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1 Introduction

In recent work [4], we discussed a generalisation of the concept of Killing superalgebras, which
arise as supersymmetry algebras of supersymmetric solutions in supergravity theories [11], to
a more general context. To this end, we introduced the concept of an admissible connection D
on a bundle of spinors S over a pseudo-Riemannian manifold M of arbitrary signature equipped
with a Dirac current κ :

⊙
2S → TM or κ :

∧
2S → TM . The Killing (super)algebra associated

to this data was then defined as the vector space KD = VD ⊕ SD, where SD is the space of
D-parallel spinor fields (known here as Killing spinors) and VD is the space of Killing vectors
preserving the connection equipped with a bracket defined using the Dirac current κ and the
(vectorial and spinorial) Lie derivative [4, Definition 3.6].

We discussed the algebraic structure of these Killing superalgebras, showing [4, Theorem 3.10]
that they were filtered subdeformations of flat model (super)algebras which are generalisations of
the (N -extended) Poincaré superalgebra first systematically discussed in [23]. The classification
of these flat models in general signature is given in [1]. We also discussed how the Spencer
cohomology of the flat models can be used to study their filtered subdeformations with particular
focus on the case of Lorentzian signature and symmetric, causal Dirac current, generalising many
results from the previously-studied 11-dimensional supergravity case [13] to general dimension
and N -extension.

While providing a number of theoretical results, our previous work [4] did not contain any
concrete examples. Numerous examples are provided by existing work in Lorentzian signature,
primarily in 11 dimensions [12, 13, 14, 22] but also in 4, 5 and 6 dimensions [2, 8, 9], while work
in Riemannian signature [10] has shown that geometric Killing spinors on higher-dimensional
spheres provide geometric realisations of the exceptional algebras f4 and e8 as well as so(8)
triality as Killing algebras. However, the literature is lacking in some simpler examples which
demonstrate the framework as well as the effect of different choices – for example, signature
and Dirac current – on the definition of admissible connections and on the associated Killing
(super)algebras. In this work, we provide these simple examples by considering admissible
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connections and Killing (super)algebras over 2-dimensional manifolds, and we also study the
Spencer cohomology group H2,2 and filtered deformations of the relevant flat models.

This work is intended as a companion to [4] which illustrates its main theoretical ideas and
is best read in parallel with that work; we use the same terminology and conventions in both
works. We will consider only signatures (0, 2) and (1, 1) since the Clifford algebra is isomorphic
to the real matrix algebra R(2) in both cases, hence the situation is much simpler than the (2, 0)
case where the Clifford algebra is H. Indeed, the former cases are so similar that we will be able
to perform many of the calculations in a signature-agnostic way; we will however choose a sign
convention (see equation (2.1)) which will allow us to work in practice with a positive-definite
inner product in signature (0, 2). The quaternionic (2, 0) case, as well as other generalisations,
will be treated in future work.

2 Constructions, conventions and formulae for spinor modules

Throughout, we let V = R1,1 or R0,2 and note as mentioned in the introduction that in either
case Cl(V ) ∼= R(2). We will define explicit matrix representations of the Clifford algebras in
either case below; for now we note that these will allow us to identify the real irreducible pinor
module S as R2 under left multiplication by matrices.

2.1 Signature-agnostic Clifford algebra conventions

As discussed in [4, Appendix A.1.2], there is a choice of sign convention in the Clifford algebra
relation

v · v = ±η(v, v)1, (2.1)

where v ∈ V ; we take the mathematical convention with − in defining Cl(p, q) = Cl(Rp,q) but
the more common convention in physics with + for explicit calculations, following some previous
work on Killing superalgebras. We will speak of signature (0, 2) to indicate that we are working
with the Clifford algebra Cl(0, 2), thus with the + convention above the inner product η must
in fact be positive-definite. In choosing (ordered) orthonormal bases {eµ} for V , we take the
“mostly-positive” convention η00 = −η11 = −1 in signature (1, 1). We define the sign ς = det[η]
which is +1 in signature (0, 2) and −1 in signature (1, 1).

In an orthonormal basis {eµ}, we denote the matrix representing eµ under any specified
isomorphism Cl(V ) → R(2) by Γµ and also define Γµν := Γ[µΓν]. The matrix representing the
canonical volume element vol ∈

∧
2V is Γ∗ = Γ12 or Γ01 depending on signature. Respectively

to signature, {1,Γ1,Γ2,Γ∗} or {1,Γ0,Γ1,Γ∗} is a basis for R(2) and we will refer to these as
Γ-matrices. The algebraic relations among these matrices are as follows:

ΓµΓν = Γµν + ηµν1 = εµνΓ∗ + ηµν1, ΓµΓ∗ = −Γ∗Γµ = ςεµνΓ
ν , (Γ∗)

2 = −ς1,

where εµν is the Levi-Civita symbol defined so that ε12 = −ε21 = +1 in definite signature and
ε01 = −ε10 = +1 in Lorentzian signature. Using the metric to raise and lower indices, we
must define the symbols with raised indices so that ε12 = −ε21 = +1 and ε01 = −ε10 = −1
respectively. We have the following combinatorial identities for εµν :

εµνερσ = ς(ηµρηνσ − ηµσηνρ), εµνε
ν

ρ = ςηµρ, εµνε
µν = 2ς.

For the avoidance of confusion in calculations, it is useful to denote the top-rank gamma matrix
with indices raised as Γ∗ = Γ12 or Γ01 and note the following Γ∗ = ςΓ∗, Γ

µν = εµνΓ∗ = ςεµνΓ∗.
We also have the following traces of products ΓµΓµ = 21, ΓµΓνΓµ = 0, ΓµΓ∗Γµ = −2Γ∗.
Finally, we note that the even subalgebra Cl0(V ) corresponds to the span R{1,Γ∗} and the Lie
algebra so(V ) ∼= R to the span RΓ∗.
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2.2 Pinor and spinor modules, admissible bilinears and Dirac currents

We now describe the (s)pinor modules as well as their admissible bilinears and Dirac current
explicitly. We will make extensive use of the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Note that σ1, σ3 are real symmetric matrices and Ω = iσ2 is the (real and skew-symmetric)
standard symplectic matrix. The sets {1, σ1, σ2, σ3} and {1, σ1, σ3,Ω = iσ2} are both C-bases
for C(2), while the latter is also an R-basis for R(2). The Pauli matrices satisfy the algebraic iden-
tities σ†

i = σi, σiσj = δij1 + iεijkσk, where
† denotes Hermitian adjoint (conjugate-transpose),

εijk is the Levi-Civita symbol with normalisation ε123 = +1, and we use the Einstein sum-
mation convention on repeated indices. The second identity is also useful to express in the
form [σi, σj ] = 2iεijkσk, {σi, σj} = 2δij1, where [−,−] is the matrix commutator, {−,−} is the
anti-commutator.

We recall the following from [1] where the flat model (super)algebras are classified by clas-
sifying the possible Dirac currents, that is so(V )-equivariant maps κ :

⊙
2S → V where S is

a (possibly N -extended) spinor module of so(V ). This classification essentially reduces to classi-
fying such maps on irreducible pinor modules S, and the space of such maps is spanned by those
Dirac currents κ obtained from admissible bilinears B (defined below) on S via the formula

η(κ(ϵ, ϵ′), v) = B(ϵ, v · ϵ′) (2.2)

for all ϵ, ϵ′ ∈ S, v ∈ V .

Definition 2.1 (admissible bilinear). Let (V, η) be a (pseudo-)inner product space and let S
be a real irreducible module of Cl(V ) (a real pinor module). A real bilinear form B on S is
admissible if

(1) B is either symmetric or skew-symmetric B(ϵ, ϵ′) = ςBB(ϵ′, ϵ) for all ϵ, ϵ′ ∈ S, where
ςB = ±1 is called the symmetry of B.

(2) Clifford multiplication by an element v ∈ V is either B-symmetric or B-skew-symmetric
B(ϵ, v · ϵ′) = τBB(v · ϵ, ϵ′) for all ϵ, ϵ′ ∈ S, where τB = ±1 is called the type of B.

(3) whenever S is reducible as an so(V )-module, S = S+ ⊕ S−, the submodules S± are either
mutually B-orthogonal (B(S+, S−) = 0) or B-isotropic (B(S±, S±) = 0); we define the
isotropy ιB of B to be +1 in the first case and −1 in the second.

Furthermore, if B is an admissible bilinear on S, the Dirac current κ :
⊙

2S → V defined by
equation (2.2) satisfies κ(ϵ, ϵ′) = ςκκ(ϵ

′, ϵ) for all ϵ, ϵ′ ∈ S, where ςκ = ςBτB = ±1 is called the
symmetry of κ.

2.2.1 Signature (1, 1)

Here we choose the representation Cl(1, 1) → R(2) defined by Γ0 = iσ2 = Ω, Γ1 = σ1, Γµν =
εµνσ3. The even subalgebra Cl0̄(1, 1) is embedded as the subalgebra of diagonal matrices and
is isomorphic as an R-algebra to R2. The pinor module is S = R2, which decomposes as
a representation of the even subalgebra as S = S+ ⊕ S−, where the irreducible real spinor
modules S+ = Re1, S− = Re2 (where ei are the standard basis vectors) are the ±1 eigenspaces
of Γ01 = σ3.

From the classification in [1], we expect to find two independent admissible bilinears, both
of which have symmetric Dirac currents with respect to which S+, S− are mutually orthogonal.
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Table 1. Properties of admissible bilinears and their Dirac currents in signature (1, 1).

B(ϵ, ϵ′) ςB τB ιB ςκ ικ

ϵTσ1ϵ
′ + + − + +

ϵTΩϵ′ − − − + +

Table 2. Properties of admissible bilinears and their Dirac currents in signature (0, 2).

B(ϵ, ϵ′) ςB τB ςκ

ϵTϵ′ + + +

ϵTΩϵ′ − − +

It is simple to verify that the bilinear products represented by the matrices σ1 and Ω = iσ2
are admissible, with symmetry and isotropy properties given in Table 1. Either Dirac current
restricts non-trivially to S± (in fact they restrict to the same map

⊙
2S± → V ) but neither

bilinear does.

2.2.2 Signature (0, 2)

We define the representation Cl0̄(0, 2) → R(2) by Γ1 = σ3, Γ2 = σ1, Γµν = εµνΩ. The even
subalgebra Cl0̄(0, 2) is embedded as the span of 1 and Ω, which is isomorphic to C as an R-
algebra. The pinor module is again S = R2 but is irreducible under the action of Cl0(0, 2), so
we have a unique irreducible real spinor module S1 = S.

The standard inner product and symplectic form on S are both admissible bilinears; since
we expect two such independent bilinears, both with symmetric Dirac current, from the classi-
fication [1], this exhausts the possibilities. Table 2 lists their properties. There are no isotropy
signs because S is irreducible under the action of Cl0(0, 2).

2.3 Adjoints and Fierz identity

The Fierz identity is a formula which allows us to rearrange products of (s)pinors involving
bilinears. It is simplest to express using conjugate spinor notation; for ϵ ∈ S, we denote by ϵ the
element of S∗ given by ϵ′ 7→ ϵϵ′ := B(ϵ, ϵ′) (where we have fixed the bilinear B). Then as well as
the inner product ϵϵ′, we have an outer product (or tensor product) ϵϵ′ := ϵ⊗ϵ′ ∈ S⊗S∗ = EndS.
If we choose an abstract basis for S with indices a, b, . . . = 1, 2 in which ϵ is represented by the
vector (ϵa)a=1,2, its adjoint ϵ by the covector (ϵa)a=1,2, a bilinear B by the matrix (Bab)a,b=1,2,
and an endomorphism Γ by the matrix (Γa

b)a,b=1,2, we can write the following in Einstein
notation: ϵb = ϵaBab, ϵϵ = ϵbϵ

b = Babϵ
aϵb, (ϵϵ)ab = ϵaϵb = ϵaϵcBcb.

Proposition 2.2 (Fierz identity). Let S be the real irreducible pinor module in signature (1, 1)
or (0, 2) and B either of the admissible bilinears from the appropriate table above. Then for
ϵ, ϵ′ ∈ S, we have

ϵϵ′ =
1

2

(
(ϵ′ϵ)1+ (ϵ′Γµϵ)Γ

µ − ς(ϵ′Γ∗ϵ)Γ∗
)
.

Proof. Since ϵϵ′ is an endomorphism of S, it is an R-linear combination of Γ-matrices; we
have ϵϵ′ = a1+ bµΓ

µ + cΓ∗ for some a, bµ, c ∈ R. We see from the explicit matrix represen-
tation given in Section 2.2 that Γµ and Γ∗ are traceless, while tr1 = dim S = 2, whence we
compute tr(ϵϵ′) = 2a, tr(Γνϵϵ

′) = 2bν , tr(Γ∗ϵϵ
′) = −ς2c. On the other hand, for any Γ ∈ End S,

tr(Γϵϵ′) = ϵ′Γϵ, which can be verified in the explicit representation or by noting that in Einstein
notation, both expressions are equal to BabΓ

b
cϵ

′aϵc. The result follows immediately. ■
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We can now render the definition (2.2) of the Dirac current κ :
⊙

2S → V in the more
convenient form κ(ϵ, ϵ′)µ = B(ϵ,Γµϵ′). Since κ is necessarily symmetric in either signature,
for ϵ ∈ S we define κϵ := κ(ϵ, ϵ) ∈ V which has components κµϵ = ϵΓµϵ = B(ϵ,Γµϵ).

The Fierz identity has consequences for the causal properties of the Dirac current.

Corollary 2.3. Let ϵ ∈ S. Then ∥κϵ∥2 = (ϵϵ)2 + ς(ϵΓ∗ϵ)
2. In particular, in the Riemannian

case (ς = +1), κϵ = 0 if and only if ϵ = 0; in the Lorentzian case (ς = −1), κ is null if and only
if ϵ is chiral, otherwise κ is spacelike for ςB = +1 and timelike for ςB = −1.

Proof. For the first claim, applying the Fierz identity to the expression (ϵϵ)2 gives us

(ϵϵ)2 = ϵ(ϵϵ)ϵ =
1

2
((ϵϵ)(ϵϵ) + (ϵΓµϵ)(ϵΓ

µϵ)− ς(ϵΓ∗ϵ)(ϵΓ∗ϵ)),

which can be rearranged to give the desired expression. Now, consider the two quadratic
forms ϵΓ∗ϵ and ϵϵ and note that ϵΓ∗ϵ = 0 if ςB = +1 and ϵϵ = 0 if ςB = −1. For ς = +1,
the expression which does not vanish identically vanishes if and only if ϵ = 0 (check this in the
explicit representation). For ς = −1, since the isotropy ιB = −1 for either admissible bilin-
ear (see Table 1) and Γ∗ preserves the chiral subspaces, the expression which does not vanish
identically vanishes if and only if ϵ ∈ S±. This proves the second claim. ■

3 Spencer cohomology and filtered subdeformations

We now consider flat model superalgebras s (as defined in [4, Definition 2.1]) associated to the
inner product space V = R1,1 or R0,2 with odd part S = S or S = S+ (the latter only in the
Lorentzian case) and the Dirac current κ :

⊙
2S → V being the one associated to one of the

two admissible bilinears described in Table 1 or Table 2 respectively, or a restriction thereof
(more details below). Note that only superalgebras are possible here since all Dirac currents
are symmetric. In either signature, the two Dirac currents on S can be distinguished by the
invariant ςB = ±1. We will determine the Spencer cohomology group H2,2(s−; s) for each such
superalgebra as well as their maximally supersymmetric filtered subdeformations.

We recall that each superalgebra s is Z-graded with s−2 = V , s−1 = S, s0 = so(V ) and si = 0
otherwise, and its brackets are

[A,B] = AB −BA = 0, [A, v] = Av, [v, w] = 0,

[A, s] = A · s = 1

2
ωA · s, [v, s] = 0,

[
s, s′

]
= κ(s, s′), (3.1)

for A,B ∈ s0, s, s
′ ∈ s−1, v, w ∈ s−2, and we will make use of depolarised equations involving

symmetric combinations of spinors; for example the odd-odd bracket can be defined as [s, s] =
κs := κ(s, s) for all s ∈ S. Note that since dimV = 2, dim s0 = dim so(V ) = 1, hence the first
bracket must vanish.

In signature (0, 2), the pinor representation is irreducible under the action of the spin group,
thus we take S = S1 = S and for either choice of Dirac current from Table 2, s is a minimal flat
model superalgebra. We note that EndS ∼= Cl(V ).

In the (1, 1) case, the pinor representation is reducible under the spin group with S = S+⊕S−.
Table 1 gives the two possible Dirac currents on S, both of which have ικ = +1 and restrict to
the same non-trivial Dirac current on S±. Thus for either map we can choose S = S (which we
will call the “non-chiral” case) or, without loss of generality, S = S+ (which we call “chiral”).
In the non-chiral case we have EndS ∼= Cl(V ), while in the chiral case EndS ∼= Cl0(V ). In
what follows, we will work mainly with the non-chiral case and then bootstrap the results for
the chiral case from it at the end. We note that only the chiral case gives a minimal flat model
superalgebra.
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3.1 Spencer cohomology

In either signature, let us fix S = S and an admissible bilinear B and corresponding Dirac
current κ, recalling that in either signature there are two choices for B (or κ) distinguished
by ςB = ±1. We let s be the corresponding flat model. We showed in [4, Theorem 3.10]
that the Killing superalgebra associated to an admissible connection (see Definition 4.1 and
also [4, Definition 3.6]) on the spinor bundle of a spin manifold with Dirac current κ is a filtered
subdeformation of a flat model superalgebra s; that is, it is a filtered Lie superalgebra whose
associated graded Lie superalgebra is isomorphic to a graded subalgebra a of s.

We recall that the Spencer complex (C•,•(s−; s), ∂) of s is the Chevalley–Eilenberg complex
of the graded subalgebra s− =

⊗
i<0si = V ⊕S with values in the module s, where the action is

the restriction of the adjoint representation of s to s−, and apart from the homological grading,
it inherits a grading from that of s compatible with the differential ∂. In particular, the graded
components of the cochain spaces are Cd,p(s−; s) = 0 for p < 0 and

Cd,p(s−; s) =
(∧ps∗− ⊗ s

)
d
= Hom(

∧ps−, s)d

for p ≥ 0, where
∧

p is taken in the “super-sense” and the subscript d indicates maps of
degree d with respect to the grading inherited from s. We will not explicitly give the for-
mula for ∂ here; for a full description see [4, Section 2.2] or the original work of Cheng and
Kac on filtered deformations of graded superalgebras [6]. The natural action of s on the full
cochain spaces C•,p(s−; s) =

∧
ps∗− ⊗ s = Hom(

∧
ps−, s) restricts to an action of the subalge-

bra s0 = so(V ) which preserves the grading d and differential ∂, so it also preserves the spaces
of graded cocycles Zd,p(s−; s) and coboundaries Bd,p(s−; s), whence there is an induced action
of s0 on the graded cohomology groups Hd,p(s−; s) = Zd,p(s−; s)/B

d,p(s−; s).
Of most relevance here is the cohomology group H2,2(s−; s) which contains the infinitesimal

filtered deformations of certain graded subalgebras (namely the maximally supersymmetric ones)
of s, about which we will say more in Section 3.2. The d = 2 subcomplex is

0 −→ C2,1(s−; s) = Hom(V, so(V ))

−→ C2,2(s−; s) = Hom
(∧2V, V

)
⊕Hom(V ⊗ S, S)⊕Hom

(⊙2S, so(V )
)

−→ C2,3(s−; s) = Hom
(
V ⊗

⊙2S, V
)
⊕Hom

(⊙3S, S
)

−→ 0.

The first non-trivial codifferential ∂ : C2,1(s−; s) → C2,2(s−; s) is injective and projects to an
isomorphism onto the first component of C2,2(s−; s), whence any (2, 2)-cocycle (i.e., an element
of Z2,2(s−; s)) is homologous to a unique cocycle β + γ with β ∈ Hom(V ⊗ S, S) and γ ∈
Hom

(⊙
2S, so(V )

)
. We call a cocycle of the latter form normalised and denote the space

of normalised cocycles by H2,2; it follows that H2,2 ∼= H2,2(s−; s) as s0 = so(V )-modules [4,
Lemma 4.4]. Explicitly, the cocycle condition ∂(β + γ) = 0 is equivalent to

2κ(s, β(v, s)) + γ(s, s)v = 0, (3.2)

β(κs, s) + γ(s, s) · s = 0 (3.3)

for all s ∈ S, v ∈ V – these equations also appeared as [4, equations (4.2) and (4.3)]. As in loc.
cit., we refer to them as the normalised Spencer cocycle conditions for (2, 2)-cochains since H2,2

is precisely the space of solutions to this system.
Let us now solve this system of equations using a method previously used in work applying

Spencer cohomology to supergravity [5, 8, 9, 14]. We begin by parametrising β. Since Hom(V ⊗
S, S) ∼= Hom(V,EndS), for v ∈ V we can write βv ∈ EndS for the endomorphism s 7→ βv(s) :=
β(v, s), and βµ := βeµ in the orthonormal basis {eµ}. Then since EndS ∼= Cl(V ) ∼= R(2), β can
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be parametrised as βµ = aµ1+bµνΓ
ν+cµΓ∗ where we use the Einstein summation convention and

the coefficients take real values; we can consider them to be the components of some a, c ∈ V ∗,
b ∈

⊗
2V ∗. Now, the first cocycle condition (3.2) is equivalent to

γ(s, s)µν = −2sΓµβνs,

where in forming the conjugate s we use the admissible bilinear B. This equation completely
determines γ in terms of β, and since γ must take values in so(V ), it places the following
constraint on β:

sΓ(µβν)s = 0 (3.4)

for all s ∈ S. Using our parametrisation for β and evaluating products of Γ-matrices gives us

sΓµβνs = aνsΓµs+ bνρsΓµΓ
ρs+ cνsΓµΓ∗s

= bνµss+ (aνηµρ + ςcνεµρ)sΓ
ρs+ ε ρ

µ bνρsΓ∗s,

where we recall that εµν here denotes the Levi-Civita symbol. If ςB = +1, note that sΓ∗s = 0
for all s ∈ S, and one can show that (3.4) holds if and only if b(νµ) = 0 and a(νηµ)ρ+ ςc(νεµ)ρ = 0
for ςB = +1. Since we are working in two dimensions, the first equation implies that bµν = bεµν
for some b ∈ R. Fully symmetrising the latter equation gives a(µηνρ) = 0, and tracing this gives
a = 0. Substituting this back into the full equation then gives us c = 0. On the other hand, if
ςB = −1, ss = 0 for all s ∈ S, and (3.4) holds if and only if ε ρ

(µ bν)ρ = 0 and a(νηµ)ρ+ςc(νεµ)ρ = 0
for ςB = −1. One can show (for instance by substituting values for µ, ν) that the first equation
is satisfied if and only if bµν = bηµν and again the latter equation has only the trivial solution.
Thus we have shown that β is parametrised by a single parameter b ∈ R, with

βµ =

{
bεµνΓ

ν for ςB = +1,

bΓµ for ςB = −1.
(3.5)

Substituting this back into our equation for γ, we have

γ(s, s)µν =

{
2bεµνss for ςB = +1,

−2bεµνsΓ∗s for ςB = −1.
(3.6)

The remaining cocycle condition (3.3) is then identically satisfied by the Fierz identity, as we
will now demonstrate. We have

β(κs, s) + γ(s, s) · s = sΓµsβµs+
1

4
γ(s, s)µνΓ

µνs

=

{
bεµν(sΓ

µs)Γνs+ ςb(ss)Γ∗s for ςB = +1,

b(sΓµs)Γ
µs− ςb(sΓ∗s)Γ∗s for ςB = −1.

Now, the Fierz identity with either bilinear (see Proposition 2.2) gives us

ss =
1

2
((ss)1+ (sΓµs)Γµ − ς(sΓ∗s)Γ∗),

but we note that the first term on the right-hand side vanishes for ςB = −1, and the third
vanishes for ςB = +1. Thus for ςB = +1,

εµν(sΓ
µs)Γνs = εµνΓ

ν(ss)Γµs =
1

2
(ss)εµνΓ

νΓµs+
1

2
(sΓρs)εµνΓ

νΓρΓµs = −ς(ss)Γ∗s,
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and for ςB = −1,

(sΓµs)Γ
µs = Γµ(ss)Γµs =

1

2
(sΓρs)ΓµΓρΓµs− ς

1

2
(sΓ∗s)Γ

µΓ∗Γµs = ς(sΓ∗s)Γ∗s,

whence β(κs, s)+γ(s, s) ·s = 0, so we have solved the Spencer cocycle conditions (3.2) and (3.3)
in the minimal case for (0, 2) and the minimal non-chiral case for (1, 1) (S = S). In the minimal
chiral (1, 1) case (S = S+), we can follow a similar argument except that we must set bµν = cµ = 0
in the parametrisation of β, whence we have only the trivial solution. In particular, we have
shown the following.

Proposition 3.1. In signature (1, 1) or (0, 2), let s be the flat model superalgebra defined by
S = S and κ any of the Dirac currents from Table 1 or Table 2, respectively. Then H2,2(s−; s) ∼= R
as an s0 = so(V )-module. The space of normalised cocycles H2,2 consists of elements β+γ given
by (3.5), (3.6) for b ∈ R.

In signature (1, 1), if S = S+, then there is a unique non-trivial Dirac current (up to rescaling)
and we have H2,2(s−; s) = 0.

In either signature, if S = S, one could define the Dirac current κ to be any linear combination
of those from Table 1 or Table 2 (as appropriate). One could then view κ as being obtained
from a bilinear B which is not admissible unless it is a non-zero scalar multiple of one of the two
from the table. One can show that H2,2(s−; s) = R whenever B is non-degenerate. However,
since the general calculation is somewhat more involved and the case where B is not admissible
is perhaps of limited interest, we omit the details.

3.2 Maximally supersymmetric filtered subdeformations

Let us now use the result above to describe the filtered subdeformations of s with odd part
s−1 = S; i.e., the maximally supersymmetric deformations, in the terminology of [4, Defini-
tion 4.10]. Since we found that the Spencer cohomology in the chiral case (S = S+) in Lorentzian
signature is trivial, we consider only the non-chiral case (S = S) in either signature. Note that
there is no sub-maximal highly supersymmetric case here since dimS = 2.

In [4, Section 4.5.5], it is argued that odd-generated maximally supersymmetric filtered sub-
deformations are determined by normalised cocycles β + γ ∈ H2,2 which are invariant under
the action of the subalgebra h(β+γ) := γ(D) of so(V ), where D = kerκ ⊆

⊙
2S is the Dirac

kernel, and which satisfy some integrability conditions. In the present case, dim so(V ) = 1, so
we must either have h(β+γ) = 0 or h(β+γ) = so(V ). Moreover, any element of H2,2 is actually
so(V )-invariant since H2,2 ∼= R, the trivial so(V )-module. In particular, it suffices to study
filtered deformations s̃ of the whole superalgebra s, since any deformation of the unique proper
maximally supersymmetric subalgebra s− can be extended to a deformation of s.

It remains only to check the integrability conditions, which were developed in [4, Sec-
tion 4.4.2]. We adapt the definition of integrable cocycles [4, Definition 4.23] as follows. Fix-
ing β + γ ∈ H2,2, let Θ: V ⊗

⊙
2S → so(V ) be the map defined by Θ(v, s, s) = 2γ(s, β(v, s))

for v ∈ V , s ∈ S. We say that β + γ is integrable if the following hold.

(1) The map Θ annihilates the Dirac kernel D so factors through a map θ : V ⊗ V → so(V )
making the following diagram commute

V ⊗
⊙

2S′ so(V )

V ⊗ V.

Θ

Id⊗κ θ

It follows that this map θ is skew-symmetric.



Killing Superalgebras in 2 Dimensions 9

(2) The map θ :
∧

2V → so(V ) satisfies

θ(v, w) · s = β(v, β(w, s))− β(w, β(v, s))

for all v, w ∈ V , s ∈ S. If β + γ is integrable (and non-zero) then it defines a (non-
trivial) filtered deformation s̃ of s with the following brackets (compare with undeformed
brackets (3.1) on the same underlying vector space)

[A,B] = AB −BA = 0, [A, v] = Av ∈ S, [v, w] = θ(v, w) ∈ so(V ),

[A, s] = A · s = 1

2
ωA · s ∈ S, [v, s] = β(v, s) ∈ S,

[s, s] = κs + γ(s, s) ∈ V ⊕ so(V ), (3.7)

for A,B ∈ s0, s, s
′ ∈ s−1, v, w ∈ s−2, and every filtered deformation of s is obtained in this

manner.

We will show that every element of H2,2 is in fact integrable and then describe the filtered
deformations more explicitly. For the first condition, a simple computation in an orthonormal
basis shows that

Θµνρ(s, s) := Θµν(eρ, s, s) = 2γµν(s, βρs) = θµνρσκ
σ
s ,

where

θµνρσ =

{
4b2εµνερσ for ςB = +1,

σ4b2εµνερσ for ςB = −1.

Thus we have shown that Θ factors through a map θ :
∧

2V → so(V ) with components given
above, hence the first integrability condition is satisfied. In component form, the second integra-
bility condition is 1

4θµνρσΓ
ρσs = [βµ, βν ]s for all s ∈ S. The left-hand side can be rewritten as

1

4
θµνρσΓ

ρσs =
1

4
θµνρσε

ρσΓ∗s =

{
ς2b2εµνΓ∗ for ςB = +1,

2b2εµνΓ∗ for ςB = −1.

The commutator in the right-hand side can easily be computed to give

[βµ, βν ] =

{
ς2b2εµνΓ∗ for ςB = +1,

2b2εµνΓ∗ for ςB = −1,

whence the integrability condition is identically satisfied.
Thus for either signature and any choice of Dirac current, there is a one-parameter family

of filtered deformations of s with parameter b ∈ R. Let us describe the brackets (3.7) of such
a deformation s̃ for fixed b ̸= 0 in terms of an explicit basis for the even part of the superalgebra s.
In our chosen orthonormal basis, let Pµ denote the infinitesimal translation generators (of which
there are two in either signature) and let Lµν denote the infinitesimal generators of so(V ); in our
case there is one such generator Lµν = εµνL∗ where L∗ = L01 in signature (1, 1) and L∗ = L12

in signature (0, 2).
The brackets [s0, s0], [s0, s−1] and [s0, s−2] are not deformed; the first is trivial while the

others are [L∗, s] =
1
2Γ∗s, [L∗, Pµ] = −ςεµνP

ν , and the deformed brackets take the following
form:

[Pµ, Pν ] = ς4b2εµνL∗, [Pµ, s] = bεµνΓ
νs, [s, s] = κµsPµ + ς2b(ss)L∗, ςB = +1,
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or

[Pµ, Pν ] = 4b2εµνL∗, [Pµ, s] = bΓµs, [s, s] = κµsPµ − ς2b(sΓ∗s)L∗ ςB = −1.

Note that since [V, V ] = RL∗ = s̃0 if b ̸= 0, there are no maximally supersymmetric proper
subalgebras; the only non-trivial maximally supersymmetric filtered subdeformations are defor-
mations of the whole graded superalgebra s.

In each case, the even part of s̃ is the isometry algebra (algebra of Killing vectors) for a max-
imally symmetric pseudo-Riemannian geometry; we have the isometry algebra of 2-dimensional
hyperbolic space with scalar curvature R = −8b2 for either sign ςB in the Riemannian case,
and dS2

(
R = 8b2

)
for ςB = +1 and AdS2

(
R = −8b2

)
for ςB = −1 in the Lorentzian case. In-

deed, each of those geometries is a homogeneous space for the metric Lie pair
(
s̃0, s0 = so(V ), η

)
,

where we note that V ∼= s̃0/so(V ) as an so(V )-module. Moreover, for ς = ςB = −1, s̃ is actu-
ally the standard anti-de Sitter superalgebra (see [24]). Upon considering Killing spinors and
supersymmetric geometries in 2 dimensions below, we will find that these homogeneous spaces
are precisely the maximally supersymmetric geometries, at least up to local isometry.

4 Admissible connections and Killing superalgebras

Throughout, we let (M, g) be a connected 2-dimensional pseudo-Riemannian spin manifold of
either Riemannian1 or Lorentzian signature; in Lorentzian signature we additionally assume
that (M, g) is time-orientable (so that it is strongly spin in the sense of, e.g., [7]). Fixing a spin
structure P → M , we let S := P ×Spin(V ) S be the spinor bundle with fibre S and S = Γ(S)
be its space of sections. We denote the Levi-Civita connection (and its lift to S) by ∇. We
let B be either of the admissible bilinears on S in each signature; since B is so(V )-invariant,
it induces a ∇-parallel bilinear form ⟨−,−⟩ on S. There is then a Dirac current on the spinor
bundle κ :

⊙
2S → TM defined by the equation g(κ(ϵ, ϵ′), X) = ⟨ϵ,X · ϵ′⟩ for all X ∈ X(M),

ϵ, ϵ′ ∈ S.

Let vol denote the canonical volume form on (M, g). Then in a local orthonormal frame,
vol ·ϵ = Γ∗ϵ for all ϵ ∈ S. We note that for α(p) ∈ Ωp(M), we have

vol ·α(0) = α(0) vol = ∗α(0), vol ·α(1) = − ∗ α(1), vol ·α(2) = − ∗ α(2),

where · denotes Clifford multiplication.

4.1 Admissible connections

We now consider admissible connectionsD on the spinor bundle S equipped with Dirac current κ.
We can always write such a connection as D = ∇− β for some unique β ∈ Ω1(M ;S). We recall
the following definition [4, Definition 3.6], noting that since we deal with the case of a symmetric
Dirac current we have simplified the conditions by polarising them.

Definition 4.1. The connection D = ∇− β on S is admissible if the following hold:

(1) The section γ of the bundle Hom
(⊙

2S,End(TM)
)
defined by γ(ϵ, ϵ)X := −2κ(ϵ, β(X)ϵ)

satisfies γ(ϵ, ϵ) ∈ so(M, g) for all ϵ ∈ S;

(2) β(κϵ)ϵ+ γ(ϵ, ϵ) · ϵ = 0 for all ϵ ∈ S;

(3) Lκϵβ = 0 for all ϵ ∈ SD.

1Recall that we take a + sign in the Clifford relation (2.1) so that when we work with a Riemannian (positive-
definite) metric, the signature is (0, 2) for the purposes of Clifford algebra constructions.
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If D is admissible, the differential equation Dϵ = 0 (equivalently ∇ϵ = βϵ) is called the Killing
spinor equation and SD = {ϵ ∈ S | Dϵ = 0} the space of Killing spinors. Furthermore,

VD = {X ∈ X(M) | LXg = 0, LXβ = 0}

is the space of restricted Killing vectors. The Killing superalgebra is the vector superspace KD

with (KD)0 = VD and (KD)1 = SD equipped with the Lie superalgebra bracket [X,Y ] = LXY ,
[X, ϵ] = LXϵ, [ϵ, ϵ] = κϵ, for X,Y ∈ VD and ϵ ∈ SD, where LXϵ = ∇Xϵ − (∇X) · ϵ is the
spinorial Lie derivative of [18].

The first two conditions in the definition (taken pointwise) are essentially the normalised
Spencer cocycle conditions (3.2) and (3.3) in degree (2, 2) for the appropriate flat model super-
algebra2 s, the solution to which is given by equations (3.5) and (3.6). In global notation, we
have

β(X)ϵ =

{
bX · ϵ for ςB = −1,

b(∗X) · ϵ for ςB = +1,
(4.1)

where now b ∈ C∞(M). For ςB = −1, the Killing spinor equation is ∇Xϵ = bX · ϵ, so we are
working with a generalisation of geometric Killing spinors where the Killing number is allowed
to be a function, known as the Killing function, rather than a constant. This generalisation was
considered for complex spinors on Riemannian spin manifolds in [20], where it was shown in
particular that the Killing function must be either real and constant or purely imaginary. That
a real Killing function must be constant was already known from [16], the imaginary case was
later studied in detail in [21]. Note that our choice to work with the “wrong” sign (+) in the
Clifford relation (2.1) effectively exchanges the roles of real and imaginary Killing number,3 so
that our function b being real-valued means that we are actually working in the “imaginary” case
which will be verified when we consider the geometries supporting Killing (D-parallel) spinors.
For ςB = +1, we have another generalisation of geometric Killing spinors known as skew-Killing
spinors [15] (again, specifically the “imaginary” case).

It remains to check the third condition from the definition. We will first derive some results
using the integrability condition RDϵ = 0 for the existence of D-parallel spinors. We start with
the following formula for the curvature of D [4, equation (3.2)]:

RD(X,Y )ϵ = R(X,Y ) · ϵ+ [β(X), β(Y )]ϵ− (∇Xβ)(Y )ϵ+ (∇Y β)(X)ϵ

for all X,Y ∈ X(M), ϵ ∈ S, where R is the Riemann curvature considered as a 2-form with
values in skew-symmetric endomorphisms of TM .

For ςB = −1, we compute the following commutator:

[β(X), β(Y )]ϵ = b2(X · Y − Y ·X) · ϵ = 2b2(X ∧ Y ) · ϵ, ςB = −1,

for X,Y ∈ X(M) and ϵ ∈ S, and (∇Xβ)(Y ) = (∇Xb)Y · ϵ. Our integrability condition is thus

R(X,Y ) · ϵ+ 2b2(X ∧ Y ) · ϵ− ((∇Xb)Y − (∇Y b)X) · ϵ = 0, ςB = −1.

In the ςB = +1 case, we similarly find that

[β(X), β(Y )]ϵ = 2b2((∗X) ∧ (∗Y )) · ϵ = ς2b2(X ∧ Y ) · ϵ, ςB = +1.

2Since we concluded that H2,2 = 0 for the chiral case S = S+ in signature (1, 1), the only admissible connection
is ∇ in that case, meaning that Killing spinors are nothing but parallel spinors, hence we only consider the non-
chiral case.

3We can recover the standard treatment by working with complex Clifford algebras and spinors and replacing
Γµ 7→ iΓµ which has the same effect on the Killing spinor equation as replacing b 7→ ib.
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The second equality is justified as follows, using the definition of the Hodge star and denoting
the volume form by vol

(∗X) ∧ (∗Y ) = g(∗X,Y ) vol = g(Y, ∗X) vol = Y ∧ (∗ ∗X) = −(∗ ∗X) ∧ Y = ςX ∧ Y

since we can show that ∗2 = −ς Id when acting on 1-vectors. The integrability equation is then

R(X,Y ) · ϵ+ ς2b2(X ∧ Y ) · ϵ− ((∇Xb) ∗ Y − (∇Y b) ∗X) · ϵ = 0, ςB = +1.

We use the integrability conditions above to show the following.

Lemma 4.2. If ϵ is a spinor field such that ∇Xϵ = β(X)ϵ then ∇κϵb = 0.

Proof. First, note that R(X,Y ) · ϵ and (X ∧ Y ) · ϵ are proportional to vol ·ϵ, so in the ςB = +1
case, pairing the integrability condition with ϵ and using the fact that ⟨ϵ, vol ·ϵ⟩ = 0 gives us

(∇Xb)g(∗Y, κϵ)− (∇Y b)g(∗X,κϵ) = 0

for arbitrary X,Y ∈ X(M). In the ςB = −1 case, we get the same equation by pairing
with vol ·ϵ and using ⟨ϵ, ϵ⟩ = 0 along with vol · vol = −ς1 and vol ·X = − ∗ X. Then, us-
ing the definition of the Hodge star operator and ∇Xb = ıdbX, the equation above is equivalent
to ıdb(X ∧ Y ) ∧ κϵ = 0, which using a Leibniz rule is equivalent to ıκϵdb(X ∧ Y ) = 0. Finally,
since X, Y are arbitrary, this gives us ∇κϵb = ıκϵdb = 0. ■

Proposition 4.3. Let (M, g) be a 2-dimensional (strongly) spin manifold with signature (0, 2)
or (1, 1), let B be an admissible bilinear on the irreducible pinor module S = S (of which there
are two, distinguished by ςB = ±1) and κ the corresponding Dirac current. Let S denote the
spinor bundle associated to S. Then if we define β ∈ Ω1(M ; EndS) by equation (4.1), D = ∇−β
is an admissible connection.

Proof. As already noted, conditions (1) and (2) of Definition 4.1 are uniquely satisfied by
equation (4.1). It remains to show condition (3), namely that Lκϵβ = 0 for all ϵ ∈ SD. For
ςB = −1, we have

(Lκϵβ)(X)ζ = Lκϵ(β(X)ζ)− β(LκϵX)ζ − β(X)(Lκϵζ)

= Lκϵ(bX · ζ)− b(LκϵX) · ζ − bX · (Lκϵζ) = (Lκϵb)X · ζ

for all X ∈ X(M) and ϵ, ζ ∈ S, where we have used the Leibniz rule twice. Similarly, for
ςB = +1 we have (Lκϵβ)(X)ζ = (Lκϵb)(∗X) · ζ. But then if ϵ ∈ SD, by Lemma 4.2, we have
Lκϵb = ∇κϵb = 0, whence Lκϵβ = 0 as required. ■

Thus we have determined the precise form of the admissible connections with respect to the
two different choices of Dirac currents. Since both maps are symmetric, these connections give
rise to Killing superalgebras.

4.2 Further insights from integrability

We can obtain yet further results on the geometries which support Killing superalgebras using
the integrability equations. If we have some non-zero ϵ ∈ SD, then since RD(X,Y )ϵ = 0 the
determinant of RD(X,Y ) (as a spinor endomorphism) must vanish everywhere. Contracting the
curvature with a Levi-Civita symbol for convenience, we have the following in a local frame:

εµνRD
µν =



(
1
4ε

µνεστRµνστ + 2b2εµνεµν
)
Γ∗ − 2εµν∇µbΓν

= ς
(
1
2R+ 4b2

)
Γ∗ − 2εµν∇µbΓν for ςB = −1,(

1
4ε

µνεστRµνστ + ς2b2εµνεµν
)
Γ∗ + ς2∇µbΓµ

=
(
ς 12R+ 4b2

)
Γ∗ + ς2∇µbΓµ for ςB = +1,

(4.2)
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where in the second line of each case we have used the well-known fact that the Riemann tensor
in 2 dimensions can be expressed in terms of the scalar curvature R

Rµνστ = 1
2R(ηµσηντ − ηµσηντ ) = ς 12Rεµνεστ ,

and a combinatorial identity for εµν . Recalling our explicit descriptions of the Clifford alge-
bras Cl(0, 2) and Cl(1, 1) in terms of the Pauli matrices, we can compute the determinant in the
local frame using the formula det (a1+ bσ1 + cσ2 + dσ3) = a2 − b2 − c2 − d2 for a, b, c, d ∈ C,
giving us (we multiply by a sign for a slight simplification)

ς det
(
εµνRD

µν

)
=

{(
1
2R+ 4b2

)2 − 4∥db∥2 for ςB = −1,(
1
2R+ ς4b2

)2 − ς4∥db∥2 for ςB = +1.
(4.3)

We would now like to set the expression above to zero and examine the resulting equations in
the scalar curvature R and the Killing number b. Let us first note that in Riemannian signature,
the norm on differential forms is positive-definite, thus ∥db∥2 ≥ 0 with equality if and only if b
is constant. A similar result holds in the Lorentzian case, but the statement is non-trivial since
the norm is not positive-definite in this case.

Lemma 4.4. In Lorentzian signature, if SD ̸= 0, then ςB∥db∥2 ≤ 0, and db is null at a point
p ∈ M if and only if p is a critical point for b or SD is spanned by a Killing spinor which is
chiral at p.

Proof. We will prove the ςB = −1 case; the ςB = +1 case is entirely analogous. By Lemma 4.2,
(db)♯ is orthogonal to κϵ for all ϵ ∈ SD. By Corollary 2.3, for ςB = −1, κϵ is everywhere either
timelike or null, and it is null if and only if ϵ is chiral. Thus where κϵ is timelike, db must
be either spacelike or zero, and where κϵ is null, db must be collinear with κϵ. This proves
that ∥db∥2 ≥ 0. At a point p where the inequality is saturated, we must have either (db)p = 0,
whence p is a critical point, or (db)p ̸= 0 is null and ϵ is chiral at p. Thus all Killing spinors must
be chiral at p. But if there are two independent Killing spinors, there are linear combinations
of such spinors which are not chiral at p, a contradiction. ■

In particular, when SD ̸= 0, we may rearrange the equations obtained by setting the deter-
minant in (4.3) to zero to find

R =

{
±4|db| − 8b2 for ςB = −1,

±4|db| − ς8b2 for ςB = +1,
(4.4)

where |db| =
√

|∥db∥2|.
Constraints of the type we have just derived are well-known in the literature on geometric

Killing spinors and their generalisations, but we have arrived at this expression in a slightly non-
standard way. The usual method is to derive the integrability condition from the Lichnerowicz
formula [17, 19] ∓ /∇2

ϵ + ∆ϵ = 1
4Rϵ, where /∇ is the Dirac operator (locally Γµ∇µ), ∆ the

Laplace operator (locally gµν∇µ∇ν) R the scalar curvature, and the sign on the first term is the
opposite to that in the Clifford relation (2.1), and this identity holds for all ϵ ∈ S. Indeed, in
two dimensions it is completely equivalent to RDϵ = 0.

Finally, we recall that for ςB = −1, Killing spinors are nothing but (generalised) geometric
Killing spinors with imaginary Killing function; indeed, for the Riemannian (ς = +1) case,
a similar equation to (4.4) is found in [21, equation (5)], though there it is derived by different
means. That work also classifies the possible Riemannian geometries supporting such spinors.
In the more well-known case where b is constant, we find that R = −8b2, whence the geometry
is (at least locally) hyperbolic space H2.4

4If we had worked with a negative-definite metric and the “correct” sign in the Clifford algebra, we would
have found R = 2λ2. However, in negative-definite signature this is the correct sign for the curvature of H2

when b ∈ R, consistent with the interpretation which arises using our original sign convention.
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4.3 Maximally supersymmetric case

We call (M, g,D) maximally supersymmetric if dimSD = dimS = 2. In this case, the values
of D-parallel spinors span the fibre of S at every point of M , and since RD annihilates these
values, we must have RD = 0 identically, and we can use this condition to identify (M, g) up
to local isometry; let us therefore assume that M is simply connected. From our local expres-
sion (4.2), we see that b must be constant and we have R = −8b2 (for ςB = −1) or R = −ς8b2

(for ςB = +1). Thus the maximally supersymmetric ςB = −1 case is precisely the classic geo-
metric Killing spinor regime with imaginary Killing number as discussed above. For real b, the
scalar curvature is constant and negative, so the geometry must be hyperbolic in Riemannian
signature and anti-de Sitter in Lorentzian signature. For ςB = +1, the maximally supersymmet-
ric Riemannian geometry is hyperbolic again, while the maximally supersymmetric Lorentzian
geometry is de Sitter. This agrees with the results of Section 3.2, where the same geometries
were identified as homogeneous spaces for the even parts of filtered deformations of s. Indeed,
those deformations are precisely the Killing superalgebras of these maximally supersymmetric
backgrounds.

5 Summary of results

The results of the calculations presented in Sections 3 and 4 are summarised in Table 3.

Table 3. Summary of results, including the Spencer (2, 2)-cohomology group, a characterisation of the

Killing spinors for the admissible connection and the (non-trivial) maximally supersymmetric geometries.

Signature S B H2,2 Killing spinors Max. SUSY geom.

(0,2)
S1 = S ςB = + R ∇Xϵ = b(∗X) · ϵ H2

S1 = S ςB = − R ∇Xϵ = bX · ϵ H2

(1,1)

S = S+ ⊕ S− ςB = + R ∇Xϵ = b(∗X) · ϵ dS2

S = S+ ⊕ S− ςB = − R ∇Xϵ = bX · ϵ AdS2

S± − 0 ∇Xϵ = 0 −

We note that we have treated only signatures (0, 2) and (1, 1) but considered all independent
admissible Dirac currents on the pinor module S, of which there are two in each signature distin-
guished by the symmetry ςB of the associated admissible bilinear (constructed in Section 2.2).
We also considered only the minimal (S = S) case in signature (0, 2) and minimal chiral (S = S+)
and non-chiral (S = S = S+ ⊕ S−) cases in signature (1, 1).

The chiral case was not explicitly discussed in Section 3.2 or Section 4 but is included in
the table; it essentially reduces to the non-chiral case (for either choice of B) with b = 0 and
a space of Killing spinors (or odd subspace of the superalgebra) which is the one-dimensional
span of a chiral spinor. The bilinear B is trivial when restricted to this subspace, but the Dirac
current κ is not. The Killing spinors are parallel spinors (with their currents being parallel null
vectors), and the notion of “maximal supersymmetry” is somewhat vacuous, with the possible
Killing superalgebras in this case being nothing but graded subalgebras of the 2-dimensional
minimal chiral Poincaré superalgebra.

The (2, 0) case, omitted here so as not to complicate the presentation with the need to discuss
quaternionic (symplectic Majorana) spinors – as well as N -extended supersymmetry – will be
treated in future work.
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