|
SIGMA 21 (2025), 089, 17 pages arXiv:2509.17976
https://doi.org/10.3842/SIGMA.2025.089
Integrable Twelve-Component Nonlinear Dynamical System on a Quasi-One-Dimensional Lattice
Oleksiy O. Vakhnenko a and Vyacheslav O. Vakhnenko b
a) Bogolyubov Institute for Theoretical Physics of NAS of Ukraine, 14-B Metrologichna Str., Kyïv 03143, Ukraine
b) Subbotin Institute of Geophysics of NAS of Ukraine, 63-B Bohdan Khmel'nyts'kyy Str., Kyïv 01054, Ukraine
Received May 24, 2025, in final form September 17, 2025; Published online October 22, 2025
Abstract
Bearing in mind the potential physical applicability of multicomponent completely integrable nonlinear dynamical models on quasi-one-dimensional lattices we have developed the novel twelve-component and six-component semi-discrete nonlinear inregrable systems in the framework of semi-discrete Ablowitz-Kaup-Newell-Segur scheme. The set of lowest local conservation laws found by the generalized direct recurrent technique was shown to be indispensable constructive tool in the reduction procedure from the prototype to actual field variables. Two types of admissible symmetries for the twelve-component system and one type of symmetry for the six-component system have been established. The mathematical structure of total local current was shown to support the charge transportation only by four of six subsystems incorporated into the twelve-component system under study. The twelve-component system is able to model the actions of external parametric drive and external uniform magnetic field via time dependencies and phase factors of coupling parameters.
Key words: Lax integrability; quasi-one-dimensional lattice; multicomponent system; nonlinear dynamics; $\mathcal{PT}$ symmetry.
pdf (370 kb)
tex (26 kb)
References
- Ablowitz M.J., Lectures on the inverse scattering transform, Stud. Appl. Math. 58 (1978), 17-94.
- Ablowitz M.J., Kaup D.J., Newell A.C., Segur H., Nonlinear-evolution equations of physical significance, Phys. Rev. Lett. 31 (1973), 125-127.
- Ablowitz M.J., Kaup D.J., Newell A.C., Segur H., The inverse scattering transform-Fourier analysis for nonlinear problems, Stud. Appl. Math. 53 (1974), 249-315.
- Ablowitz M.J., Ladik J.F., A nonlinear difference scheme and inverse scattering, Stud. Appl. Math. 55 (1976), 213-229.
- Ablowitz M.J., Ladik J.F., Nonlinear differential-difference equations and Fourier analysis, J. Math. Phys. 17 (1976), 1011-1018.
- Ablowitz M.J., Ohta Y., Trubatch A.D., On discretizations of the vector nonlinear Schrödinger equation, Phys. Lett. A 253 (1999), 287-304, arXiv:solv-int/9810014.
- Ablowitz M.J., Ohta Y., Trubatch A.D., On integrability and chaos in discrete systems, Chaos Solitons Fractals 11 (2000), 159-169, arXiv:solv-int/9810020.
- Babalic C.N., Integrable discretization of coupled Ablowitz-Ladik equations with branched dispersion, Romanian J. Phys. 63 (2018), 114, 10 pages.
- Babalic C.N., Complete integrability and complex solitons for generalized Volterra system with branched dispersion, Internat. J. Modern Phys. B 34 (2020), 2050274, 12 pages.
- Babalic C.N., Carstea A.S., Coupled Ablowitz-Ladik equations with branched dispersion, J. Phys. A 50 (2017), 415201, 13 pages, arXiv:1705.10975.
- Bender C.M., Making sense of non-Hermitian Hamiltonians, Rep. Progr. Phys. 70 (2007), 947-1018, arXiv:hep-th/0703096.
- Carstea A.S., Tokihiro T., Coupled discrete KdV equations and modular genetic networks, J. Phys. A 48 (2015), 055205, 12 pages.
- Chen Z., Narita A., Müllen K., Graphene nanoribbons: On-surface synthesis and integration into electronic devices, Adv. Mater. 32 (2020), 2001893, 26 pages.
- Chubykalo O.A., Konotop V.V., Vázquez L., Vekslerchik V.E., Some features of the repulsive discrete nonlinear Schrödinger equation, Phys. Let. A 169 (1992), 359-363.
- Faddeev L.D., Takhtajan L.A., Hamiltonian methods in the theory of solitons, Classics Math., Springer, Berlin, 2007.
- Feynman R.P., Leighton R.B., Sands M., The Feynman lectures on physics. Vol. III: Quantum mechanics, Addison-Wesley Publishing Co., Reading, Mass., 1963.
- Gerdzhikov V.S., Ivanov M.I., Hamiltonian structure of multicomponent nonlinear Schrödinger equations in difference form, Theoret. and Math. Phys 52 (1982), 676-685.
- Konotop V.V., Vekslerchik V.E., On soliton creation in the nonlinear Schrödinger models: discrete and continuous versions, J. Phys. A 25 (1992), 4037-4042.
- Konotop V.V., Yang J., Zezyulin D.A., Nonlinear waves in $\mathcal{PT}$-symmetric systems, Rev. Mod. Phys. 88 (2016), 035002, 59 pages.
- Maschke B.M., van der Schaft A.J., Breedveld P.C., An intrinsic Hamiltonian formulation of network dynamics: Nonstandard Poisson structures and gyrators, J. Franklin Inst. 329 (1992), 923-966.
- Peierls R., Zur Theorie des Diamagnetismus von Leitungselektronen, Z. Phys. 80 (1933), 763-791.
- Perepelytsya S., Uličný J., Volkov S.N., Molecular dynamics study of the competitive binding of hydrogen peroxide and water molecules with DNA phosphate groups, Eur. Biophys. J. 50 (2021), 759-770, arXiv:2004.11882.
- Satchanska G., Davidova S., Petrov P.D., Natural and synthetic polymers for biomedical and environmental applications, Polymers 16 (2024), 1159, 33 pages.
- Toda M., Vibration of a chain with nonlinear interaction, J. Phys. Soc. Japan 22 (1967), 431-436.
- Toda M., Wave propagation in anharmonic lattices, J. Phys. Soc. Japan 23 (1967), 501-506.
- Toda M., Studies of a non-linear lattice, Phys. Rep. 18 (1975), 1-123.
- Torres del Castillo G.F., Velázquez Quesada M.P., Symplectic structures and dynamical symmetry groups, Rev. Mex. de Fís. 50 (2004), 608-613.
- Tsuchida T., Ujino H., Wadati M., Integrable semi-discretization of the coupled modified KdV equations, J. Math. Phys. 39 (1998), 4785-4813.
- Tsuchida T., Ujino H., Wadati M., Integrable semi-discretization of the coupled nonlinear Schrödinger equations, J. Phys. A 32 (1999), 2239-2262, arXiv:solv-int/9903013.
- Tu G.-Z., A trace identity and its applications to the theory of discrete integrable systems, J. Phys. A 23 (1990), 3903-3922.
- Vakhnenko O.O., Nonlinear beating excitations on ladder lattice, J. Phys. A 32 (1999), 5735-5748.
- Vakhnenko O.O., Nonlinear model of intramolecular excitations on a multileg ladder lattice, Phys. Rev. E 60 (1999), R2492-R2495.
- Vakhnenko O.O., Enigma of probability amplitudes in Hamiltonian formulation of integrable semidiscrete nonlinear Schrödinger systems, Phys. Rev. E 77 (2008), 026604, 9 pages.
- Vakhnenko O.O., Semidiscrete integrable nonlinear systems generated by the new fourth-order spectral operator. Local conservation laws, J. Nonlinear Math. Phys. 18 (2011), 401-414.
- Vakhnenko O.O., Semidiscrete integrable nonlinear systems generated by the new fourth order spectral operator. Systems of obverse type, J. Nonlinear Math. Phys. 18 (2011), 415-425.
- Vakhnenko O.O., Four-wave semidiscrete nonlinear integrable system with $\mathcal{PT}$-symmetry, J. Nonlinear Math. Phys. 20 (2013), 606-622.
- Vakhnenko O.O., Nonlinear integrable model of Frenkel-like excitations on a ribbon of triangular lattice, J. Math. Phys. 56 (2015), 033505, 21 pages.
- Vakhnenko O.O., Symmetry-broken canonizations of the semi-discrete integrable nonlinear Schrödinger system with background-controlled inter-site coupling, J. Math. Phys. 57 (2016), 113504, 16 pages.
- Vakhnenko O.O., Semi-discrete integrable nonlinear Schrödinger system with background-controlled inter-site resonant coupling, J. Nonlinear Math. Phys. 24 (2017), 250-302.
- Vakhnenko O.O., Integrable nonlinear Schrödinger system on a lattice with three structural elements in the unit cell, J. Math. Phys. 59 (2018), 053504, 25 pages.
- Vakhnenko O.O., Six-component semi-discrete integrable nonlinear Schrödinger system, Lett. Math. Phys. 108 (2018), 1807-1824.
- Vakhnenko O.O., Vakhnenko V.O., Dipole-monopole criticality and chargeless half mode in an integrable gauge-coupled pseudoexciton-phonon system on a regular one-dimensional lattice, Phys. Rev. E 108 (2023), 024223, 8 pages.
- Vakhnenko O.O., Vakhnenko V.O., Development and analysis of novel integrable nonlinear dynamical systems on quasi-one-dimensional lattices. Two-component nonlinear system with the on-site and spatially distributed inertial mass parameters, Ukr. J. Phys. 69 (2024), 168-178.
- Vakhnenko O.O., Vakhnenko V.O., Development and analysis of novel integrable nonlinear dynamical systems on quasi-one-dimensional lattices. Parametrically driven nonlinear system of pseudo-excitations on a two-leg ladder lattice, Ukr. J. Phys. 69 (2024), 577-590.
- Vakhnenko O.O., Velgakis M.J., Transverse and longitudinal dynamics of nonlinear intramolecular excitations on multileg ladder lattices, Phys. Rev. E 61 (2000), 7110-7120.
- Vakhnenko O.O., Verchenko A.P., Nonlinear system of $\mathcal{PT}$-symmetric excitations and Toda vibrations integrable by the Darboux-Bäcklund dressing method, Proc. R. Soc. A 477 (2021), 20210562, 18 pages.
- Vakhnenko O.O., Verchenko A.P., Branched-dispersion generalizations of Lotka-Volterra and Ablowitz-Ladik nonlinear integrable systems revisited from the intersite coupling standpoint, Phys. Lett. A 452 (2022), 128460, 6 pages.
- Vakhnenko O.O., Verchenko A.P., Dipole-monopole alternative in nonlinear dynamics of an integrable gauge-coupled exciton-phonon system on a one-dimensional lattice, Eur. Phys. J. Plus 137 (2022), 1176, 18 pages.
- Vekslerchik V.E., Konotop V.V., Discrete nonlinear Schrödinger equation under nonvanishing boundary conditions, Inverse Problems 8 (1992), 889-909.
- Wen X.-Y., Yuan C.-L., Controllable rogue wave and mixed interaction solutions for the coupled Ablowitz-Ladik equations with branched dispersion, Appl. Math. Lett. 123 (2022), 107591, 7 pages.
- Yu F., Yu J., Li L., Some discrete soliton solutions and interactions for the coupled Ablowitz-Ladik equations with branched dispersion, Wave Motion 94 (2020), 102500, 11 pages.
- Yuan C., Yang H., Meng X., Tian Y., Zhou Q., Liu W., Modulational instability and discrete rogue waves with adjustable positions for a two-component higher-order Ablowitz-Ladik system associated with $4\times 4$ Lax pair, Chaos Solitons Fractals 168 (2023), 113180, 12 pages.
|
|