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Abstract. We obtain some properties of a class A of q-hypergeometric orthogonal polyno-
mials with q = −1, described by a uniform parametrization of the recurrence coefficients.
We construct a class C of complementary −1 polynomials by means of the Darboux trans-
formation with a shift. We show that our classes contain the Bannai–Ito polynomials and
their complementary polynomials and other known −1 polynomials. We introduce some new
examples of −1 polynomials and also obtain matrix realizations of the Bannai–Ito algebra.
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1 Introduction

The classes of q-hypergeometric sequences of orthogonal polynomials with q not equal to a root
of unity or with q = 1 have been extensively studied for a long time [9]. In the case with
q = −1, some polynomial sequences have been obtained as limits as q goes to −1 of well-known
q-orthogonal polynomials, such as the big and little q-Jacobi polynomials [26, 27], or as trans-
formations of the Bannai–Ito polynomials [6, 7]. See also [4, 18, 19, 20].

In [24], we showed that all the q-orthogonal polynomials satisfy a generalized difference-
eigenvalue equation of order one, with respect to a Newtonian basis for the space C[t]. In [25],
we proved that all the sequences in the q-Askey scheme have a discrete orthogonality. Results
about the discrete orthogonality of a subclass of the −1 polynomials will be presented elsewhere.

In [21, 22, 23, 24], we have used a matrix approach to study diverse aspects of the orthogonal
polynomial sequences that produced general results that suggested new ways to classify the
hypergeometric and basic hypergeometric orthogonal polynomial sequences. See [10, 11, 12].

In the present paper, using some results from [24] we construct a class A of q-orthogonal
polynomials with q = −1 and obtain a uniform parametrization for their recurrence coefficients.
These polynomials may be considered as the elements of a −1-Askey scheme because they are
constructed with the same procedure that we used to construct all the polynomial sequences
in the Askey and the q-Askey schemes. The continuous part of the −1-Askey scheme was
constructed in [14]. We show that giving particular values for the parameters we can obtain
some of the known −1 polynomials, such as the Bannai–Ito polynomials and the polynomials
obtained as limits of the big and little Jacobi polynomials. We also obtain some examples of
new −1 polynomials that seem interesting and deserve further study.

We also construct a class C of −1 polynomials that we call the class of complementary −1
polynomials because it contains the complementary Bannai–Ito polynomials, see [6, 19]. The
elements of this class are Darboux transformations with a shift of the −1 polynomials in the
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class A. We describe a family of continuous −1 polynomials that contains the continuous
Bannai–Ito polynomials obtained in [14]. We also obtain some matrix realizations of the Bannai–
Ito algebra.

In Section 2, we present a brief account of the construction of the bispectral q-hypergeometric
orthogonal polynomials. In Section 3, we consider the case with q = −1 and present some
examples. In Section 4, we introduce a parametrization that reduces the number of parameters
and present some new examples. In Section 5, we consider a subclass of A of polynomials that
have simple recurrence coefficients. In Section 6, we construct the class C of complementary −1
polynomials and study a subclass of polynomial sequences whose recurrence coefficients are
simple rational functions. In Section 7, we construct some matrix realizations of the Bannai–Ito
algebra. Finally, in Section 8, we mention some topics for further research.

2 Construction of bispectral hypergeometric
orthogonal polynomials

In this section, we present a brief account of the construction of the bispectral hypergeometric
orthogonal polynomials presented in our previous paper [24]. Some similar results were obtained
by Terwilliger in [15, 16, 17] using a different approach.

Consider the linear difference equation

sk+3 = z(sk+2 − sk+1) + sk, k ≥ 0, (2.1)

where z is a nonzero complex number and sk is a sequence of complex numbers with initial
terms s0, s1, s2. Since the characteristic polynomial is t3− zt2+ zt− 1, we see that the product
of the roots is equal to one, the sum of the roots is equal to z, and 1 is a root. Therefore,
the characteristic roots of the difference equation are 1, q, and q−1, where 1 + q + q−1 = z.
If z = 3, then q = 1 is a triple root. If z = −1, then q = −1 is a double root, and if z ̸= 3
and z ̸= −1, then the roots 1, q, q−1 are distinct. Therefore, the general solution of (2.1) is of
the form sk = d0 + d1q

k + d2q
−k when z ̸= 3 and z ̸= −1 and becomes sk = d0 + d1k + d2k

2

when z = 3, and sk = d0 + d1(−1)k + d2k(−1)k when z = −1. These lattices were considered
by Bochner and Hahn in their classification of the classical and the q-orthogonal polynomials.
Such lattices also appear in [13], where they are obtained from the solutions of a second order
difference equation [13, equation (3.1.12)] that must satisfy certain additional conditions.

Let xk, hk, and ek be 3 solutions of (2.1). These sequences will be used to construct a basis
for the space C[t], a linear operator D on the space of polynomials, and a sequence of orthogonal
polynomials uk(t) that are eigenfunctions of D with eigenvalues hk. The sequence ek is used to
simplify the definition of the operator D and provides additional parameters that are needed
to construct a theory that can be applied to all the hypergeometric and basic hypergeometric
orthogonal polynomials in the Askey schemes.

The sequence xk determines the Newtonian basis {vn(t) | n ≥ 0} of the complex vector
space C[t] of polynomials in t, defined by

vn(t) = (t− x0)(t− x1) · · · (t− xn−1), n ≥ 1, (2.2)

and v0(t) = 1.
We define the sequence gk by

gk = xk−1(hk − h0) + ek, k ≥ 1,

and g0 = 0. This sequence satisfies a linear difference equation of order five. We add the
sequence ek to avoid some complicated restrictions on the initial values of gk. Let us suppose
that hk ̸= hj if k ̸= j, and gk ̸= 0 for k ≥ 1.
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We use the basis {vk | k ≥ 0} to define the linear operator D by

Dvk = hkvk + gkvk−1, k ≥ 1.

Since g0 = 0, we see that Dtn is equal to hnt
n plus a polynomial of lower degree. The operator D

is a generalized difference operator and can be realized as a Dunkl type difference-reflection
operator when q = −1, see [6].

For n ≥ 0, we define un as the monic polynomial of degree n which is an eigenfunction of D
with eigenvalue hn. That is,

Dun = hnun, n ≥ 0. (2.3)

In [24, p. 249], we showed that

un(t) =
n∑

k=0

cn,kvk(t), n ≥ 0,

where the coefficients cn,k are given by

cn,k =
n−1∏
j=k

gj+1

hn − hj
, 0 ≤ k ≤ n− 1, (2.4)

and cn,n = 1 for n ≥ 0. This expression for un(t) was also obtained in [28] using a different
approach. The idea of representing orthogonal polynomials in terms of a Newtonian basis was
introduced by Geronimus in [8].

The matrix C = [cn,k], where the coefficients cn,k are defined in (2.4), is lower triangular and
all its entries in the main diagonal are equal to 1. Therefore, C is invertible. Let C−1 = [ĉn,k].
Using some properties of divided differences, we proved in [24, p. 251] that

ĉn,k =
n∏

j=k+1

gj
hk − hj

, 0 ≤ k ≤ n− 1,

and ĉn,n = 1 for n ≥ 0.
The entries in the 0-th column of C−1 are

ĉn,0 =

n∏
k=1

gk
h0 − hk

, n ≥ 1, (2.5)

and ĉ0,0 = 1. We denote them by mn = ĉn,0 for n ≥ 0.
In [24], we also proved that the monic polynomial sequence un(t) satisfies a three-term re-

currence relation of the form

un+1(t) = (t− βn)un(t)− αnun−1(t), n ≥ 1, (2.6)

where the coefficients are given by

βn = xn +
gn+1

hn − hn+1
− gn

hn−1 − hn
, n ≥ 0, (2.7)

αn =
gn

hn−1 − hn

(
gn−1

hn−2 − hn
− gn

hn−1 − hn
+

gn+1

hn−1 − hn+1
+ xn − xn−1

)
, n ≥ 1. (2.8)

Since g0 = 0, the terms in the previous equations where h−1 appears are equal to zero, see
also [12, Remark 2.5].
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If all the αn are positive and the βn are real, then the sequence un is orthogonal with respect
to a positive measure, and if all the αn are nonzero, then un is orthogonal with respect to a not
necessarily positive definite moments functional.

The numbers mn are the generalized moments of the polynomial sequence uk(t) with respect
to the Newtonian basis {vk(t) | k ≥ 0} defined in (2.2). From (2.5), we see that mn satisfies the
recurrence relation

mn+1 =
gn

h0 − hn
mn, n ≥ 1.

Let
{
p[1], p[2], p[3]

}
be the basis of solutions of (2.1) whose initial terms are (1, 0, 0), (0, 1, 0),

and (0, 0, 1), respectively. These basic solutions are sequences of polynomials in z. It is easy to
see that the initial terms of p[1] and p[2] are

1, 0, 0, 1, z, z(z − 1), (z − 1)(z2 − z − 1), z(z − 2)(z2 − z − 1), . . . ,

0, 1, 0,−z,−(z − 1)(z + 1),−z(z2 − z − 1),−z(z − 1)(z − 2)(z + 1),

−(z2 − z − 1)(z3 − 2z2 − z + 1), . . . ,

and that p
[3]
k = p

[1]
k+1 for k ≥ 0.

Let us note that for k ≥ 0 we have

xk = x0p
[1]
k + x1p

[2]
k + x2p

[3]
k , hk = h0p

[1]
k + h1p

[2]
k + h2p

[3]
k ,

ek = e0p
[1]
k + e1p

[2]
k + e2p

[3]
k .

Therefore, gk, αk, βk, cn,k and ĉn,k are functions of z and the initial terms of the sequences xk, hk
and ek.

The orthogonal polynomials with q = 1 are obtained when we put z = 3. Taking z =
1+ q + q−1, where q ̸= ±1, we obtain all orthogonal polynomials in the q-Askey scheme. In the
following section we consider the case q = −1.

The properties of the polynomial sequence represented by the matrix C can be expressed in
terms of matrix equations as we describe next. Let X be the shift matrix defined by Xk,k+1 = 1
for k ≥ 0 and all the other entries equal zero. The matrix S is the transpose of X. The
diagonal matrix H = diag(h0, h1, h2, . . . ) is called the matrix of eigenvalues. The diagonal
matrix F = diag(x0, x1, x2, . . . ) is the matrix of nodes associated with the Newtonian basis.
The diagonal matrix G = diag(g1, g2, g3, . . . ) is associated with the operator D. The Jacobi
matrix L is defined by Lk,k+1 = 1, Lk,k = βk, Lk+1,k = αk+1, for k ≥ 0.

With respect to the Newtonian basis the operator of multiplication by the independent vari-
able t is represented by X + F , and the operator D by (H + SG). The three-term recurrence
relation (2.6) corresponds to the equation

LC = C(X + F )

and the difference-eigenvalue equation (2.3) is expressed in terms of matrices as

C(H + SG) = HC.

See [24] for a more detailed account of these matrix equations.

3 The polynomials with q = −1

We consider now the class A of orthogonal polynomials obtained when the parameter z in the
difference equation (2.1) is equal to −1, and thus the roots of the characteristic polynomial of
the difference equation are 1 and −1, which is a double root.
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When z = −1 the basic solutions of (2.1) become the sequences

1, 0, 0, 1,−1, 2,−2, 3,−3, 4,−4, . . . ,

0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, . . . , and

0, 0, 1,−1, 2,−2, 3,−3, 4,−4, 5, . . . ,

and a solution with initial values s0, s1, s2 has the form

s0, s1, s2, s0 + s1 − s2,−s0 + 2s2, 2s0 + s1 − 2s2, . . . .

Another basis for the space of solutions of the difference equation (2.1) when z = −1 is{
1, (−1)k, (−1)kk

}
. We write the sequences xk, hk and ek in terms of this basis as follows:

xk = b0 + b1(−1)k + b2(−1)kk, (3.1)

hk = a0 + a1(−1)k + a2(−1)kk, (3.2)

ek = d0 + d1(−1)k + d2(−1)kk. (3.3)

It is clear that the coefficients in these representations can be written in terms of the corre-
sponding initial terms, and vice-versa. We will see that the number of parameters needed to
describe the orthogonal polynomials with q = −1 can be reduced to four.

The coefficient b0 is the constant part of the sequence of nodes xk and hence, a change in the
value of b0 is equivalent to a translation of the polynomials vk(t) in the Newtonian basis and also
of the orthogonal polynomials uk(t). Since translations do not change the relevant properties
of the polynomials uk(t), sometimes we take b0 = 0 in order to simplify the expressions for the
coefficients of the uk(t) and of their three-term recurrence relation.

Let us note that the eigenvalues hk appear only in terms of the form hk − hn in the for-
mulas of the previous section. Therefore, the coefficient a0, which is the constant part of the
eigenvalues hk, is always cancelled and thus we take a0 = 0.

In order to have g0 = 0, we need e0 = 0 and thus we put d0 = −d1 in (3.3). If we take b0 = 0
,then there remain six parameters, a1, a2, b1, b2, d1, d2.

The sequence gk = xk−1(hk − h0) + ek is in this case

gk = −k((k − 1)a2b2 − d2 + a2b1) if k is even,

gk = a2b2k
2 + (d2 + (b1 − b2)a2 + 2a1b2)k + 2(b1 − b2)a1 + 2d2 if k is odd.

For even n, the recurrence coefficients are

αn =
n((n− 1)a2 + 2a1)(na2b2 + 2a1b2 − a2b1 + d2)((n− 1)a2b2 + a2b1 − d2)

a2((2n− 1)a2 + 2a1)2
, (3.4)

βn =
a2(2a1b2 + a2(b2 − 2b1)− 4d1)n− (2d1 + d2)(2a1 − a2)

((2n− 1)a2 + 2a1)((2n+ 1)a2 + 2a1)
. (3.5)

For odd n, we have

αn =
−w1(n)w2(n)

a2((2n− 1)a2 + 2a1)2
, (3.6)

where

w1(n) = a2b2n
2 + ((b1 − b2)a2 + 2a1b2 + d2)n+ 2(b1 − b2)a1 + 2d1,

w2(n) = a22b2n
2 +

(
−(b1 + b2)a

2
2 + (2a1b2 − d2)a2

)
n+ a22b1

+ (2d1 + d2 − 2a1b2)a2 − 2a1d2,
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and

βn =
−w3(n)

((2n− 1)a2 + 2a1)((2n+ 1)a2 + 2a1)
, (3.7)

where

w3(n) = a2(2a1b2 + a2(b2 − 2b1)− 4d1)n− 4a21b2

+((4b1 − 2b2)a2 + 4d1 − 2d2)a1 + (2d1 + d2)a2.

Giving appropriate values to the parameters in the equations (3.4)–(3.7) we can obtain the
recurrence coefficients of the −1 orthogonal polynomial sequences in the class A. For example,
the recurrence coefficients for the Bannai–Ito polynomials [7] are obtained with

a2 = 1, b2 = 1, a1 = α+ β + γ + δ + 3/2, b1 = 1 + 2β,

d1 = 2γδ − 2αβ − β + γ + δ + 1/2, d2 = −1− 2α.

Here α, β, γ, δ are the parameters used in [7] to define the Bannai–Ito polynomials.
If we take

b1 = c, b2 = 0, a1 =
1 + α+ β

2(1 + c)
, a2 =

1

1 + c
,

d1 =
1 + α+ β

2(1 + c)
− 1 + α

2
, d2 =

1

1 + c
,

we get the recurrence coefficients of the polynomial sequence obtained from the big q-Jacobi
polynomials by taking the limit as q goes to −1. See [4] and [27].

For the −1 polynomials obtained in [26] as limits of the little q-Jacobi polynomials, we get
the recurrence coefficients with

b1 = 0, b2 = 0, a1 =
1 + α+ β

2
, a2 = 1, d1 =

α

2
, d2 = 1.

Note that these coefficients are obtained from those of the big q-Jacobi polynomials taking c = 0
and β = α.

We obtain −1 polynomials related with Chebyshev polynomials as follows. Taking

a1 =
a2
2
, b1 = 0, b2 = 0, d1 = 0, d2 = a2,

the recurrence coefficients are αn = 1/4 for n ≥ 1, β0 = −1/2, and βn = 0 for n ≥ 1. The
corresponding monic orthogonal polynomial sequence un(t) is related with the monic Chebyshev
polynomials of the first kind T̃n(t) by

un(t) =
n∑

k=0

T̃k(t)

2n−k
, n ≥ 0.

If instead of d2 = a2, we put d2 = −a2 then we get β0 = 1/2 and the corresponding orthogonal
polynomials wn(t) satisfy

wn(t) =
n∑

k=0

(−1)n−k T̃k(t)

2n−k
, n ≥ 0.

Another simple case is obtained when we take

a1 = 1/2, a2 = 1, b1 = 1/2, b2 = 1, d1 = 1/4, d2 = −1/2.
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In this case, we have αn = −n2/4, for n ≥ 1, and βn = 0, for n ≥ 0. These examples provide
matrices that can be used to obtain generators of the Bannai–Ito algebra.

We can also obtain the recurrence coefficients of other −1 polynomials considered in [14] by
taking appropriate values for the parameters a1, a2, b1, b2, d1, d2, without taking limits.

A classification of the polynomial sequences in the class A can be obtained by the method
used by Koornwinder to construct the schemes in [10, 11, 12].

4 A change of parameters for the case with b2 ̸= 0

In this section, we consider the class of orthogonal −1 polynomials for which the parameter b2
is nonzero. Since xk = b1(−1)k + b2k(−1)k we can see that when b2 is nonzero the nodes xk
are pairwise distinct. We will introduce a parametrization for the recurrence coefficients that
simplifies the expressions and also reduces the number of independent parameters.

From equations (3.4) and (3.6), we see that a2 must be nonzero. This condition is also needed
to have hk ̸= hn if k ̸= n.

We define the parameters r, s, t1 and t2 by the equations

a1 =

(
s+

1

2

)
a2, b1 =

(
r +

1

2

)
b2, d1 =

(
t1
2
+

1

4

)
a2b2, d2 =

(
t2 −

1

2

)
a2b2.

Substitution of a1, b1, d1, d2 in equations (3.4)–(3.7) yields, if n is even

αn =
−b22n(n+ 2s)(n+ 2s− r + t2)(n+ r − t2)

4(n+ s)2
, (4.1)

βn =
−b2((r − s+ t1)n+ s(t1 + t2))

2(n+ s)(n+ 1 + s)
, (4.2)

and if n is odd

αn =
−b22

(
n2 + (r + 2s+ t2)n+ (2r − 1)s+ r + t1

)
4(n+ s)2

(4.3)

×
(
n2 + (2s− r − t2)n− (2t2 + 1)s+ r + t1

)
, (4.4)

and

βn =
b2
(
(r − s+ t1)n− 2s2 + (2r + t1 − t2 − 1)s+ r + t1

)
2(n+ s)(n+ 1 + s)

. (4.5)

Let us note that a2 does not appear in the new expressions for the recurrence coefficients.
Note also that, for all n, b2 is a factor of βn and b22 is a factor of αn. In [3, Appendix, p. 215],
Chihara shows that the effect of such factors on the corresponding monic polynomial sequences
is a change of the independent variable of the form wn(x) = bn2un(x/b2). If we consider that
two monic polynomial sequences related in such way are equivalent, then b2 can be taken as any
nonzero number. Therefore, the recurrence coefficients are essentially determined by the four
parameters r, s, t1, t2, see also [12, Remark 2.5].

We describe next the recurrence coefficients of a family of continuous −1 polynomial se-
quences. That is, such that all αn are positive and all βn are real.

Since the leading term in the numerators of (4.2) and (4.4) is −b22n
4, it is clear that b22 must

be a negative number if we want αn > 0 for n ≥ 1. We take b2 = i, where i2 = −1. Let
y = y1 + iy2 and w = w1 + iw2 be complex numbers.
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Substitution of

b2 = i, s = y1, r =
y − w

2
, t2 = −y + w

2
, t1 =

ȳ + w

2
− (y1y2 − w1w2)i,

in (4.2)–(4.5) yields the following formulas.

If n is even,

αn =
n(n+ 2y1)(n+ y)(n+ ȳ)

4(n+ y1)2
, (4.6)

βn =
(w1w2 − y1y2)n+ y1(w1w2 − y1y2)− y1y2

2(n+ y1)(n+ 1 + y1)
. (4.7)

If n is odd,

αn =
(n+ y1 + w1)(n+ y1 − w1)(n+ y1 + iw2)(n+ y1 − iw2)

4(n+ y1)2
, (4.8)

βn =
(y1y2 − w1w2)n+ y1(y1y2 − w1w2)− w1w2

2(n+ y1)(n+ 1 + y1)
. (4.9)

It is easy to see that αn > 0 for all n ≥ 1 if y1 > −1 and w1 + y1 > −1.

Let us consider some simple examples. If we take y1 = 0 and w1 = 0, then for even n we have
αn =

(
n2 + y22

)
/4, and for odd n we have αn =

(
n2 + w2

2

)
/4, β0 = −y2/2 and βn = 0 for n ≥ 1.

If y = w = 0, then αn = n2/4 for n ≥ 1 and βn = 0 for n ≥ 0.

If y2 = 0 and w2 = 0, then for even n we have αn = n(n + 2y1)/4, for odd n we have
αn = (n+ y1 − w1)(n+ y1 − w1)/4, and βn = 0 for n ≥ 0.

The recurrence coefficients of the continuous Bannai–Ito polynomials, which are described
in [14] using parameters α, β, γ, δ, are obtained by substitution of

y1 = 1 + 2(α+ γ), y2 = 2(β + δ), w1 = 2(γ − α), w2 = 2(δ − β),

in (4.6)–(4.9).

There are also continuous −1 polynomial sequences in the class with b2 = 0. We give some
examples in Section 5.

We obtain next another useful parametrization of the class of −1 polynomials with b2 ̸= 0
that gives factorized expressions for all the αn. Let p and q be roots of the numerator in (4.4)
and substitute

t1 = pq + s− r(1 + 2s), t2 = −(p+ q + r + 2s),

in (4.2)–(4.5). We obtain, for even n,

αn = −b22
n(n+ 2s)(n− p− q − 2r)(n+ p+ q + 2r + 2s)

4(n+ s)2
,

βn = −b2
(pq − 2rs)n− s2(1 + 2r) + s(pq − p− q − 2r)

2(n+ s)(n+ 1 + s)
,

and for odd n

αn = −b22
(n− p)(n− q)(n+ p+ 2s)(n+ q + 2s)

4(n+ s)2
,

βn = b2
(pq − 2rs)n+ pq + s2(1− 2r) + s(pq + p+ q)

2(n+ s)(n+ 1 + s)
.
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5 A parametrization for the −1 polynomials with b2 = 0

If b2 = 0 and b1 ̸= 0, then xk = b1(−1)k, for k ≥ 0, and hence there are only two distinct nodes.
If both, b1 and b2 are zero then xk = 0 for k ≥ 0. Recall that a2 must be nonzero.

For the case with b2 = 0, we obtain a parametrization of the recurrence coefficients by
substitution of

b2 = 0, a1 = (s+ 1/2)a2, d1 = t1a2/2, d2 = t2a2,

in (3.4)–(3.7). We obtain, for even n,

αn =
(b1 − t2)

2n(n+ 2s)

4(n+ s)2
, (5.1)

βn = −(b1 + t1)n+ s(t1 + t2)

2(n+ s)(n+ 1 + s)
, (5.2)

and for odd n we have

αn =
((b1 + t2)n+ 2b1s+ b1 + t1)((b1 + t2)n+ 2st2 − b1 − t1)

4(n+ s)2
, (5.3)

βn =
(b1 + t1)(n+ 1) + s(2b1 + t1 − t2)

2(n+ s)(n+ 1 + s)
. (5.4)

Let us note that the recurrence coefficients are expressed in terms of the four parame-
ters b1, s, t1 and t2.

We present next some examples obtained by giving particular values to the parameters
in (5.1)–(5.4). These examples are constructed so that the recurrence coefficients have simple
expressions as functions of the index n. We also try to show that it is easy to obtain recurrence
coefficients that are rational functions of the index n with several different values for the degrees
of the numerators and the denominators. These degrees may be used to obtain a classification
criterion. The examples also show that we can construct families of −1 polynomials that are
determined by several parameters.

Let us recall that the values of the parameters also determine the generalized difference
operator D and the Newtonian basis. With an appropriate change of bases the operator D can
be transformed to an operator with respect to the standard basis of monomials.

Additional examples are presented in Section 7, where we consider a subclass of the class of
complementary −1 polynomials.

Example 5.1. Taking b1 = 0, t1 = 2s and t2 = 1, we get

αn =
n(n+ 2s)

4(n+ s)2
, n ≥ 1, βn = (−1)n−1 s(2n+ 2s+ 1)

2(n+ s)(n+ 1 + s)
, n ≥ 0.

If we now put s = 0 in these equations, we get αn = 1/4 for n ≥ 1, β0 = −1/2, and βn = 0
for n ≥ 1. This is one of the examples related with the Chebyshev polynomials presented
in Section 3.

Example 5.2. With s = 0 and t2 = −b1, we obtain, for even n,

αn = b21, and βn = − b1 + t1
2(n+ 1)

,

and for odd n,

αn = −(b1 + t1)
2

4n2
, and βn =

b1 + t1
2n

.
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Example 5.3. Here we take b1 = 0 and t2 = 1 and we get, for even n,

αn =
n(n+ 2s)

4(n+ s)2
, and βn = − 2t1n+ s(1 + 2t1)

2(n+ s)(n+ 1 + s)
,

and for odd n

αn =
(n+ 2s− 2t1)(n+ 2t1)

4(n+ s)2
, and βn =

2t1(n+ 1) + s(2t1 − 1)

2(n+ s)(n+ 1 + s)
.

If we now take s = 0 and t1 = 1/2, we obtain, for even n,

αn =
1

4
, and βn = − 1

2(n+ 1)
,

and for odd n

αn =
n2 − 1

4n2
, and βn =

1

2n
.

6 The class of complementary −1 polynomials

In this section, we describe a class of orthogonal polynomial sequences whose monic Jacobi
matrices are obtained as Darboux transformations with a shift w of the Jacobi matrices of
sequences in the class A of −1 polynomials. We consider first Darboux transformations for
q-polynomial sequences with q ̸= −1.

Let w be a complex number and let L be the Jacobi matrix defined in Section 2. Let
Y = diag(y0, y1, y2, . . . ) and Z = diag(z0, z1, z2, . . . ) be the unique diagonal matrices that satisfy

L− wI = (I + Y S)(X + Z). (6.1)

From this factorization, it is easy to see that

Lk+1,k = αk+1 = yk+1zk, k ≥ 0, Lk,k = βk = yk + zk + w, k ≥ 0,

where the entries of L are given in (2.8) and (2.7).

The entries yk and zk of the matrices Y and Z can be obtained from (6.1). They are rational
functions of qk, w and the parameters in αk. As functions of qk the degrees of the numerator
and the denominator of yk and zk are increasing functions of k, but the degrees of the numerator
and the denominator of αk as functions of qk are independent of k, and they are both equal
to eight. For βk, the corresponding degrees are both equal to four, see [24, Section 7]. This
happens because, for each k, yk+1 has a rational factor whose reciprocal is a factor of zk, and
thus such factors cancel in the product yk+1zk.

We define the matrix

M = (X + Z)(I + Y S) + wI. (6.2)

This matrix is a monic Jacobi matrix and it is called the Darboux transform of L with shift w,
see [2].

From the definition of M , we can see that

Mk+1,k = yk+1zk+1, k ≥ 0, (6.3)

Mk,k = yk+1 + zk + w, k ≥ 0. (6.4)
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For general values of the shift w, the cancellation of factors that occurs in the products yk+1zk
does not occur in the products yk+1zk+1. Because of this fact, the entries of M are rational
functions of qk with numerators and denominators whose degrees are increasing functions of k.
Therefore, in such cases, the q-orthogonal polynomial sequence determined by the matrix M is
not in the classHq, defined in [24, Section 7], which contains the sequences in the q-Askey scheme.
For the particular value w = x0, the Jacobi matrix M determines a polynomial sequence in Hq,
and M is obtained from L by a simple modification of the parameters, that we will describe next.

In the general case of the q-hypergeometric orthogonal polynomials, with q ̸= 1 and q ̸= −1,
the characteristic roots of the difference equation (2.1) are 1, q and q−1 and are distinct. There-
fore, the sequences hk, xk, and ek are given by

hk = a0 + a1q
k + a2q

−k, xk = b0 + b1q
k + b2q

−k, ek = d0 + d1q
k + d2q

−k,

where a0 may be taken as zero and d0 = −d1 − d2.
The recurrence coefficients αk and βk depend on the parameters a1, a2, b0, b1, b2, d1, d2

and q, and the entries of M depend on the same parameters and also on w.
If we take w = x0 = b0 + b1 + b2, then applying the substitution

(a1, a2, b0, b1, b2, d1, d2) →
(
qa1, a2, qb0, q

2b1, b2, q
2d1, qd2

)
, (6.5)

to (αk, βk) we obtain
(
q2Mk+1,k, qMk,k

)
, which corresponds to a re-scaling of the variable in the

polynomial sequence determined by M . The value w = x0 is the only one for which this result
holds for arbitrary values of the parameters a1, a2, b0, b1, b2, d1, d2. Note that (6.5) is invertible
and therefore the Darboux transformation with w = x0 sends the class Hq onto itself.

For the Askey–Wilson polynomials, due to the symmetries of the four parameters a, b, c, d
that are used to describe the recurrence coefficients, the initial node x0 can be written as
x0 =

(
r+ r−1

)
/2, where r is any of a, b, c, d, see [9, equation (14.1.5)] and [24, equation (7.15)].

For the class H1 of q-orthogonal polynomials with q = 1, defined in [24, Section 8], the
sequences hk, xk, ek are given by

hk = a1k + a2k
2, xk = b0 + b1k + b2k

2, ek = d1k + d2k
2.

In this case, the Darboux transformation with shift w of the generic Jacobi matrix L yields in the
general case a complicated Jacobi matrix M , but if we take w = x0 = b0, then the substitution

(a1, a2, b0, b1, b2, d1, d2) → (a1 + a2, a2, b0 + b1 + b2, b1 + 2b2, b2, d1 + d2, d2), (6.6)

applied to (αk, βk) gives us (Mk+1,k,Mk,k). Therefore, the Darboux transformation with shift
w = x0 sends H1 onto itself, since the change of parameters (6.6) is invertible.

We consider next the Darboux transformation of the class A of −1 polynomials. In this case,
the recurrence coefficients are given in equations (5.1)–(5.4).

Let us recall the main properties of the matrix C of −1 orthogonal polynomials. We have
the recurrence relation

LC = C(X + F ), (6.7)

and the eigenvalue equation

C(H + SG) = HC. (6.8)

Note that the matrix I + Y S, defined in (6.1) is invertible. Then we define

C̃ = (I + Y S)−1C.
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From equation (6.1), we obtain

(I + Y S)−1L(I + Y S) = (X + S)(I + Y S) + wI = M,

and from (6.7) we get

(I + Y S)−1L(I + Y S)C̃ = C̃(X + F ).

Therefore, we have MC̃ = C̃(X + F ), and hence C̃ is the matrix of orthogonal polynomials
associated with M , expressed in terms of the Newtonian basis {vn(t) | n ≥ 0}. Therefore,
the polynomial sequences described by C̃ are −1 orthogonal polynomials. The set of all such
polynomial sequences is the class of complementary −1 orthogonal polynomial sequences that
we denote by C.

Define the matrix B = C̃−1C(H + SG)C−1C̃. Then by (6.8) we get C̃B = HC̃. The matrix
B is similar to the bidiagonal matrix H +SG, but in the general case it is not a banded matrix.
The matrix C−1C̃ represents a change of bases on the space of polynomials. For some particular
cases, it may be possible to find matrices of change of bases that convert B into a banded matrix
that represents some kind of difference operator.

The entries of M are rational functions of the parameters a1, a2, b0, b1, b2, d1, d2, w and
the index k. In the general case the sequence of degrees, as functions of k or a2, of both
the numerator and the denominator of Mk+1,k for k ≥ 1 is 6, 10, 10, 14, 14, 18, 18, . . . and the
analogous sequence for Mk,k is 4, 6, 8, 10, 12, . . . . This shows that the coefficients of the three-
term recurrence coefficients satisfied by the complementary −1 orthogonal polynomial sequences
are in general quite complicated.

Giving appropriate values to the parameters we can obtain matrices M with entries whose
numerators and denominators have bounded or constant degrees. For example, the values b0 = 0,
b1 = −w, b2 = 0, d1 = 0, d2 = wa2, a1 = (r/2 − 1)a2 give us a matrix M for which the
denominator of Mk+1,k is equal to (r + k)(r + k + 1)2(r + k + 2), which has degree four for
every k, and the numerator also has degree four for every k.

There is a subclass of C whose elements have simple recurrence coefficients, similar to those
of the complementary Bannai–Ito polynomials. This subclass is found by looking for relations
among w and some of the other parameters that yield cancellation of certain factors in the numer-
ator and the denominator of Mk+1,k. We found that such cancellation occurs if w = b0 + b1 = x0
or w = −d2/a2.

6.1 The subclass C0

Let us denote by C0 the subclass of C of all the sequences obtained with w = b0 + b1. When
w = b0 + b1 the sequences yk and zk become quite simple. They are rational functions with
different formulas for even and odd values of k that we present next. We define the following
functions:

ye(k) =
2k((b0 − b1 + 2kb2)a2 + 2a1b2 + d2)

2a1 + (4k − 1)a2
,

yo(k) =
2a22((2k + 1)b2 − b0 − b1)k + a2(2ka1b2 − kd2 + d1)− a1d2

a2(2a1 + (4k + 1)a2)
,

ze(k) = −(2kb2 + b0 + b1)(a2(2k + 1) + 2a1) + (2k + 1)d2 + 2d1
2a1 + (4k + 1)a2

,

zo(k) =
(2a1 + (2k + 1)a2)(a2(b0 − b1 − (2k + 1)b2) + d2)

a2(2a1 + (4k + 3)a2)
.
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Then the sequences yk an zk for the subclass C0 are given by

y2k = ye(k), k ≥ 0, y2k+1 = yo(k), k ≥ 0,

z2k = ze(k), k ≥ 0, z2k+1 = zo(k), k ≥ 0.

Let us note that, for every k ≥ 0, yk and zk are rational functions of k with numerator of degree
two and denominator of degree one. Therefore, since Mk+1,k = yk+1zk+1 for every k ≥ 0, the
numerator of Mk+1,k has degree four and its denominator has degree two.

Explicit formulas for Mk+1,k for the subclass C0 are obtained immediately from

M2k+1,2k = yo(k)zo(k), k ≥ 0, M2k,2k−1 = ye(k)ze(k), k ≥ 1.

Note that, for k ≥ 0, the denominator of Mk+1,k is a quadratic polynomial in k with distinct
roots. On the other hand, for the generic Jacobi matrix L of the sequences in A, we can see
from (3.4) and (3.6) that the denominator of αk = Lk+1,k has a double root, for every k ≥ 0.
Therefore, the elements of C0 can not be obtained from elements of A by some change of pa-
rameters.

Using equation (6.4), a simple computation gives us

Mk,k = −d2
a2

if k is even, Mk,k =
a2(2b0 + b2) + d2

a2
if k is odd.

The complementary Bannai–Ito polynomials are in the subclass C0. The matrix M becomes
the Jacobi matrix of the normalized Bannai–Ito polynomials using the substitution

a2 = 1, b2 = 1, b0 = −1/2, b1 = −2r2 − 1/2,

a1 = ρ1 + ρ2 − r1 − r2 + 1/2,

d1 = (1− 2r1)ρ1 + (2r2 + 2)ρ2 − 2r1 + 1, d2 = −2ρ2.

Here r1, r2, ρ1, ρ2 are the parameters used to define the coefficients of the three-term recurrence
relation of the complementary Bannai–Ito polynomials in [6, equations (3.4) and (3.5)]. Since
those recurrence coefficients have some symmetries, there are other substitutions that yield the
same Jacobi matrix. For example,

a2 = 1, b2 = 1, b0 = −1/2, b1 = 2ρ1 + 1/2, a1 = ρ1 + ρ2 − r1 − r2 + 1/2,

d1 = (2r1)r2 + (1− 2ρ1)ρ2 − r1 + 1/2, d2 = −2ρ2.

We have in this case w = b0 + b1 = 2ρ1. This value for w corresponds to the one chosen in [19,
equation (5.11)], where the authors take w = ρ1 to define the complementary Bannai–Ito poly-
nomials. The multiplier 2 in our w corresponds to a re-scaling of the variable of the polynomials.

We present next some examples of the recurrence coefficients of polynomial sequences in C0.
The substitution

a1 = (2r − 1)a2/2, b2 = 1,

d1 = (r2 − r − (2r − 1)(b0 + b1) + 1)a2/2, d2 = −(b0 + b1 + 1)a2

yields the Jacobi matrix M given by

M2k+1,2k = −(k + r)(k + 1 + b1), M2k,2k−1 = −k(k − b1 + r − 1),

M2k,2k = b0 + b1 + 1, M2k+1,2k+1 = b0 − b1.

With the substitution

a1 = a2/2, b2 = 1, d1 = 0, d2 = −a2, b0 = 1, b1 = 0,
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we obtain the matrix given by

M2k+1,2k = −(2k + 1)2

4
, M2k,2k−1 = −(2k + 1)2

4
, M2k,2k = 1, M2k+1,2k+1 = 2.

The substitution

a1 = (r − 2)a2/2, b2 = 1, b0 = −1/2, b1 = −1/2,

d1 = (r − 3)a2/2, d2 = 2a2

gives the matrix defined by

M2k+1,2k = − (2k − 1)2(2k + r − 1)2

(4k + r − 1)(4k + r + 1)
, M2k,2k−1 = − 4k2(2k + r)2

(4k + r − 3)(4k + r − 1)
,

M2k,2k = −2, M2k+1,2k+1 = 2.

Using the substitution

a1 = 1, a2 = 2, b0 = 0, b1 = 1, b2 = 0, d1 = −1, d2 = 0,

the matrix M becomes the Jacobi matrix of the Chebyshev polynomials of the first kind. In this
case, Mk,k = 0 for k ≥ 0, Mk+1,k = 1/4 for k ≥ 1, the nodes are xk = (−1)k, and the eigenvalues
are hk = −1 + (−1)k + 2k(−1)k, for k ≥ 0.

6.2 Another parametrization of the subclass C0

When we take the shift w equal to −d2/a2, the sequences yk and zk also become simple rational
functions of k, with different formulas for even and odd values of k. In order to avoid confusion
with the corresponding sequences obtained with w = b0 + b1, we will write ỹk and z̃k for the
sequences with w = −d2/a2, and M̃ for the associated Jacobi matrix.

Define the following rational functions:

ỹe(k) = ye(k), ỹo(k) = −ze(k), z̃e(k) = −yo(k), z̃o(k) = zo(k).

Then the sequences ỹk an z̃k are given by

ỹ2k = ye(k), ỹ2k+1 = −ze(k), z̃2k = −yo(k), z̃2k+1 = zo(k).

The explicit formulas for M̃k+1,k are obtained from

M̃2k+1,2k = −ze(k)zo(k), k ≥ 0, M̃2k,2k−1 = −ye(k)yo(k), k ≥ 1.

From (6.4), a simple computation gives us in this case

M̃k,k = b0 + b1 if k is even, M̃k,k = b0 − b1 + b2 if k is odd.

The Jacobi matrix of the normalized complementary Bannai–Ito polynomials is obtained
when we apply to M̃ the substitution

a2 = 1, b2 = 1, b0 = −1/2, b1 = 2ρ2 + 1/2, a1 = ρ1 + ρ2 − r1 − r2 + 1/2,

d1 = 2r1r2 − 2ρ1ρ2 − r1 − r2 + ρ1 + 1/2, d2 = −2ρ1.

Here we have w = 2ρ1.
There is some kind of duality between the cases with w = b0+ b1 and those with w = −d2/a2

that we will try to clarify in what follows. Let P be the set of parameter vectors of the form
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(a1, a2, b0, b1, b2, d1, d2, w), with a2 ̸= 0, and let Γ be the map that sends an element p of P
to the Jacobi matrix M , defined by (6.2)–(6.4). Then the subclass C0 is the set of polynomial
sequences whose Jacobi matrix is in the image under Γ of the set P0 of vectors in P that have
w = b0 + b1. Let P1 be the set of vectors in P that have w = −d2/a2.

Let Ψ: P0 → P1 be the map that sends p = (a1, a2, b0, b1, b2, d1, d2, b0 + b1) to p̃ =
(
ã1, ã2, b̃0,

b̃1, b̃2, d̃1, d̃2, b̃0 + b̃1
)
, where the entries are defined by

ã1 = a1, ã2 = a2, b̃0 = b0, b̃1 = −b0 − d2/a2, b̃2 = b2,

d̃1 = d1 + (b0 + b1)a2/2 + d2/2, d̃2 = −a2(b0 + b1).

It is easy to verify that the inverse map of Ψ is given by

a1 = ã1, a2 = ã2, b0 = b̃0, b1 = −b̃0 − d̃2/ã2, b2 = b̃2,

d1 = d̃1 +
(
b̃0 + b̃1

)
ã2/2 + d̃2/2, d2 = −ã2(b̃0 + b̃1),

and hence Ψ is a bijective map. Therefore, every Jacobi matrix that is in the image under Γ
of P0 is also in the image under Γ of P1, and thus Γ is not injective.

It is also easy to see that the restriction of Ψ to the set Pf of the vectors in P0 that satisfy
(b0 + b1)a2 + d2 = 0 is the identity map. Therefore, for every vector of parameters in Pf the
corresponding Jacobi matrices M and M̃ coincide.

Let us note that the polynomial sequences corresponding to vectors of parameters that are
in P0 but not in Pf are associated with at least two sequences of nodes xk and two generalized
difference-eigenvalue equations, with the same sequence hk of eigenvalues. This suggests that
such sequences may satisfy two different discrete orthogonality relations. See [25].

The Jacobi matrix J determined by a vector of parameters in Pf is obtained, for example,
by substitution of d2 = −(b0 + b1)a2 in either M or M̃ . In this way, we obtain

J2k,2k−1 = −8k(ka2b2 + a1b2 − a2b1)(k(2k + 1)a2b2 + (b0 + b1 + 2kb2)a1 + d1)

(2a1 + (4k − 1)a2)(2a1 + (4k + 1)a2)
,

J2k+1,2k = −2(2a1 + (2k + 1)a2)(2b1 + (2k + 1)b2)

2a1 + (4k + 1)a2

× (k(2k + 1)a2b2 + (b0 + b1 + 2kb2)a1 + d1)

2a1 + (4k + 3)a2
,

and Jk,k = b0 + b1 if k is even, Jk,k = b0 − b1 + b2 if k is odd.
Notice that the parameter d2 does not appear in these equations.

7 The Bannai–Ito algebra

In this section, we find several concrete realizations of the Bannai–Ito algebra using infinite
matrices as generators. Let a2 = 1, b2 = 1, and b0 = 0. Then we have hk = (a1 + k)(−1)k and
xk = (b1 + k)(−1)k. Let B1 be the matrix representation of the generalized difference operator D
with respect to the Newton basis with nodes xk. LetB2 be the matrix representation with respect
to the Newton basis of the operator of multiplication by the variable t. We have

B1 =


h0 0 0 0 . . .
g1 h1 0 0 . . .
0 g2 h2 0 . . .
0 0 g3 h3 . . .
...

...
...

. . .
. . .

 , B2 =


x0 1 0 0 . . .
0 x1 1 0 . . .
0 0 x2 1 . . .

0 0 0 x3
. . .

...
...

...
...

. . .

 .

Let us recall that gk = xk−1(hk − h0) + ek, and ek = −d1 + (d1 + kd2)(−1)k, for k ≥ 0.
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Define the constants

w1 = 2d1 + d2(1− 2b1)− a1,

w2 = 2d1 + d2(1− 2a1) + a1(2b1 − 2a1),

w3 = a1 − b1 − 2d1 + 1/2, (7.1)

and let B3 = {B1, B2}−w3I, where I is the infinite identity matrix and {B1, B2} = B1B2+B2B1

is the anti-commutator. By straightforward computations, we can see that

{B2, B3} = B1 + w1I, {B3, B1} = B2 + w2I,

Q = B2
1 +B2

2 +B2
3 =

(
(a1 + d2)

2 + (a1 − b1)(1 + a1 − b1)− 2d1 + 1/4
)
I,

and that Q commutes with B1, B2 and B3.
Therefore, B1, B2, B3 are generators of the Bannai–Ito algebra, with structure constants

w1, w2, w3.
We obtain another realization of the Bannai–Ito algebra as follows. Let

L1 =


h0 0 0 0 . . .
0 h1 0 0 . . .
0 0 h2 0 . . .
0 0 0 h3 . . .
...

...
...

...
. . .

 , L2 =


β0 1 0 0 . . .
α1 β1 1 0 . . .
0 α2 β2 1 . . .
0 0 α3 β3 . . .
...

...
...

...
. . .

 ,

where αn and βn are defined in (3.4)–(3.7), and define L3 = {L1, L2} − w3I.
Since we have L1 = CB1C

−1 and L2 = CB2C
−1, where C is the matrix defined in (2.4), it is

easy to verify that L1, L2, L3 are generators of the Bannai–Ito algebra, with the same structure
constants w1, w2, w3 of the generators B1, B2, B3. Let us note that L2 is a Jacobi matrix.

We can give particular values to the parameters in (7.1) to obtain simpler matrices and
structure constants, for example, if we substitute

a1 = 1/2, a2 = 1, b1 = 1/2, b2 = 1, d1 = 1/4, d2 = −1/2

in L1, L2, L3, we obtain the matrices

L̃1 =



1/2 0 0 0 0 . . .
0 −3/2 0 0 0 . . .
0 0 5/2 0 0 . . .
0 0 0 −7/2 0 . . .
0 0 0 0 9/2 . . .
...

...
...

...
...

. . .


,

L̃2 =



0 1 0 0 0 . . .
−1/4 0 1 0 0 . . .
0 −1 0 1 0 . . .
0 0 −9/4 0 1 . . .
0 0 0 −4 0 . . .
...

...
...

...
...

. . .


, L̃3 =



0 −1 0 0 0 . . .
1/4 0 1 0 0 . . .
0 −1 0 −1 0 . . .
0 0 9/4 0 1 . . .
0 0 0 −4 0 . . .
...

...
...

...
...

. . .


.

These matrices satisfy{
L̃1, L̃2

}
= L̃3,

{
L̃2, L̃3

}
= L̃1,

{
L̃3, L̃1

}
= L̃2,

and the structure constants are equal to zero.
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By substitution of

a1 = 1/2, a2 = 1, b1 = 1/2, b2 = 1, d1 = 1/4, d2 = −1/2

in B1, B2, B3, we obtain the matrices

B̃1 =



1/2 0 0 0 0 . . .
−1 −3/2 0 0 0 . . .
0 −4 5/2 0 0 . . .
0 0 −9 −7/2 0 . . .
0 0 0 −16 9/2 . . .
...

...
...

...
...

. . .


,

B̃2 =



1/2 1 0 0 0 . . .
0 −3/2 1 0 0 . . .
0 0 5/2 1 0 . . .
0 0 0 −7/2 1 . . .
0 0 0 0 9/2 . . .
...

...
...

...
...

. . .


,

B̃3 =



−1/2 −1 0 0 0 . . .
1 −1/2 1 0 0 . . .
0 −4 −1/2 −1 0 . . .
0 0 9 −1/2 1 . . .
0 0 0 −16 −1/2 . . .
...

...
...

...
...

. . .


.

These matrices satisfy{
B̃1, B̃2

}
= B̃3,

{
B̃2, B̃3

}
= B̃1,

{
B̃3, B̃1

}
= B̃2,

and hence the structure constants are equal to zero. We also have B̃2
1 + B̃2

2 + B̃2
3 = (1/4)I.

The Bannai–Ito algebra with zero structure constants has been extensively studied because
its commutation relations can be considered as an anticommutator analog of the ordinary spin
algebra su(2). See [1] and [5] for details about the finite-dimensional representations and the
applications of this algebra.

8 Final remarks

The polynomial sequences in the class of complementary −1 polynomials that are not in the
subclass C0 have complicated recurrence coefficients and their study requires further research
work.

The discrete orthogonality of the −1 polynomials associated with a sequence of pairwise
distinct nodes can be studied using the same approach that we used in [25].

The construction for the −1 polynomials of a scheme analogous to the ones obtained by
Koornwinder in [10, 11, 12] for the q = 1 and the general q-polynomials is an interesting research
project that requires further work.

Another interesting problem is that of finding a systematic way, without using limits, to
associate to a given family of q-hypergeometric polynomials a family of −1 polynomials that
coincides with one that can be obtained by taking limits as q goes to −1 of the given family of
q-polynomials.
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Finding the polynomial sequences in the class C for which the generalized difference opera-
tor D can be interpreted as some kind of simple modified difference or differential operator, or
some sort of Dunkl type operator, such as the operator obtained in [6] for the complementary
Bannai–Ito polynomials, is also an interesting problem.

The study of how our approach compares with the one of Terwilliger may lead to some
generalizations and simplifications of the results already obtained.
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