of charge related to two subsystems described
by two pairs of fields f+(n) ↔ g+(n) and f−(n) ↔ g−(n). As to the total charge

Q =
∞∑

m=−∞
[ρ̄+(m) + ρ̄−(m) + ρ±(m)] (8.5)

accumulated in the whole twelve-component system (6.1)–(6.12), it is seen to be conserved
provided the local current J(n) is the same on both spatial infinities.

The case of repulsive nonlinearity σ = −1 turns out to be more complicated, inasmuch as now
the clear physical treatment of densities ρ̄+(n) and ρ̄−(n) as the nonpositive charge densities is
enabled only under the strict limitations

0 ≤ q̄+(n)r̄+(n) < 1, 0 ≤ q̄−(n)r̄−(n) < 1.

It is presently unknown whether or not these restrictions are globally achievable under certain
type of special boundary conditions similar to those suitable for the usual semi-discrete non-
linear Schrödinger system with the repulsive nonlinearity [14, 18, 49]. In this situation, the
treatment of densities ρ̄+(n) and ρ̄−(n) as the nonpositive charge densities appears to be very
conditional. Nevertheless, the total charge (8.5) accumulated in the whole twelve-component
system (6.1)–(6.12) is obliged to be conserved even despite of its rather conditional physical
treatment.
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Meanwhile, the mathematical structure of expression (8.1) for the total local current J(n)
indicates that only four of six subsystems actually participate in the charge transportation.
They are described by four pairs of fields q+(n) ↔ r+(n), f+(n) ↔ g+(n), q−(n) ↔ r−(n),
f−(n) ↔ g−(n).

The six-component nonlinear integrable system is formalized by six linearly and nonlinearly
coupled semi-discrete equations (7.1)–(7.6) for six field functions w+(n), w̄+(n), h+(n), w−(n),
w̄−(n), h−(n). However, in the case of six-component system, we a priori unable to claim for
the plausible pairs of presumably canonical field functions.

The fields marked by plus subscript can be treated as settled on plus labeled chain, while
the fields marked by minus subscript can be treated as settled on minus labeled chain of quasi-
one-dimensional regular lattice regardless of whether the system under consideration is a twelve-
component or a six-component one. In this regard, the suggested twelve-component semi-discrete
nonlinear integrable system (6.1)–(6.12) is proved to be very prospective tool for modeling the
physical properties of multicomponent essentially quasi-one-dimensional latticed objects under
the action of external uniform magnetic field and external parametric drive encodeable in its
coupling parameters.

9 Conclusion

In our research, we proposed two novel multicomponent semi-discrete nonlinear integrable sys-
tems prospective for modeling the transport phenomena in regular quasi-one-dimensional struc-
tures of both natural and synthetic origins.

We expect the comprehensive investigation of these semi-discrete nonlinear integrable sys-
tems will be interesting both from the physical and mathematical standpoints. Presently, the
most evident open problems are (1) to construct the rigorous analytical solutions, and (2) to
disclose the Hamiltonian and Poisson structures typifying the suggested semi-discrete nonlinear
integrable systems.

In our opinion, the most straightforward way to obtain the explicit analytical solutions to mul-
ticomponent semi-discrete nonlinear integrable systems is based upon the Darboux–Bäcklund
transformation technique [37, 39, 40, 42, 46, 48].

The problem to establish the Hamiltonian and Poisson structures of proposed integrable
systems turn out to be immensely more complicated as compared with the analogous rather
nontrivial problems successfully solved in our previous works [37, 38, 39, 40, 41]. Some aspects
of our preliminary approach to these problems are reported in Appendix A.

A Preliminaries to Hamiltonian treatment

Having observed that all intersite interactions in the twelve-component semi-discrete nonlinear
integrable system (6.1)–(6.12) are of nearest-neighbouring type it is reasonable to construct the
system’s Hamiltonian function relying upon the local conserved densities (4.25)–(4.28) charac-
terized by the same type of couplings between the involved fields. As a result, we come to the
following Hamiltonian function:

H = − α
∞∑

m=−∞
[q−(m)r̄+(m) + q̄−(m)r+(m)− q̄−(m)r̄+(m)]

− α

∞∑
m=−∞

[q+(m)r−(m− 1) + q−(m)r+(m) + f+(m)g−(m− 1)]
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− β
∞∑

m=−∞
[r−(m)q̄+(m) + r̄−(m)q+(m)− r̄−(m)q̄+(m)]

− β

∞∑
m=−∞

[r+(m)q−(m− 1) + r−(m)q+(m) + g+(m)f−(m− 1)]. (A.1)

According to the general rules [20, 27], the Hamiltonian dynamic equations of motion for the
system under study (6.1)–(6.12) must be sought in the form

d

dτ
yλ(n) =

12∑
κ=1

∞∑
m=−∞

Jλκ(n|m)
∂H

∂yκ(m)
, λ = 1, 2, 3, . . . , 12, (A.2)

where Jλκ(n|m) are the elements of skew-symmetric Jκλ(m|n) = −Jλκ(n|m) symplectic matrix.
These elements Jλκ(n|m) are obliged to define the Poisson bracket

{F,G} = −
∞∑

n=−∞

12∑
λ=1

12∑
κ=1

∞∑
m=−∞

∂F

∂yλ(n)
Jλκ(n|m)

∂G

∂yκ(m)
(A.3)

subjected to the Jacobi identity

{E, {F,G}}+ {F, {G,E}}+ {G, {E,F}} = 0. (A.4)

In so doing, the set of Hamiltonian equations (A.2) acquires the form

d

dτ
yλ(n) = {H, yλ(n)}, λ = 1, 2, 3, . . . , 12, (A.5)

substantiated by the set of sixty six fundamental Poisson brackets

{yλ(n), yκ(m)} = −Jλκ(n|m). (A.6)

We tried to apply the above described procedure (A.2)–(A.6) to our twelve-component inte-
grable system (6.1)–(6.12) relying on the adopted Hamiltonian function (A.1) and introducing
the universal notations

y1(n) = q−(n), y7(n) = r−(n),

y2(n) = q+(n), y8(n) = r+(n),

y3(n) = q̄−(n), y9(n) = r̄−(n),

y4(n) = q̄+(n), y10(n) = r̄+(n),

y5(n) = f−(n), y11(n) = g−(n),

y6(n) = f+(n), y12(n) = g+(n)

for the system’s field functions. However, we have not managed to isolate extremally huge
number of candidates on the elements Jλκ(n|m) of symplectic matrix to say nothing about their
verification via the Jacobi identity (A.4) or its more simple equivalents [20, 27, 40, 41].

The main obstacle in achieving the positive result is the generic spatial nonlocality of in-
spected symplectic matrix Jλκ(n|m) pronouncedly contrasting with the crucial simplification

Jλκ(n|m) = Jλκ(n|n)δnm (A.7)

typical of earlier studied systems [37, 38, 39, 40, 41].
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