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Abstract. We study how far APS boundary conditions for a Lorentzian Dirac operator
may be perturbed without destroying Fredholmness of the Dirac operator. This is done
by developing criteria under which the perturbation of a compact pair of projections is
a Fredholm pair.
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1 Introduction

For Riemannian manifolds with boundary, the question which boundary conditions make a Dirac
operator Fredholm is well understood. However, in the Lorentzian case much less is known
(see [2] for what is known there). In general, in order to find out whether or not a Dirac
operator on a globally hyperbolic spacetime with spacelike boundary is Fredholm with given
boundary conditions, one needs knowledge of the associated evolution operator, which is fairly
hard to obtain.

For specific boundary conditions known as Atiyah–Patodi–Singer (APS) boundary condi-
tions, the Lorentzian Dirac operator is always Fredholm and an index formula analogous to the
Riemannian APS index theorem holds (see [3, 4]). In fact, with these boundary conditions, the
operator is, loosely speaking, “as Fredholm as possible” and this makes it possible to extend the
result to boundary conditions that are close to APS boundary conditions. In [2, Proposition 4.5],
it is shown that boundary conditions given by the graphs of certain operators (such that the
zero operators correspond exactly to APS-conditions) still make the Dirac operator Fredholm
as long as the product of the operators’ norms is less than some unspecified constant ε > 0.

The goal of this note is to improve this condition and study in more detail, how far boundary
conditions may be allowed to deviate from APS conditions without becoming non-Fredholm.
We find that the ε in [2, Proposition 4.5] may be chosen to be 1 (Theorem 4.2), which is the
best constant that one could hope to achieve. We also provide a different condition in terms of
the difference in the norms (modulo compact operators) of the boundary projections and the
APS projections (Theorem 4.1).

All the Lorentzian geometry we will need is already present in [2]. The actual work lies purely
in the study of general pairs of projections, for which we derive Fredholmness criteria. These
criteria, applied to the setting of [2] will then yield the improved results.

The structure is as follows: We provide background information in Section 2, derive Fred-
holmness criteria for general pairs of projections in Section 3 and use them in Section 4 to obtain
results for Lorentzian boundary value problems.
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2 Background

2.1 Fredholm pairs and Calkin norm

For this subsection, letH andH ′ be complex Hilbert spaces. Let B(H) denote bounded operators
on H, K(H) denote compact operators on H and C(H) := B(H)/K(H) the Calkin algebra of H.
Let B(H,H ′) and K(H,H ′) denote bounded operators and compact operators from H to H ′.
We recall the definition and well-known characterizations of Fredholm operators.

Definition/Proposition 2.1. An operator T ∈ B(H,H ′) is called Fredholm, if one of the
following equivalent conditions is satisfied:

� Ker(T ) and Coker(T ) := H ′/Ran(T ) are finite-dimensional.

� Ker(T ) and Ker(T ∗) are finite-dimensional and T has closed range

If T ∈ B(H), T is Fredholm if and only if its equivalence class in C(H) is invertible. The
operator T ∗ is Fredholm if and only if T is Fredholm. The index of a Fredholm operator T is
defined by

ind(T ) := DimKer(T )−DimCoker(T ) = DimKer(T )−DimKer(T ∗).

A central role in this paper is played by Fredholm pairs of projections.

Definition 2.2. Whenever we refer to a projection (in H) in this paper, we shall mean an
orthogonal projection onto a closed subspace (of H).

Definition 2.3. A pair (P,Q) of projections inH is called Fredholm (of index k), if the restricted
operator

Q : Ran(P ) → Ran(Q)

is Fredholm (of index k). We will denote this restricted operator by QP .

For the source of this definition and further information on Fredholm pairs, we refer the
reader to [1]. The facts that we will need are the following ([1, Theorem 3.4 and Proposition 3.1]
and [6, Lemma 3.2]).

Proposition 2.4. Let (P,Q) be a Fredholm pair of projections.

(1) The pair (Q,P ) is Fredholm and ind(Q,P ) = − ind(P,Q).

(2) For any unitary U , the pair
(
UPU−1, UQU−1

)
is Fredholm with the same index as (P,Q).

(3) If Q′ is a projection and Q′ −Q is compact, then (P,Q′) is Fredholm and

ind
(
P,Q′) = ind(P,Q) + ind

(
Q,Q′).

(4) The pair (1− P, 1−Q) is Fredholm and

ind(1− P, 1−Q) = − ind(P,Q).

(5) If ((P (t), Q(t)))t∈[0,1] is a continuous path of Fredholm pairs, then

ind(P (1), Q(1)) = ind(P (0), Q(0)).

The norm of the Calkin algebra will be important for our study of Fredholm pairs. It can be
viewed in different ways.
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Definition/Proposition 2.5. For T ∈ B(H), denote by ∥T∥C the norm of the equivalence
class of T in C(H). This is equal to each of the following:

(1) ∥T∥1 := inf{∥S∥ | S ∈ B(H), S − T ∈ K(H)}.
(2) ∥T∥2 := inf{∥S∥ | S ∈ B(H), S − T has finite rank}.
(3) ∥T∥3 := inf{∥T |V ∥ | V ⊆ H is a closed subspace of finite codimension}.

Proof. ∥T∥1 is the definition of the quotient norm.
Proof of ∥T∥1 = ∥T∥2: As ∥T∥1 is an infimum over a larger set, we immediately get

∥T∥1 ≤ ∥T∥2.

Let ε > 0 and let K be a compact operator such that

∥T +K∥ < ∥T∥1 + ε.

As a compact operator, K can be approximated up to ε by a finite rank operator K ′. We obtain∥∥T +K ′∥∥ < ∥T∥1 + 2ε.

As the left-hand side is an upper bound for the infimum defining ∥T∥2, we obtain

∥T∥2 ≤ ∥T∥1 + 2ε.

As ε was arbitrary, the two infima coincide.
Proof of ∥T∥2 = ∥T∥3: For K finite rank, we have

∥T +K∥ ≥
∥∥(T +K)|Ker(K)

∥∥ =
∥∥T |Ker(K)

∥∥.
Taking the infimum over all finite rank K and using that Ker(K) has finite codimension, we
obtain ∥T∥2 ≥ ∥T∥3.

Conversely, if V has finite codimension, let PV denote the projection onto V . As T − TPV

has a kernel with finite codimension, it must have finite rank. As we have ∥T |V ∥ = ∥TPV ∥, we
can conclude (taking the infimum over all V ) that ∥T∥3 ≥ ∥T∥2. ■

An alternative criterion for Fredholmness that will be important is the following (see [5,
Corollary 5.3.14], in a different form [1, Proposition 3.2]).

Proposition 2.6. A pair of projections (P,Q) is a Fredholm pair if and only if ∥P −Q∥C < 1.

In particular, whether a pair is Fredholm (but not its index) is determined by the classes of
the projections in the Calkin algebra. If the difference P −Q is compact, then it has norm 0 in
the Calkin algebra, thus the pair is in some sense “as Fredholm as possible”.

2.2 Lorentzian index theory

We use the same setting as [2]. As we mostly talk about abstract Fredholm pairs anyways, we
keep our description of the Lorentzian setting brief and refer the interested reader to [2, Section 2]
for more detailed explanations. More generally, any setting that has a unitary evolution operator,
allows the definition of APS boundary conditions and in which Theorems 2.11 and 2.12 hold
will work.

Setting 2.7. We assume the following Lorentzian setting:

� M is an even-dimensional spatially compact globally hyperbolic time-oriented Lorentzian
spin manifold.
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� Σ0 and Σ1 are smooth spacelike Cauchy hypersurfaces, with Σ0 in the past of Σ1.

� M0 is the spacetime region between Σ0 and Σ1.

� E is a Hermitian vector bundle over M with a connection.

� S(M) ⊗ E is the associated twisted spinor bundle, SR(M) ⊗ E is the subbundle of right-
handed spinors.

� D is the twisted Dirac operator acting on right-handed spinor fields of the twisted bundle.

� Q : L2
(
Σ0, S

R(M)⊗ E
)
→ L2

(
Σ1, S

R(M)⊗ E
)
is the evolution operator associated to D,

i.e., the unitary operator that maps f |Σ0 to f |Σ1 for f ∈ Ker(D).

� Ai is the twisted Dirac operator over the Cauchy hypersurface Σi. We identify the twisted
spinor bundle of Σi with the restriction of the right-handed twisted spinor bundle of M
using the past directed unit normal vector field to Σi.

We can equip the Dirac operator with various boundary conditions.

Definition 2.8. For projections Pi in L2
(
Σi, S

R(M) ⊗ E
)
, let DP0,P1 be the Dirac operator

with boundary conditions given by the ranges of Pi. This means we take (the closure of) D
over M0 and restrict its domain to those spinor fields ψ such that ψ|Σi ∈ Ran(Pi).

An important set of boundary conditions are the so-called APS boundary conditions, given
by the projections onto the negative/positive eigenspaces of A0 (resp. A1).

Definition 2.9. Define the following spectral projections (with χI denoting the characteristic
function of an interval I):

P−(0) := χ(−∞,0)(A0) and P+(1) := χ(0,∞)(A1).

The boundary conditions defined by these projections are known as Atiyah–Patodi–Singer (APS)
boundary conditions and we also write DAPS := DP−(0),P+(1).

Remark 2.10. We can also allow P−(0) and P+(1) to be any finite rank perturbation of these
projections. This will not affect any of the properties needed for our purposes. In particular,
we could replace them by χ(−∞,a)(A0) and χ(b,∞)(A1) for any a, b ∈ R and still obtain the
same results. Moreover, we could also interchange positive and negative spectral projections.
Any change that preserves the statement of Theorem 2.12 will not affect any of the further
considerations.

We shall use two crucial results about the Lorentzian setting, that are also essential in [2].
The rest will only be abstract considerations about Fredholm pairs. Firstly, the index of DP0,P1

can be expressed in terms of the boundary projections and the evolution operator.

Theorem 2.11. The operator DP0,P1 is Fredholm with index k if and only if
(
Q−1P1Q, 1−P0

)
is a Fredholm pair of index k.

This is essentially [2, Theorem 4.2], using that the index of the pair of subspaces (Ran(P0),
QRan(P1)) as defined there is exactly the index of

(
Q−1P1Q, 1 − P0

)
. Roughly speaking, this

theorem means the Dirac operator is Fredholm if and only if the boundary projections are
“almost complementary” when related via time evolution.

Secondly, we need that the APS boundary conditions are “as Fredholm as they can be”, i.e.,
the relevant projections have compact difference.

Theorem 2.12. The difference 1− P−(0)−Q−1P+(1)Q is a compact operator.
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Remark 2.13. This means in particular that
(
Q−1P+(1)Q, 1− P−(0)

)
and hence DP−(0),P+(1)

is Fredholm.

Proof of Theorem 2.12. This is a fairly easy reformulation of [3, Lemma 2.6], which states
that

Q+− := P+(1)QP−(0) and Q−+ := (1− P+(1))Q(1− P−(0))

are compact operators. We have

1− P−(0)−Q−1P+(1)Q = Q−1(Q(1− P−(0))− P+(1)Q)

= Q−1(P+(1)Q(1− P−(0)) + (1− P+(1))Q(1− P−(0))

− (P+(1)QP−(0) + P+(1)Q(1− P−(0)))

= Q−1(Q−+ −Q+−).

As the compact operators are an ideal, this is compact. ■

3 Fredholm pairs

We derive some further criteria for the Fredholmness of a pair, eventually leading to the char-
acterization that we want. Throughout this section, let P and P ′ be projections in a complex
Hilbert space H. For later use, we first compute the difference of certain two-dimensional pro-
jections.

Lemma 3.1. Let p be the projection onto span{(a, b)} in C2, for a, b ∈ R, and let q be the

projection onto C× 0. Then ∥p− q∥ = |b|√
a2+b2

.

Remark 3.2. This is the sine of the angle between the ranges of p and q.

Proof of Lemma 3.1. Assume without loss of generality that ∥(a, b)∥2 = a2 + b2 = 1, as the
result is invariant under rescaling (a, b). The matrix representation of p− q is

p− q = (a, b)⊗ (a, b)−
(
1 0
0 0

)
=

(
a2 − 1 ab
ab b2

)
= b

(
−b a
a b

)
.

As the last matrix (without prefactor) is unitary, the norm of this is given by |b| as desired. ■

Remark 3.3 (two-dimensional model). In order to give the reader a better intuition of what is
going on, we will look at what happens for direct sums of two-dimensional projections. As we
are working with complex Hilbert spaces, we want to consider projections in C2, however for
pictures and geometric intuition it is easier to think of projections in R2. We will thus consider
projections of the form p⊗ 1 in C2 ∼= R2 ⊗ C.

On the Hilbert space
⊕∞

i=1C2, we consider projections

P :=

∞⊕
i=1

pi ⊗ 1 and P ′ :=

∞⊕
i=1

p′i ⊗ 1

for pi, p
′
i projections on a line in R2. The pair will be Fredholm if and only if

∥∥pi − p′i
∥∥ < 1− ε

for all but finitely many i (as in that case ∥P − P ′∥C < 1− ε). This means that any condition
enforcing Fredholmness of P − P ′ must prevent the ranges of pi and p

′
i from coming arbitrarily

close to being mutually orthogonal for all but finitely many i, i.e., the angle between these ranges
should be bounded by a constant less than π

2 .
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For arbitrary projections, the condition “for all but finitely many i” in the remark translates
into finite codimension subspaces.

Lemma 3.4. The following are equivalent:

(1) The pair (P ′, P ) is a Fredholm pair.

(2) There is ε > 0 and a closed subspace V of finite codimension such that ∥P ′x∥ ≥ ε∥x∥ for
x ∈ Ran(P ) ∩ V and ∥Px∥ ≥ ε∥x∥ for x ∈ Ran(P ′) ∩ V .

(3) There are closed finite-codimensional subspaces V1 ⊆ Ran(P ) and V2 ⊆ Ran(P ′) (finite-
codimensional in the respective ranges, not in H) and ε > 0 such that we have ∥P ′x∥ ≥
ε∥x∥ for x ∈ V1 and ∥Px∥ ≥ ε∥x∥ for x ∈ V2.

Proof. (1) ⇒ (2): By Proposition 2.6, (P ′, P ) is Fredholm if and only if ∥P − P ′∥C < 1. This
means that there is a closed V of finite codimension such that ∥P − P ′|V ∥ < 1 − ε for some
ε ≥ 0. For x ∈ V ∩ Ran(P ), we have∥∥P ′x

∥∥ ≥ ∥Px∥ −
∥∥(P − P ′)x∥∥ ≥ ∥x∥ − (1− ε)∥x∥ = ε∥x∥.

For x ∈ V ∩ Ran(P ′), we proceed analogously.
(2) ⇒ (3): Choose V1 := V ∩Ran(P ) and V2 := V ∩Ran(P ′). As intersecting with a subspace

cannot increase the codimension (when taking that subspace as the new total space) and inter-
sections of closed spaces are closed, these are closed, finite-codimensional and have the desired
properties.

(3) ⇒ (1): PP ′ has finite-dimensional kernel, as the kernel of P cannot intersect V2 non-
trivially. As the kernel of P ′ cannot intersect V1 non-trivially, we obtain that P ′

P has finite-
dimensional kernel. As this is the adjoint of PP ′ , the only thing left to show is that PP ′ has
closed range.

Let (zn) be a sequence in Ran(PP ′) that converges to a limit z ∈ Ran(P ). We need to show
that z ∈ P (Ran(P ′)). Assume without loss of generality that the zn are non-zero. Choose
xn ∈ Ran(P ′) orthogonal to Ker(PP ′) such that Pxn = zn (this can be obtained from an
arbitrary preimage sequence by subtracting the projection to the kernel). Choose an and bn in
Ran(P ′) such that an ∈ V2, bn⊥V2 and an + bn = xn.

Claim. The sequence (xn) is bounded.

Assume (xn) were unbounded. Without loss of generality, assume that ∥xn∥ → ∞, otherwise
restrict to a subsequence. Pxn → z, so in particular (Pxn) is bounded. Thus we have

P
xn

∥xn∥
→ 0.

As ∥an∥2 + ∥bn∥2 = ∥xn∥2 by orthogonality, we know that
(

bn
∥xn∥

)
is bounded. Thus it has

a convergent subsequence converging to some limit β, as the orthogonal complement of V2 in
Ran(P ′) is finite-dimensional. By restricting to a subsequence, we may assume without loss of
generality that

(
bn

∥xn∥
)
converges to β. Then

P
an

∥xn∥
= P

xn
∥xn∥

− P
bn

∥xn∥
→ −Pβ.

In particular,
(
P an

∥xn∥
)
is Cauchy. As P is bounded below on V2,

(
an

∥xn∥
)
is also Cauchy and

converges to some limit α, which must satisfy Pα = −Pβ. We obtain that

xn
∥xn∥

→ α+ β ∈ Ker(PP ′).



Perturbations of APS Boundary Conditions for Lorentzian Dirac Operators 7

As xn
∥xn∥ are unit vectors orthogonal to Ker(PP ′), this is a contradiction, which finishes the proof

of the claim.
We now use a similar argument without normalization to conclude that the range is closed.

We know that (xn) and thus also (bn) is bounded. As (bn) is contained in a finite-dimensional
space, it has a convergent subsequence. Assume without loss of generality that (bn) converges
to a limit b. Thus

Pan = zn − Pbn → z − Pb.

This means that (Pan) is Cauchy. As P is bounded below on V2, (an) is Cauchy, so it converges
to some limit a. By continuity,

P (a+ b) = lim
n→∞

Pxn = z.

Thus any z in the closure of Ran(PP ′) is already in Ran(PP ′), i.e., PP ′ has closed range. ■

Two projections of difference smaller than 1 can always be deformed into each other by a path
of projections that does not increase the distance from one endpoint. The same can also be done
with the Calkin norm instead of the full operator norm.

Lemma 3.5. Let (P0, P1) be a Fredholm pair of projections. Then there is a continuous path of
projections P (t) such that P (0)− P0 is compact, P (1) = P1 and

∥P (t)− P0∥C ≤ ∥P1 − P0∥C .

Proof. We use the construction of [5, Propositions 5.3.18 and 5.3.19] in order to deform P
to a compact perturbation of S. The path we use is the same as in [5, Proposition 5.3.19].
We repeat the construction and check that it satisfies the desired norm bounds.

Set F (x) := 1− 2x. Given two projections P0 and P1 with ∥P1 − P0∥ < 1, define a path by

W (P0, P1)(t) := F−1

((
1 + (F (P0)F (P1)− F (P1)F (P0)) sin

(π
2
t
)
cos

(π
2
t
))− 1

2

×
(
F (P0) cos

(π
2
t
)
+ F (P1) sin

(π
2
t
)))

.

It is shown in the proof of [5, Proposition 5.3.18] that this is a well-defined, continuous path of
projections from P0 to P1 satisfying

∥W (P0, P1)(t)− P0∥ ≤ ∥P1 − P0∥.

The proof works in an arbitrary C∗-algebra, so we can also use this in the Calkin algebra.
Now let (P0, P1) be any Fredholm pair of projections. Set V0 := Ran(P0) ∩ Ker(P1) and

V1 := Ker(P0) ∩ Ran(P1) and define V ′ := (V0 ⊕ V1)
⊥. As the Vi either lie in the image or the

kernel of the Pi, the restrictions of the Pi to V
′ are projections in V ′. Moreover, as we removed

the ±1-Eigenspaces of P1 − P0 and ±1 were not in the essential spectrum of P1 − P0, we have

∥P1 − P0|V ′∥ < 1.

Define

P (t) :=W (P0|V ′ , P1|V ′)⊕ 0V0 ⊕ 1V1 .

As W (P0|V ′ , P1|V ′) is a continuous path of projections, so is P (t). We also have P (1) = P1 and
P (0)− P0 = 0V ′ ⊕ 1V0 ⊕−1V1 is compact. It remains to check the norm bound.
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Let π denote the projection onto the Calkin algebra. For operators on V ′, define

π̃(T ) := π(T ⊕ 0V0⊕V1).

As V0 and V1 are finite-dimensional, we get the same result when extending with something other
than zero. Moreover, π̃ is a ∗-homomorphism, so everything used to construct W is preserved.
We get

∥P (t)− P0∥C = ∥π(P (t)− P0)∥ = ∥π̃(W (P0|V ′ , P1|V ′)(t)− P0|V ′)∥
= ∥W (π̃(P0|V ′), π̃(P1|V ′))(t)− π̃(P0|V ′)∥
≤ ∥π̃(P1|V ′)− π̃(P0|V ′)∥ = ∥π(P1)− π(P0)∥ = ∥P1 − P0∥C . ■

We want to show that a pair of projections is Fredholm if both projections are not too far
away from some reference projection S. Thus we let S be another projection and let R := P −S
and R′ := P ′ − S denote the differences from this. In our application, S will correspond to one
of the APS boundary projections. A weaker version of this (without the squares) was shown in
[5, Proposition 5.3.15].

Theorem 3.6. If ∥R∥2C +
∥∥R′∥∥2

C
< 1, then (P, P ′) is Fredholm and

ind
(
P, P ′) = ind(P, S) + ind

(
S, P ′).

Proof. Let ε ∈ (0, 1) be small enough such that ∥R∥2C +
∥∥R′∥∥2

C
< (1 − ε)2. Choose a finite

codimension subspace V such that

∥R|V ∥2 +
∥∥R′|V

∥∥2 < (1− ε)2.

Let x ∈ V ∩ Ran(P ) with ∥x∥ = 1. By the parallelogram identity, we have∥∥Rx+R′x
∥∥2 + ∥∥Rx−R′x

∥∥2 = 2
(
∥Rx∥2 +

∥∥R′x
∥∥2) < 2(1− ε)2.

Thus we must have either∥∥Rx−R′x
∥∥2 < (1− ε)2 or

∥∥Rx+R′x
∥∥2 < (1− ε)2.

In the first case, we have

(1− ε)∥x∥ >
∥∥Rx−R′x

∥∥ =
∥∥Px− P ′x

∥∥ ≥ ∥Px∥ −
∥∥P ′x

∥∥ = ∥x∥ −
∥∥P ′x

∥∥,
in the second case, we have

(1− ε)∥x∥ >
∥∥Rx+R′x

∥∥ =
∥∥(P + P ′ − 2S

)
x
∥∥ =

∥∥(1− 2S)x+ P ′x
∥∥

≥ ∥(1− 2S)x∥ −
∥∥P ′x

∥∥ = ∥x∥ −
∥∥P ′x

∥∥,
as 1 − 2S is unitary. In either case, we can conclude ∥P ′x∥ > ε∥x∥. The same works with P
and P ′ interchanged (for x ∈ V ∩ Ran(P ′)). Thus the pair is Fredholm by Lemma 3.4.

It remains to show the second part of the claim. Let P (t) be a path (as in Lemma 3.5) of
projections such that P (1) = P , P (0)− S is compact and

∥P (t)− S∥C ≤ ∥P − S∥C .

As (P, S) is a Fredholm pair (i.e., has Calkin norm less than 1), so is (P (t), S). Furthermore,
we have

∥P (t)− S∥2C +
∥∥P ′ − S

∥∥2
C
≤ ∥R∥2C +

∥∥R′∥∥2
C
< 1,

hence (P (t), P ′) is a Fredholm pair. As continuous families of Fredholm pairs have constant
index and the Fredholm index is additive if one of the pairs involved has compact difference (see
Proposition 2.4), we obtain

ind
(
P, P ′) = ind

(
P (0), P ′) = ind(P (0), S) + ind

(
S, P ′) = ind(P, S) + ind

(
S, P ′). ■
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We can see that Theorem 3.6 is really the best estimate that we can hope for by looking at
our two-dimensional model case again:

Ran(pi)

Ran(qi)

Ran(p′i)

βi

αiβ′i

Remark 3.7 (two-dimensional model, continued). Assume again that P and P ′ are direct
sums as before. Suppose that S is of the same form, i.e., a direct sum of two-dimensional real
projections qi as above. Let αi be the angle between the ranges of pi and p

′
i and let βi and β

′
i

be the angles between the range of qi and that of pi resp. p
′
i. By Lemma 3.1, the sines of these

angles are the norms of the respective differences. αi is at most βi + β′i. To get the condition
αi <

π
2 , we need to demand that β′i <

π
2 − βi, i.e.,

∥pi − qi∥2 +
∥∥p′i − qi

∥∥2 = sin(βi)
2 + sin

(
β′i
)2
< sin(βi)

2 + sin
(π
2
− βi

)2

= sin(βi)
2 + cos(βi)

2 = 1.

To avoid αi getting arbitrarily close to π
2 , we need to have this uniformly, i.e.,

∥pi − qi∥2 +
∥∥p′i − qi

∥∥2 < 1− ε

for a fixed ε > 0 and all but finitely many i. This yields exactly the condition

∥R∥2C +
∥∥R′∥∥2

C
< 1.

We now proceed to study the case where the projections P and P ′ are graphs of linear
maps with respect to a splitting of H into a direct sum. These graphs can be interpreted as
a perturbation of the operators domains, with the norm of the operators providing a measure
for the size of the perturbations.

Lemma 3.8. Let H = Y ⊕Z be an orthogonal decomposition of H. Let G : Y → Z be a bounded
linear map. Let P be the projection onto the graph of G, viewed as a subset of H, i.e.,

Γ(G) := {x+Gx | x ∈ Y }.

Let S denote the projection onto Y . Then ∥P − S∥C ≤ ∥G∥C√
1+∥G∥2C

.

Remark 3.9. As the Calkin norm is unaffected by extension by 0 and by finite rank pertur-
bations, we may add to or remove from the domain of G finite-dimensional subspaces without
changing the result of this lemma and thus the subsequent theorem.
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Proof of Lemma 3.8. Before we show the estimate, there are many simplifications we can do
without loss of generality.

Firstly, we want to replace Calkin norms with operator norms. Suppose we had only shown
the theorem with ∥G∥ instead of ∥G∥C on the right-hand side. Let ε > 0 and let Y ′ ⊂ Y be
a subspace of finite codimension such that

∥G|Y ′∥ ≤ ∥G∥C + ε

(this exists by Definition/Proposition 2.5). Then applying the weaker version of the lemma
with Y ′ replacing Y and G′ := G|Y ′ , we can deduce that∥∥P ′ − S′∥∥

C
≤ ∥G′∥√

1 + ∥G′∥2
,

where S′ is the projection onto Y ′ and P ′ that on the graph of G′ in Y ′ ⊕ Z. Extending them
by zero

(
on Y ′⊥ ⊂ Y

)
, we obtain the projections on these spaces in H, which have compact

difference from S (resp. P ) (the ranges are finite codimension subsets of each other). Thus

∥P − S∥C =
∥∥(P ′ − S′)⊕ 0

∥∥
C
=

∥∥P ′ − S′∥∥
C
≤ ∥G′∥√

1 + ∥G′∥2
≤ (∥G∥C + ε)√

1 + (∥G∥C + ε)2
.

As ε was arbitrary, this implies the stronger lemma. Thus it suffices to show the lemma without
the subscript C on the right-hand side. As we always have ∥P − S∥C ≤ ∥P − S∥, it is sufficient
to show the lemma with operator norms everywhere.

Secondly, we may assume that the kernel of G is zero and it has dense range: As both P
and S are 1 on Ker(G) and 0 on Ran(G)⊥, their difference is zero on either space. Thus removing
these spaces does not change the left-hand side of the inequality. As it also does not change ∥G∥
and hence the right-hand side, it suffices to show the theorem in the case where

Ker(G) = Ran(G)⊥ = 0,

which we will assume from now on.
Thirdly, we want to replace G by a self-adjoint operator. Let G = UA be the polar de-

composition of G, i.e., A is self-adjoint and U is an isometry from Ker(G)⊥ to Ran(G). By the
previous assumption, these spaces are everything, i.e., U is a unitary map from Y to Z. Suppose
we had shown the lemma for A instead of G (and Y instead of Z) and let again P ′ and S′ be the
projections for that case. As the graph of G is the image of the graph of A under Ũ := 1 ⊕ U
(which also fixes Y ⊕ 0), we get

∥P − S∥ =
∥∥Ũ(

P ′ − S′)Ũ−1
∥∥ =

∥∥P ′ − S′∥∥ ≤ ∥A∥√
1 + ∥A∥2

=
∥G∥√

1 + ∥G∥2
.

Thus we may assume from now on that Z = Y and G is self-adjoint.
Fourthly, we want to replace G by a multiplication operator. By the spectral theorem,

there is a unitary V : Y → L2(Ω) for some measure space Ω and an L∞-function g such that
V GV −1f = gf for any f ∈ L2(Ω) (in particular ∥G∥ = ∥g∥∞). As everything is invariant under
conjugation by unitaries, it suffices to show the lemma for Y = L2(Ω) and G a multiplication
operator.

Finally, we identify L2(Ω)⊕ L2(Ω) with L2
(
Ω,C2

)
.

Thus, overall, have the following situation: Let Ω be a measure space with measure µ and
g ∈ L∞(Ω). In L2

(
Ω,C2

)
, let S be the projection onto L2(Ω,C × {0}) and P the projection

onto
{
(ψ, gψ) | ψ ∈ L2(Ω)

}
. We need to show the inequality

∥P − S∥ ≤ ∥g∥∞√
1 + ∥g∥2∞

.
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Denote by pa the projection onto span{(1, a)} in C2. Then the following define orthogonal
projections onto the correct spaces:

Sf(x) = p0f(x), Pf(x) = pg(x)f(x).

We can thus check for any f ∈ H, using Lemma 3.1 for the pointwise estimate:

∥(P − S)f∥2 =
∫
Ω

∥(pg(x) − p0)f(x)∥2dµ(x) ≤
∫
Ω

g(x)2

1 + g(x)2
∥f(x)∥2dµ(x)

≤ ∥g∥2∞
1 + ∥g∥2∞

∫
Ω

∥f(x)∥2dµ(x) = ∥g∥2∞
1 + ∥g∥2∞

∥f∥2,

which gives the desired estimate. ■

This estimate allows us to investigate the case where both projections are given as the graph
of an operator. The S which we are perturbing will correspond to the APS-projections in our
application.

Remark 3.10 (two-dimensional model, continued further). The previous proof essentially re-
duces the estimates to the two-dimensional case. In this case, ∥G∥ is the tangent of the angle α
between the projections, while the norm of the difference is the sine of α.

Our actual use case requires one projection to form a Fredholm pair with the complement of
the other. In the two-dimensional example, this transforms our question to the following: How
much may we perturb two mutually orthogonal subspaces without them becoming equal?

Y0 ≈ Z1

Y1 ≈ Z0 Ran(P0)
Ran(P1)

1

1 g0
g1

g0g1

If Ran(P0) is a line through (1, g0) and Ran(P1) is a line through (g1, 1) (gi corresponding
to ∥Gi∥C), then the latter also contains (g0g1, g0). In order for Ran(P1) to stay to the left (in the
first quadrant) of Ran(P0), we must thus have g0g1 < 1. This provides a more direct intuition
for why we obtain the bounds we do in the following theorem.

Theorem 3.11. Assume that H = Yi ⊕ Zi for i = 0 and i = 1, such that 1 − S1 − S0 is
compact, where Si denotes the projection onto Yi. Let Gi : Yi → Zi be bounded operators with
∥G0∥C∥G1∥C < 1. Let Pi be the projection onto the graph of Gi. Then

(1) (P1, 1− P0) is Fredholm.

(2) ind(P1, 1− P0) = ind(S1, 1− S0)
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Proof. (1) Let ai := ∥Gi∥C . By Lemma 3.8,

∥Pi − Si∥C ≤ ai√
1 + a2i

,

so

∥P1 − S1∥2C + ∥P0 − S0∥2C ≤ a21
1 + a21

+
a20

1 + a20
.

The condition that this be less than 1 can now be reformulated via the following equivalences:

a21
1 + a21

+
a20

1 + a20
< 1

⇔ a21
(
1 + a20

)
+ a20

(
1 + a21

)
<

(
1 + a21

)(
1 + a20

)
⇔ a21 + a21a

2
0 + a20 + a20a

2
1 < 1 + a20 + a21 + a20a

2
1

⇔ a21a
2
0 < 1

⇔ ∥G0∥C∥G1∥C = a1a0 < 1.

As the latter was true by assumption, the former inequality holds. As (1−S0)−S1 was assumed
to be compact, we get

∥P1 − S1∥2C + ∥(1− P0)− S1∥2C = ∥P1 − S1∥2C + ∥(1− P0)− (1− S0)∥2C
= ∥P1 − S1∥2C + ∥P0 − S0∥2C < 1.

By Theorem 3.6, this implies that (P1, 1− P0) is Fredholm.
(2) Let Pi(s) denote the projection onto the graph of sGi. As ∥sGi∥C ≤ ∥Gi∥C for s ∈ [0, 1],

we can use the first part to conclude that (1−P0(s), P1(s)) is Fredholm. As continuous families
of Fredholm pairs have constant index, we can conclude that

ind(P1, 1− P0) = ind(P1(1), 1− P0(1)) = ind(P1(0), 1− P0(0)) = ind(S1, 1− S0). ■

4 Application to Lorentzian index theory

With Theorems 2.11 and 2.12 we can now obtain from the results of the previous section cor-
responding statements about the Fredholm properties of Lorentzian Dirac operators. In the
setting of Section 2.2, we have the following.

Theorem 4.1. Let Pi be a projection in L2
(
Σi, S

R(M)⊗ E
)
for i ∈ {0, 1}. If

∥P1 − P+(1)∥2C + ∥P0 − P−(0)∥2C < 1,

then DP0,P1 is Fredholm and

ind(DP0,P1) = ind(DAPS) + ind(P0, P−(0)) + ind(P1, P+(1)).

Proof. As 1− P−(0)−Q−1P+(1)Q is compact by Theorem 2.12, we have

∥P1 − P+(1)∥C =
∥∥Q−1P1Q−Q−1P+(1)Q

∥∥
C
=

∥∥Q−1P1Q− (1− P−(0))
∥∥
C
.

Moreover, we have

∥P0 − P−(0)∥C = ∥(1− P0)− (1− P−(0))∥C .



Perturbations of APS Boundary Conditions for Lorentzian Dirac Operators 13

The condition is thus equivalent to∥∥Q−1P1Q− (1− P−(0))
∥∥2
C
+ ∥(1− P0)− (1− P−(0))∥2C < 1.

Applying Theorem 3.6, this means that(
Q−1P1Q, 1− P0

)
is a Fredholm pair. By Theorem 2.11, this means that DP0,P1 is Fredholm.

For the index, we calculate using Theorem 3.6 and Proposition 2.4:

ind(DP0,P1) = ind
(
Q−1P1Q, 1− P0

)
= ind

(
Q−1P1Q, 1− P−(0)

)
+ ind(1− P−(0), 1− P0)

= ind
(
Q−1P1Q,Q

−1P+(1)Q
)
+ ind

(
Q−1P+(1)Q, 1− P−(0)

)
+ ind(1− P−(0), 1− P0)

= ind(P0, P−(0)) + ind(DAPS) + ind(P1, P+(1)). ■

Using Theorem 3.11 instead of Theorem 3.6, we obtain a generalization of [2, Proposition 4.5].

Theorem 4.2. Let Y0 := Ran(P−(0)) and Y1 := Ran(P+(1)). For i ∈ {0, 1}, let Gi : Yi → Y ⊥
i

be bounded linear maps such that ∥G0∥C∥G1∥C < 1. Let Pi be the projection onto the graph
of Gi. Then DP0,P1 is Fredholm with the same index as DP−(0),P+(1).

Proof. By Theorem 2.12, 1− P−(0)−Q−1P+(1)Q is compact. Q−1P1Q is the projection onto
the graph of Q−1G1Q

(
as an operator on Ran

(
Q−1P+(1)Q

))
. As composing with an isometry

does not change the ∥ · ∥C-norm, we have

∥G0∥C
∥∥Q−1G1Q

∥∥
C
< 1.

Thus we can apply Theorem 3.11 with S0 = P−(0) and S1 = Q−1P+(1)Q
(
i.e., with Q−1Y1 as

the Y1 in Theorem 3.11 and Q−1G1Q as G1

)
. This yields that

(
Q−1P1Q, 1 − P0

)
is Fredholm

with the same index as
(
Q−1P+(1)Q, 1 − P−(0)

)
. By Theorem 2.11, this means that DP0,P1 is

Fredholm with the same index as DP−(0),P+(1). ■
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