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Abstract. We compute the genus 0 free energy for the 2-matrix model with quartic in-
teractions, which acts as a generating function for the Ising model’s partition function on
a random, 4-regular, planar graph. This is consistent with the predictions of Kazakov and
Boulatov on this model, as well as subsequent confirmation of this formula using combinato-
rial methods. We also provide a new parametric formula for the free energy and give a char-
acterization of the phase space. Our analysis is based on a steepest descent Riemann–Hilbert
analysis of the associated biorthogonal polynomials and the corresponding isomonodromic
τ -function. A key ingredient in the analysis is a parametrization of the spectral curve. This
analysis lays the groundwork for the subsequent study of the multicritical point, which we
will study in a forthcoming work.
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1 Introduction

The 2-matrix model is the probability measure on the space of pairs of n× n Hermitian matri-
ces X, Y defined by

1

Zn
expN tr(τXY − V1(X)− V2(Y ))dXdY, (1.1)
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where dX, dY are the Haar measures on the space of n × n Hermitian matrices, N > 0 is
a large parameter (which will eventually be set to n the size of the matrix), τ > 0 is constant
called the coupling constant, and Vj are two polynomials of even degree and with positive leading
coefficient. The normalizing constant Zn, which depends on n, N , τ , and any parameters present
in V1, V2, is called the partition function, and will essentially be the main object of study in this
work.

An important motivation for studying the partition function of the 2-matrix model comes
from its connection to 2-dimensional quantum gravity [21, 34, 47, 48]. It is conjectured in the
physics literature that, by tuning the parameters in the polynomials V1 and V2, the 2-matrix
model contains all multi-critical models of type (q, p) with arbitrary q, whereas the one matrix
models (τ = 0) only contains critical models with q = 2. Perhaps the most important first
example is the case of two quartic potentials, which is related to the Ising model coupled to
2-dimensional gravity and the type (3, 4) critical model. The richer structure also makes the
2-matrix model harder to analyze when compared to the well-understood one matrix model and
a rigorous treatment of the asymptotic behavior as N → ∞ of the general 2-matrix model is an
important open problem. To date, the only rigorous results in the literature are in [35, 39, 40],
but these results do not cover the case of quantum gravity coupled to the Ising model. The
current writing is the first in a series of three papers where we discuss this multi-critical point.
More precisely, we will study the limiting behavior of its partition function Zn as n = N → ∞
in case of the quartic potentials:

V1(x) = V
(
x; eHt

)
:=

1

2
x2 +

eHt

4
x4 and V2(y) = V

(
y; e−Ht

)
:=

1

2
y2 +

e−Ht
4

y4,

where H ∈ R and t are parameters. In this case, we write the partition function as

Zn(τ, t,H;N) :=

∫∫
expN tr

(
τXY − V

(
X; eHt

)
− V

(
Y ; e−Ht

))
dXdY,

where the integration is carried out over pairs of n×n Hermitian matrices. Note that to ensure
that the measure in (1.1) is finite we need that t > 0. However, for fixed N the partition
function ZN (τ, t,H;N) depends analytically on t and can be analytically extended to complex t
with a branch point at t = 0. In fact, we are mainly interested in t < 0 and discuss this
continuation in detail below. Our main results are for the genus zero free energy defined as

F (τ, t,H) := lim
N→∞

1

N2
log

ZN (τ, t,H;N)

ZN (τ, 0, 0;N)
. (1.2)

In this paper, will show that, up to some critical value, the analytic continuation for t < 0 the
genus zero free energy exists, and we derive an analytic expression for it, confirming predictions
from the physics literature [14, 57]. We will also see that at the multi-critical point

τ =
1

4
, t = − 5

72
, H = 0, (1.3)

the free energy undergoes a phase transition. In two forthcoming works [37, 49], we will address
this phase transition by means of a multi-scaling limit and show that it gives rise to the (3, 4)
minimal model coupled to gravity, as conjectured. Before we come to the statement of our main
results and strategy of the proof, we start with a more detailed historical discussion on this
model.

1.1 The Ising model coupled to gravity and the 2-matrix model

The 2-dimensional Ising model has long been a source of interest in statistical physics, as it is an
exactly solvable lattice model which exhibits a 2nd order phase transition at finite temperature.
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The model describes a ferromagnet with only nearest-neighbor interactions, and can be defined
on any graph1 G := (V,E) with vertices V and edges E as follows. The Hamiltonian for the
ferromagnetic Ising model is a functional on maps ψ : V → {±1}, and is defined as

H(ψ;h) = −
∑

(x,y)∈E
ψ(x)ψ(y)− h

∑

x∈V
ψ(x).

The parameter h ∈ R is called the magnetic field. The partition function for this model is
defined to be

ZG(β;h) :=
∑

ψ

e−βH(ψ;h),

where β > 0 is a parameter called the inverse temperature, and the sum is taken over all 2|V |

maps ψ : V → {±1}. In other words, we are considering the Boltzmann distribution on the
system at temperature β−1. Typically, one is interested in calculating the free energy of this
model, defined as

FG(β;h) = − 1

β
logZG(β;h).

If the graph is of infinite size (i.e., the number of vertices is infinite), one is instead interested
in the free energy per unit site; that is, to say

f(β;h) := lim
|V |→∞

1

|V |FG(β;h),

where |V | denotes the number of vertices in G, and the limit is taken in an appropriate sense.
The model was introduced by Ising [50], although he only studied the 1-dimensional model,

and incorrectly conjectured that the model in general did not exhibit a phase transition. It
was not until over 20 years later that Onsager [73] announced that the 2-dimensional model
indeed exhibited a phase transition.2 The universality of the critical exponents appearing in the
2-dimensional model were verified for various lattices (cf. [68], or [6, Chapter 11 and references
therein]), but these considerations were markedly limited by the fact that computations could
be performed explicitly only for choices of fairly regular lattices (e.g., square lattice, triangular
lattice, etc.). The next breakthrough in the study of critical phenomena came in the 1960s,
when Kadanoff applied quantum field-theoretic techniques (the renormalization group, or RG)
to describe the Ising phase transition [53]; these ideas were subsequently further developed
by Wilson [83, 84]. One of the features of the RG approach was the ability to explain the
phenomenon of universality: seemingly very different physical systems end up having identical
critical exponents. Fixed points of the RG flow exhibit scale invariance; furthermore, many of the
statistical systems of interest also enjoy translation invariance. These observations led Belavin,
Polyakov and Zamolodchikov [7] in 1984 to postulate that conformal invariance should manifest
at these fixed points. Their work resulted in the characterization of 2D critical phenomena by
the celebrated minimal models of conformal field theory (CFT). The Ising critical point itself is
the so-called (3, 4) minimal model.

Happening concurrently with these developments in statistical mechanics were the first de-
velopments in the study of 2-dimensional quantum gravity. Part of the hope of this program
was that an exact solution of a 2D theory of gravity could shed light on how higher-dimensional

1Throughout the present work, by graph we actually mean multigraph, i.e., we allow for loops and multiple
edges between vertices.

2In fact, Onsager himself did not provide a proof, instead only furnishing the expression for the free energy.
It took until 1952 for a fully rigorous proof to be published by Yang [85].
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versions might function; another motivating factor was a number of recent advances in string
theory, in which the techniques of 2D gravity played an integral role. One of the first major works
on this subject was Polyakov’s work on bosonic string theory [76], which demonstrated that the
Liouville (also called continuum) approach to 2D gravity could be exactly solved. The draw-
back of this theory was that explicit calculations proved difficult, and hindered the theory for
the next decade or so. Indeed, the aforementioned work of Belavin, Polyakov, and Zamolod-
chikov [7] was later described by Polyakov as “an unsuccessful attempt to solve the Liouville
theory” [75]. An alternative approach to this problem was put forth by the Saclay school of
theoretical physics: to replace the functional integral over geometries by a sum over discretized
surfaces, who began to develop this approach in the late 70s [20, 51]. This sum could be calcu-
lated with the help of matrix integrals [15, 28, 56, 58]. This method was quite successful in the
case of a pure theory of gravity, as the model was indeed completely integrable, and was closely
linked to the theory of orthogonal polynomials, and of Painlevé equations [43, 44]. The next
natural step in this program was to try an compute how matter interacted with a nontrivial
gravitational background.

These developments together prompted Kazakov to consider the Ising model coupled to 2-
dimensional gravity: that is, the Ising model on a random lattice. More precisely, he found that
the 2D Ising model on a random 4-regular planar graph could be described by the large N -limit
of a 2-matrix model. Here 4-regular means that each vertex is connected to four edges. The
partition function for the Ising model on a random 4-regular planar graph with n vertices is
defined as

Zn(β;h) =
∑

G:|V |=n,
G planar

ZG(β;h), (1.4)

where the sum is taken over all 4-regular, planar graphs with n vertices. In [57], Kazakov
considered the formal generating function

Z(τ, t;H) =
∑

n∈N

( −tτ
4(1− τ2)2

)n
Zn(β;h), (1.5)

where we identify

τ := e−2β, H := βh,

and t is a parameter. Kazakov demonstrated that the generating function (1.5) is equivalent to
the planar (n→ ∞) limit of the free energy of the 2-matrix model (1.2):

F (τ, t,H) = Z(τ, t,H).

In [14, 57], a formula was derived for this quantity, which subsequently allowed for the predic-
tion of the shift of the critical exponents of the Ising model when coupled to gravity. Kazakov’s
description of the critical point turned out to be in direct agreement with the newly predicted
results of Kniznik, Polyakov and Zamolodchikov [59] arising from coupling certain CFTs to mat-
ter; this is the so-called KPZ formula. Subsequent analysis for this model and closely related
ones was performed in [14, 19] (see also the work [87], which describes a generalization of the
Ising/massless case to massive Majorana fermions). The culmination of this work in the physics
literature were the papers of Douglas and Shenker [34], Brézin and Kazakov [21], and Gross and
Migdal [47, 48]. These works identified the critical points of the 2-matrix model (more generally,
the matrix-chain model) with the CFT minimal models coupled to gravity. These critical points
were characterized in terms of so-called string equations, which come from additional symmetries
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of reductions of the KP hierarchy. This work completed the picture of pure gravity provided by
the 1-matrix model (which described the (2, 2g+1) critical points) to describe all (p, q) minimal
models, for (p, q) coprime. For an overview of this story from the physics perspective, see the
excellent review [32] and references therein.

In the mathematics literature, the “pure gravity” situation, in which no matter is present,
stemmed from the works [34, 47, 61]. This was subsequently described rigorously by Fokas, Its
and Kitaev in [43, 44], and more recently (in line with the language of this work) by Duits and
Kuijlaars [38] (the quartic model), and Bleher and Deaño [12] (the cubic model). Similarly, the
other critical points of the 1-matrix model are now widely accepted to be well-understood (see,
for example, [26]). However, the same cannot be said for the 2-matrix model, due in part to
the lack of orthogonal polynomial techniques that had been core to the study of the 1-matrix
model. This changed with the work of Kuijlaars and McLaughlin [61], in which they found
a characterization of this model in terms of multiple orthogonal polynomials. Since there was
already a wide mathematical literature on the asymptotics of such polynomials [5, 72, 81], this
opened the doors for the possibility of the analysis of critical phenomena in the 2-matrix model,
the first physically interesting critical point being the one studied originally by Kazakov [57]
corresponding to the Ising model. Some progress in this direction was made by Kuijlaars, Duits,
and their collaborators [35, 36, 39, 40], but no direct analytic derivation of the Ising critical
point has been written down. In this series of works (see also the forthcoming [37, 49]), we
provide a rigorous analysis of the critical point appearing in Kazakov’s work, using steepest
descent analysis.

As was mentioned before, the partition function (1.5) is a generating function for the Ising
model on 4-regular planar maps. This generating function (along with its analog for 3-regular
planar maps) has been studied using purely combinatorial techniques, bypassing the use of
matrix integrals. The first rigorous derivation of the results of Kazakov and Boulatov for both
the 3 and 4-regular generating functions have been obtained by Bousquet-Mélou and Schaeffer
in [16]. Alternative bijective approaches were found by Bouttier, Di Francesco and Guitter
in [17, 18], and later by Bernardi and Bousquet-Mélou in [8] using functional equations. More
recently still, the groups of Albenque, Ménard and Schaeffer [1, 2] and the group of Chen and
Turunen [23, 24, 80] constructed local limits of various families of random maps coupled to
the Ising model. These local limits correspond to infinite random maps and correspond to
a thermodynamic limit. These groups were able to rigorously establish the existence of the Ising
phase transition coupled to a random background, and calculate some of the critical exponents,
in agreement with the predictions of Boulatov and Kazakov. In the present work, we study the
(analytic continuation of) the associated matrix integral originally put forth by Kazakov, and
study it using analytical techniques, i.e., Riemann–Hilbert analysis of biorthogonal polynomials.
These techniques will allow us in subsequent works [37, 49] to study the multi-scaling limit of
the Ising critical point, and prove that the partition function of this model converges under
the appropriate scaling to a τ -function for the so-called (3, 4) string equation, thus rigorously
proving the results of [19, 27].

1.2 A family of biorthogonal polynomials

The 2-matrix model considered above, with partition function (1.1), can be studied using or-
thogonal polynomial-type methods. For convenience, we will first introduce the parameter

q := eH . (1.6)

Using the Itzykson–Zuber integral over the unitary group (cf., for example, [51, 69, 88]), one can
convert the integral over the spaces of formal hermitian matrices to an integral over eigenvalue
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coordinates; the partition function in the eigenvalue coordinates reads3

Zn(τ, t, q;N) =
Cn,N

τ
n(n−1)

2

×
∫∫

∆(x)∆(y) exp

{
N

n∑

i=1

(
τxiyi − V (xi; qt)− V

(
yi; q

−1t
))
}

n∏

i=1

dxidyi,

where

V (z; t) =
1

2
z2 +

t

4
z4,

∆(x), ∆(y) denote the usual Vandermonde determinants in the variables {xi}, {yi}, respectively,
and Cn,N is a constant independent of the parameters τ , t:

Cn,N =
(2π)n(n−1)

(∏n
p=1 p!

)2

(
n−1∏

p=1

p!

)
N−n(n−1)

2 =
1

(n!)2
(2π)n(n−1)

∏n−1
p=1 p!

N−n(n−1)
2 .

By performing elementary row/column transformations on the Vandermonde determinants
∆(x), ∆(y), and applying Andréief’s identity, we can rewrite the partition function in terms of
the following family of biorthogonal polynomials [69]

∫

Γ

∫

Γ
pk(z)qj(w) exp

[
N
(
τzw − V (z; qt)− V

(
w; q−1t

))]
dzdw = hjδkj , (1.7)

where Γ := R is taken to be the real line. In this language, the partition function can be
expressed in terms of the orthogonality coefficients:

Zn(τ, t, q;N) = n!
Cn,N

τ
−n(n−1)

2

n−1∏

j=0

hj(τ, t, q;N). (1.8)

The study of the large-n asymptotic behavior of the partition function thus reduces to the study
of the large n asymptotic behavior of the associated biorthogonal polynomials.

1.3 Analytic continuation

The critical point considered by Kazakov (cf. [19], after formula (1)) corresponds equation (1.3)
in the present work. This leads to an immediate issue: the partition function (1.8) does not
converge for t < 0. We therefore must interpret the partition function as an analytic continuation
of the t > 0 partition function. For finite n, we make this continuation as follows. Note that
since all relevant quantities (the biorthogonal polynomials, the partition function, etc.) can be
written in terms of moments of the biorthogonality measure, it is sufficient to consider analytic
continuation of the moments. For k, j ≥ 0, we define

mjk(τ, t, q;N) :=

∫

Γt

∫

Γt

zjwk exp

{
Ng[τzw − 1

2
z2 − 1

2
w2 − tqz4

4
− tq−1w4

4

]}
dzdw,

where the contour Γt :=
{
xeiθ | x ∈ R, θ = arg

(
t−1/4

)}
, and is oriented in the direction of

increasing x. This definition coincides with the standard definition of the moments when t > 0,
and is analytic in t, and so acts as a suitable analytic continuation of the functionsmjk(τ, t, q;N).

3Note that we have changed from H in (1.2) to q, by a slight abuse of notation. We hope that this will not
cause confusion further in this article.
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Evidently, the moments have a branch point 0, and so there are two possible analytic continua-
tions we can make: one where we analytically continue t through the upper half plane, and one
where we continue through the lower half plane. This would in principle require two separate
analyses. However, due to the Schwarz symmetry (for real τ , q, N , and |arg t| < π),

mjk(τ, t̄, q;N) = mjk(τ, t, q;N),

we can obtain one analytic continuation from the other by reflection. Thus, it is sufficient to
consider an analytic continuation through the upper half plane. For t < 0, the contour Γ is
defined as starting from e3πi/4 · ∞, and ending at e−πi/4 · ∞. We remark that we have the
freedom to later redefine the contour Γ locally, as long as we retain its asymptotic properties.
We shall indeed redefine Γ in a more precise manner in the next section, in order to guarantee
that certain inequalities are satisfied on it.

From here on, we thus consider the contour Γ as chosen before, and assume that the param-
eters of the model all have fixed sign:

τ > 0, t < 0, q > 0, H ∈ R .

1.4 Riemann–Hilbert problem

As observed in [61], the biorthogonal polynomials defined by (1.7) admit a Riemann–Hilbert
formulation, given as follows. Consider the following Riemann–Hilbert problem (RHP) on Γ
(recall that the contour Γ is defined as starting from e3πi/4 · ∞, and ending at e−πi/4 · ∞):

Y+(z) = Y−(z)


I+ e−NV (z;qt)




0 f(z) f ′(z)
Nτ

f ′′(z)
(Nτ)2

0 0 0 0
0 0 0 0
0 0 0 0





 , z ∈ Γ,

where

f(z) =

∫

Γ
exp
[
N
(
τzw − V

(
w; q−1t

))]
dw.

The asymptotics of Y(z) are chosen to be

Y(z) =

[
I+O

(
1

z

)]



zn 0 0 0

0 z−n/3 0 0

0 0 z−n/3 0

0 0 0 z−n/3


 , |z| → ∞,

where n is a multiple of 3. This restriction on n is taken for simplicity of exposition; the
assumption is not essential (see also [39, 40]). This RHP admits a unique exact solution,
with the 1-1 entry of Y(z) being the degree n monic biorthogonal polynomial4 defined by the
relations (1.7):

[Y]11(z) = pn(z).

4Note that, in general, the relation (1.7) in fact defines two sets of polynomials {pn(z)}, {qn(w)}, which in
general do not coincide, except in the special case that the potentials V1(z) = V2(z) are the same. However, because
the potentials in question in this work are related by V1(z; qt) = V2

(
z, q−1t

)
, the corresponding polynomials are

related by qn(z; τ, t, q;N) = pn
(
z; τ, t, q−1;N

)
.
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The partition function of the matrix model defined by (1.1) (more precisely, its analytic
continuation) can be related to an isomonodromic τ -function, given in terms of Y(z) [9]. The
τ -function is defined to be

d log τn := Res
z=∞

tr
[
Y−1(z)Y′(z)dΨ0(z)Ψ

−1
0 (z)

]
,

where Ψ0 is an explicit matrix function, and the differential is in the variables of deforma-
tion t, τ , q. Its definition will be given more precisely in the succeeding text. The differential of
the partition function considered by Kazakov is proportional to this isomonodromic-τ function:

d log
Zn(τ, t, q;N)

τ
−n(n−1)

2 Cn,N
= d log

[(
τ

t2

)n
2
(n
3
−1)

τn

]
.

Furthermore, one may calculate Zn(τ, 0, 0;N) explicitly (cf. [70, Appendix A.49]):

Zn(τ, 0, 0;N) = τ
−n(n−1)

2 Cn,N ×N−n(n+1)
2

(2π)nτn(n−1)/2

(1− τ2)n2/2

n−1∏

p=1

p!.

Thus, by computing the isomonodromic τ -function, we can compute all quantities of interest
related to the original partition function of the 2-matrix model. In particular, we have that

d log
Zn(τ, t, q;N)

Zn(τ, 0, 0;N)
= d log

[(
1− τ2

)n2/2

τn2/3tn(
n
3
−1)

τn

]
.

The remainder of this work is devoted to the calculation of this τ -function.

1.5 Spectral curve

In recent decades, the Riemann–Hilbert approach has emerged as a powerful tool for computing
the asymptotic behavior of polynomials satisfying orthogonality relations. Its breakthrough
occurred with the seminal work [30], where the authors successfully applied the Deift–Zhou
steepest descent method [31] to the Riemann–Hilbert problem for orthogonal polynomials on the
real line with a varying weight e−nV (x)dx. An important contribution to this analysis came from
potential theory: the limiting zero distribution of the polynomials is given by the equilibrium
measure µV for the Coulomb gas in the external field V :

µV := arg min
ν∈M1(R)

∫∫
log

1

|x− y|dν(x)dν(y) +
∫
V (x)dν(x),

where M1(R) is the set of all unit Borel measures supported on R. By introducing the equilib-
rium measure into the Riemann–Hilbert problem (via a transformation involving the g-function
constructed from the equilibrium measure) and employing the Deift–Zhou steepest descent
method, one can obtain a full asymptotic description of the polynomials and their properties.
When V is a polynomial, this equilibrium measure can be characterized in terms of hyperelliptic
curve. Specifically, there exists a polynomial Q such that

y(x) = V ′(x)−
∫

1

t− x
dµV (t) (1.9)

satisfies the algebraic equation

y2 − V ′(x)y +Q(x) = 0.



10 M. Duits, N. Hayford and S.-Y. Lee

This defines a curve known as the spectral curve, which plays a crucial role in the analy-
sis. Indeed, if Q(x) is known explicitly, then the spectral curve can be used to perform the
steepest descent analysis without knowledge of the equilibrium measure. The defining fea-
ture relevant for steepest descent analysis is the so-called S-property of the harmonic function
ϕ(x) := Re

∫
y(x)dx [62]:

∂

∂n+
ϕ(x) =

∂

∂n−
ϕ(x), x ∈ suppµ,

where ∂
∂n±

denote the normal derivatives on either side of suppµ. It is precisely this property
which allows for the opening of lenses, one of the standard transformations in the Deift–Zhou
analysis. The polynomial Q is determined in terms of the first few moments of the equilibrium
measure. In general, without prior knowledge of this measure, these moments are difficult to
compute. Without the aid of potential theory, one would need to prove that such an S-property
holds by other means.

For special potentials V1 and V2, a Deift–Zhou steepest descent for the Riemann–Hilbert
problem characterizing biorthogonal polynomials has been studied in [35, 39, 40]. These works
demonstrated that the limiting zero distribution for the polynomials can be characterized by
a vector equilibrium problem (see also [36]). This problem involves three measures that simul-
taneously minimize an energy functional. Since its full description is rather complicated, we
omit it here to maintain the flow of presentation. Similar to the case of orthogonal polynomials
on the real line described above, the minimizing vector of measures can be characterized by an
algebraic curve. This aligns with predictions made in [41, 74] based on loop equations. It is
important to note that the vector equilibrium problem requires the potentials to be such that
the matrix integrals converge as integrals over the real line. It does not trivially extend to the
case t < 0, which is of interest to us. Nevertheless, from the loop equation approach one still
expects that, in the problem at hand, the limiting zero distribution is given by an algebraic
curve of the form

τqX4 + τq−1Y 4 − tX3Y 3 − qX3Y − q−1Y 3X + tτ−1X2Y 2 + aX2 + bY 2 + cXY + d = 0,

for some constants a, b, c, and d. Here Y (X), X(Y ) are the analogs of (1.9):

τY = X + tqX3 +

∫
dµ(ζ)

ζ −X
,

τX = Y + tq−1Y 3 +

∫
dµ̃(ζ)

ζ − Y
,

and µ, µ̃ represent the limiting zero distributions of pn and qn, respectively.
However, finding the constants a, b, c and d explicitly is challenging. One important aspect of

our analysis is the computation of the spectral curve for certain parameter values with t < 0, and
we are able to prove that the function Y (X) satisfies an S-property of its own (cf. Lemma 3.4,
and the proof of Proposition 3.6). We will use this as input in the Deift–Zhou steepest descent
analysis.

2 Statement of results

2.1 Asymptotic behavior of the partition function

We will now state our main result: an exact expression for F (τ, t,H) as given in (1.2). To this
end, we first consider the equation

0 = I(σ; τ, t, q) := −t− 1

9
τ2σ

(
σ2 − 3

)
− 1

3

σ

(1 + σ)2
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+
2

3

(
σ

1− σ2

)2
[
1

2

(
q + q−1

)
︸ ︷︷ ︸

coshH

−1

]
. (2.1)

Note that for fixed q = eH and 0 < τ < 1, this is an algebraic curve in the (t, σ) plane. By the
implicit function theorem, since

∂I

∂σ
(σ; τ, t, q)

∣∣
t=0,σ=0

=
1

3

(
τ2 − 1

)
,

for t = 0 there is a unique solution σ(τ, t,H) of (2.1) which is analytic in a neighborhood
of t = 0, and such that σ(τ, 0,H) = 0, for any H ∈ R, 0 < τ < 1. The solution can be
analytically continued along the negative part of the real-t axis. Either one hits a branch point
at some critical value tcr such that σ(τ, tcr, H) is a double root of (2.1), or σ(τ, t,H) is well
defined for all t < 0. In the latter case, we set tcr = −∞ (this case in practice does not happen
for the values of τ , H we consider here).

Definition 2.1. For fixed H and 0 < τ < 1, we denote with tcr(τ,H) the largest negative value
such that the solution σ(τ, t,H), characterized by σ(τ, 0, H) = 0, is real analytic for t ∈ (tcr, 0].
Moreover, we define

D = {(τ, t,H) | 0 < τ < 1, H ∈ R, tcr(τ,H) < t < 0},

and refer to D as the phase space.

Note that D is somewhat implicitly defined, as we have not indicated how tcr can be found
in terms of τ and H. As we will show below, for H = 0 it is possible to give tcr as an explicit
function of τ . For H ̸= 0, we will see that D has a very convenient parametrization. That
parametrization is still somewhat complicated and we have not been able to derive an explicit
expression for tcr as a function of both τ and H. We will postpone this discussion for now and
first present the main result of the paper.

Theorem 2.2. Let (τ, t,H) belong to the region D. Then, as n→ ∞,

F (τ, t,H) := lim
n→∞

1

n2
log

Zn(τ, t,H;n)

Zn(τ, 0, 0;n)

=
3

4
+

1

2
log

(
1− τ2

)
σ(τ, t,H)

−3t
−
∫ σ(τ,t,H)

0

(
λ(u)− 1

2
λ(u)2

)
du

u
, (2.2)

where λ(u) is the rational function

λ(u) = −1

t

[
1

9
τ2u
(
u2 − 3

)
+

1

3

u

(u+ 1)2
− 2

3

(
u

u2 − 1

)2

[coshH − 1]

]
,

and σ(τ, t,H) from Definition 2.1.

This result was first formally computed in [14, 57], based partially on the work [69]. Our
results are consistent with this formula. We remark that an alternative form of this result was
derived using combinatorial methods, cf. [18], or [42] and references therein.

Remark 2.3. One should compare (2.1) to formula (17) in [14], with the translation of notations

ours τ t q σ

theirs c g = g(z) B =
[
q + q−1 − 2

]
−z
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Figure 1. The phase portrait for the 2-matrix model with quartic interactions in the plane
H = 0. The low-temperature critical curve is represented by the solid red line; the high-
temperature critical curve is represented by the dashed red line.

2.2 Structure of the phase space

We will now discuss the structure of the phase space D in greater detail. We will start by
discussing the H = 0 first, as it is somewhat simpler, and then discuss the general situation.

2.2.1 H = 0

We begin with a description of the phase space when H = 0, as this region can be presented in
a more transparent manner. All of the proofs of statements in this section follow from the more
general results of the generic case (H ̸= 0). For H = 0, 0 < τ < 1 we have the following values
for tcr(τ, 0):

tcr(τ, 0) =




− 1

12
+

2

9
τ2, 0 < τ ≤ 1

4
,

−2

9

√
τ(
√
τ + 1)2(

√
τ + 2),

1

4
< τ < 1.

See also Figure 1. These curves can be obtained as the most negative real solution to the system
of equations I(σ; τ, t, 0) = 0, ∂I

∂σ (σ; τ, t, 0) = 0. The intersection of D and the H = 0 plane is
the region enclosed by t = 0, τ = 0 and a curve connecting (0,− 1

12 , 0) to (1, 0, 0). This curve
consist of two parts: one part connecting

(
0,− 1

12 , 0
)
to the multicritcial point

(
1
4 ,− 5

72 , 0
)
, and

the other connects
(
1
4 ,− 5

72 , 0
)
to (1, 0, 0). We will refer to the first curve as the low-temperature

critical curve and denote it by γlow,0. The second, denoted by γhigh,0, will be referred to as the
high-temperature critical curve. Note that these are precisely the critical curves that appeared
in Kazakov’s original work [57]. Note that, when τ → 0, the partition function ZN (τ, t, 0;n)
decouples into two independent partition functions for the 1-matrix model. The point

(
0,− 1

12 , 0
)

is the critical point for the 1-matrix model that was studied in [38, 43, 44]. In this case, the phase
transition can be described in terms of special solutions to the Painlevé I equation. At the multi-
critical point, σ(τ, t, 0) is a triple root and the description of this phase transition is the topic
of a forthcoming paper.

We now proceed with general case.
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We begin with a description of the phase space when H = 0, as this region can be presented in
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, and

the other connects
(
1
4 ,− 5

72 , 0
)
to (1, 0, 0). We will refer to the first curve as the low-temperature

critical curve and denote it by γlow,0. The second, denoted by γhigh,0, will be referred to as the
high-temperature critical curve. Note that these are precisely the critical curves that appeared
in Kazakov’s original work [57]. Note that, when τ → 0, the partition function ZN (τ, t, 0;n)
decouples into two independent partition functions for the 1-matrix model. The point

(
0,− 1

12 , 0
)

is the critical point for the 1-matrix model that was studied in [38, 43, 44]. In this case, the phase
transition can be described in terms of special solutions to the Painlevé I equation. At the multi-
critical point, σ(τ, t, 0) is a triple root and the description of this phase transition is the topic
of a forthcoming paper.

We now proceed with general case.
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2.2.2 The general case

Due to the aforementioned symmetry in H < 0 and H > 0, it will be convenient to use q = eH

as in (1.6) and only consider 0 < q ≤ 1. We will then set

D = {(τ, t, q) | t < 0, τ > 0, 0 < q ≤ 1, (t, τ, log q) ∈ D}.

One of the important ingredients in our analysis is a particular parametrization of the phase
space D. This parametrization has not been used before in the literature, to the best of our
knowledge.

We start by defining the set R of all possible values for our parameters

R :=
{
(a, b, c) | 1 ≤ a ≤ b−1, 0 < c ≤ b

}
. (2.3)

Then on R we define

Π: R −→ R3, (a, b, c) 7−→ (τ, t, q),

where τ , t and q are defined as

τ = τ(a, b, c) =
1√

(a4c2 + a2b2c2 + a2 + c2)(a4b2 + a2b2c2 + a2 + b2)
,

t = t(a, b, c) = − a2bc
(
a4b2c2 + 3a4 + 3a2b2 + 3a2c2 + 3b2c2 − 3

)

9(a4c2 + a2b2c2 + a2 + c2)(a4b2 + a2b2c2 + a2 + b2)
,

q = q(a, b, c) =
c
(
a4b2 + a2b2c2 + a2 + b2

)

b(a4c2 + a2b2c2 + a2 + c2)
.

The Jacobian of this map is given by

∂(τ, t, q)

∂(a, b, c)
= −4ac

(
a2 − 1

)(
a2 + 1

)(
a2b2 − 1

)(
a2c2 − 1

)(
b2c2 − 1

)(
a2 − b2

)(
a2 − c2

)

3b(a2b2c2 + a4b2 + a2 + b2)3/2(a2b2c2 + a4c2 + a2 + c2)7/2
, (2.4)

and this does not vanish in the interior of R. It does vanish on the surfaces defined by a = 1
and a = b−1, and this is the reason that they are of particular importance to us. We define
these components below.

Definition 2.4.

(1) The low-temperature critical surface Slow, is the image under Π of a = b−1, with 0 < b < 1,
0 < c < b.

(2) The high-temperature critical surface Shigh, is given by setting a = 1, with 0 < b < 1,
0 < c < b.

(3) The H ̸= 0 τ -critical curve γb, is given by setting a = b = 1, with 0 < c < 1.

Moreover, the intersection of these critical surface with H = 0 can be obtained by further
setting b = c and we thus define:

(4) The low-temperature H = 0 critical curve γlow,0 is given by setting a = b−1, c = b.

(5) The high-temperature H = 0 critical curve γhigh,0 is given by setting a = 1, c = b.

(6) The multicritical point is given by setting a = b = c = 1.
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τ

t

H

γlow,0

γhigh,0

γb

t

q τ

Figure 2. The left picture illustrates the phase portrait for the 2-matrix model with quartic
interactions in the (τ, t,H) plane. The region where the spectral curve is of genus zero analyzed
in this work lies in the half space where τ > 0, t < 0, and is bounded by the red and blue surfaces.
The genus zero partition function F (τ, t,H) is continuous on this surface, and in the genus zero
region; on the surface, F is analytic away from the low-temperature critical curve, shown here
in light blue. The multicritical point

(
1
4 ,− 5

72 , 0
)
is the meeting point of the high-temperature

critical curve (orange), the two phase boundaries joining the low and high temperature phases
(yellow), and the low-temperature critical curve. The picture on the right represents the phase
diagram in the coordinates τ , t, q and only the part 0 < q ≤ 1.

The critical curve γb is the interface between the low-temperature and high-temperature
critical surfaces. A graphical representation of these critical surfaces is given in Figure 2. From
the parametrization of the critical surfaces, it is not hard to compute the normal to these surfaces.
It is interesting to note that the normal is continuous when passing from the low-temperature
to the high-temperature critical surface.

Before we comment further on these critical surface, we first mention the necessary technical
result that our map Π indeed parametrizes the phase space D and that the critical surfaces
indeed are the sets defined by t = tcr.

Proposition 2.5. The set Π(R) is the region enclosed by τ = 0, τ = 1, q = 0, q = 1, t = 0,
and the critical surfaces Slow ∪ Shigh ∪ γb. Moreover, D = Π(R) and σ(t, τ,H) = a2bc.

The proof of this proposition is given in Appendix D.
The critical surfaces Slow, Shigh are implicit in the subsequent works of Boulatov and Kaza-

kov [14], although they are never explicitly derived. Our parametrizations based on (3.4)–(3.6)
of these surfaces is new and turn out to be very useful in our analysis of the Riemann–Hilbert
problem.

Remark 2.6. When (a, b, c) tend to a point on the critical surface, the Jacobian
∂(τ,t,q)
∂(a,b,c) → 0.

In terms of the equation 0 = I(σ; τ, t, q), this may be interpreted as the root σ = σ(τ, t, q)
becoming a double root, i.e.,

I(σ; τ, t, q) =
∂I

∂σ
(σ; τ, t, q) = 0,

for (a, b, c) on the critical surface and away from the multicritical point. At the multicritical
point (τ, t, q) =

(
1
4 ,− 5

72 , 1
)
, the root σ becomes a triple root of the equation 0 = I(σ; τ, t, q).

One can thus characterize the critical surface as a subset of the zero locus of the discriminant of
equation (2.1). In Appendix C, we write an an explicit formula for this discriminant, and thus
furnish an implicit formula for the critical surface.
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The critical surfaces Slow, Shigh are implicit in the subsequent works of Boulatov and Kaza-

kov [14], although they are never explicitly derived. Our parametrizations based on (3.4)–(3.6)
of these surfaces is new and turn out to be very useful in our analysis of the Riemann–Hilbert
problem.
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2.3 Spectral curve

An important ingredient in our analysis is the spectral curve for the limiting zero distribution of
the polynomials, which we will now introduce. First observe that, for (a, b, c) ∈ R, the function σ
is bounded:

0 ≤ σ ≤ 1,

with σ = 1 only if a = b−1, c = b (this is precisely the low-temperature H = 0 critical curve).
Then we define the rational functions

X(v) =

√
−τσ

3t

(
v +

σq−1 − 1

τ(σ2 − 1)
v−1 − σ

3q
v−3

)
, (2.5)

Y (v) =

√
−τσ

3t

(
v−1 +

σq − 1

τ(σ2 − 1)
v − σq

3
v3
)
. (2.6)

One can eliminate the parameter v from the pair of functions (X(v), Y (v)) to obtain an implicit
formula for the Riemann surface these functions parametrize

S(X(v), Y (v)) = 0.

Here S(X,Y ) is a degree 6 polynomial in X and Y , with rational coefficients in the vari-
ables τ , t, q, and σ (recall that σ is defined as a special solution to the algebraic equation (2.1)).
Explicitly, this polynomial is

S(X,Y ) = τqX4 + τq−1Y 4 − tX3Y 3 − qX3Y − q−1Y 3X + tτ−1X2Y 2

+ s2(σ; τ, t, q)X
2 + s2

(
σ; τ, t, q−1

)
Y 2 + s1(σ; τ, t, q)XY + s0(σ; τ, t, q).

where si(σ; τ, t, q) are given by

s2(σ; τ, t, q) =
1− 6σ − 3σ2

27τt(σ + 1)3
− 1

27τt

(
σ3τ2 + 3σ2τ2 − 9στ2 − 27τ2 + 1

)

− (q − 1)σ

27τt(σ2 − 1)3
[(
9τ2 − 9

)
+ 9(q + 1)σ +

(
4q−1 −

(
28τ2 + 6

))
σ2

− 6(q + 1)σ3+
(
30τ2 + 3

)
σ4+ (q + 1)σ5− 12σ6τ2+ σ8τ2

]
,

s1(σ; τ, t, q) = − 8
(
5σ + 3

)

81
(
σ + 1

)2
t
− σ6τ2 − 15σ4τ2 + 27σ2τ2 − 3σ2 + 243τ2 + 24σ + 171

243t

− 4σ3
(
σ2 + 3

)

81t(σ2 − 1)2
[
q + q−1 − 2

]
,

s0(σ; τ, t, q) = − σ

19683t2τq2(σ2 − 1)4

×
[
15qσ6τ2 + 9qσ5t+

(
12− 111τ2

)
qσ4 + 15

(
q2 − 6

5
tq + 1

)
σ3

+
(
177τ2 − 15

)
qσ2 − 54

(
q2 − 1

6
tq + 1

)
σ + 81

(
1− τ2

)
q

]2
.

These constants are given for completeness and we will not use their exact expression in this
paper. Indeed, it is the uniformization that we will be working with. Note also, that since the
curve has uniformization in terms of rational functions, it has genus zero.

The spectral curve provides us with a 4-sheeted Riemann surface. In the interior of the phase
space, it is easy to see from the uniformization that there are four branch points (given by X(v)



16 M. Duits, N. Hayford and S.-Y. Lee

with v a solution to X ′(v) = 0) denoted by X = ±α,±β with 0 < α < β. The sheet structure
is represented in Figure 5. The first sheet has a branch cut at [−α, α] at which it is glued to
the second sheet in a crosswise manner. The second sheet has additional cuts at (−∞,−β]
and [β,∞) at which it is glued in a crosswise manner to the third and fourth sheet respectively.
On each sheet j = 1, 2, 3, 4, we define the uniformization coordinate vj(X) as the map such
that X(vj(X)) is the identity map on the jth sheet (these maps are uniquely determined by
their large X behavior; the expansions of rescaled versions of the functions vj(X) for X → ∞
are given in Appendix A. See also Remark 3.2 for the exact relation between the coordinates u
and v). Then, we can define the function Y (X) on our Riemann surface by setting its value on
the jth sheet, Yj(X), to be Yj(X) = Y (vj(X)).

Although we do not prove this explicitly, it can be shown from our analysis that zeros of the
polynomials pn(x) accumulate on the interval (−α, α) and have limiting distribution, which we
denote by µ. We can then recover the measure µ from the boundary behavior of Y1 on the cut,

dµ(s) =
τ

2πi
[Y1,+(s)− Y1,−(s)]1[−α,α](s)ds. (2.7)

There is also a second measure that plays a role for us. Its defined by taking boundary values
on the other cuts,

dν(s) = − τ

2πi
[Y3,+(s)− Y3,−(s)]1(−∞,−β](s)ds−

τ

2πi
[Y4,+(s)− Y4,−(s)]1[β,∞)(s)ds. (2.8)

The interpretation of ν for the asymptotic behavior of the polynomials is not as obvious as
it is for µ and it serves mostly as an auxiliary measure in our analysis. Note that from the
representations (2.7) and (2.8) it is far from obvious that these measures are positive and we
will put significant effort in proving this. The positivity is important for our lensing inequalities
in the Riemann–Hilbert analysis.

Both measures µ and ν are absolutely continuous and have an analytic density. Away from
the critical surfaces, these densities vanish as a square root near the endpoints. On the critical
surfaces, one or both of these measures will have different behaviors at their endpoints and this
will break down the limiting behavior of the partition function.

Remark 2.7. When changing roles of X and Y , the Y coordinate has branch points at
Y = ±α̃,±β̃ with 0 < α̃ ≤ β̃. The zeros of the polynomials qn(x) accumulate on an inter-
val (−α̃, α̃) and have limiting distribution, which we denote by µ̃. Moreover, (X,Y ) given by

τX = Y + tq−1Y 3 +

∫
dµ̃(ζ)

ζ − Y

are on the spectral curve and defines X as a function on Y on the first sheet with an analytic
continuation to the other sheets of the surface.

2.4 Phase transitions and special points on the spectral curve

We will comment now on the phase transitions on the critical surfaces of the parameter space.
When the parameters approach the critical surface, the measures will observe different be-

havior of µ and ν at their endpoints:5

1. The generic (non-critical) case. The measures µ, ν vanish as square roots at their finite
endpoints:

dµ

ds
= ρ|X ∓ α|1/2[1 +O(|X ∓ α|)], X → ±α,

5Throughout, ρ, ρ̃ > 0 represent irrelevant constant factors. All limits are taken from inside the support of the
measure, i.e., X ↗ α, X ↘ −α, X ↗ −β, and X ↘ β, respectively.
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dν

ds
= ρ̃|X ∓ β|1/2[1 +O(|X ∓ β|)], X → ±β.

2. The low-temperature critical surface Slow. An extra zero at the endpoint of ν:

dµ

ds
= ρ|X ∓ α|1/2[1 +O(|X ∓ α|)], X → ±α,

dν

ds
= ρ̃|X ∓ β|3/2[1 +O(|X ∓ β|)], X → ±β.

3. The high-temperature critical surface and curve Shigh ∪ γhigh,0. An extra zero at the end-
point of µ:

dµ

ds
= ρ|X ∓ α|3/2[1 +O(|X ∓ α|)], X → ±α,

dν

ds
= ρ̃|X ∓ β|1/2[1 +O(|X ∓ β|)], X → ±β.

4. The low-temperature H = 0 critical curve. Extra zeros at the endpoints of both measures:

dµ

ds
= ρ|X ∓ α|3/2[1 +O(|X ∓ α|)], X → ±α,

dν

ds
= ρ̃|X ∓ β|3/2[1 +O(|X ∓ β|)], X → ±β.

5. The H ̸= 0 τ -critical curve. The supports of µ and ν touch, and vanish locally as a cube
root:

dµ

ds
= ρ|X ∓ α|1/3

[
1 +O

(
|X ∓ α|1/3

)]
, X → ±α,

dν

ds
= ρ̃|X ∓ α|1/3

[
1 +O

(
|X ∓ β|1/3

)]
, X → ±α.

6. The multicritical point. The supports of µ and ν touch, and an extra zero at touching
point:

dµ

ds
= ρ|X ∓ α|4/3

[
1 +O

(
|X ∓ α|1/3

)]
, X → ±α,

dν

ds
= ρ̃|X ∓ α|4/3

[
1 +O

(
|X ∓ β|1/3

)]
, X → ±α.

The behaviors of the above measures are depicted in Figure 3. All these critical behaviors
break our analysis in a crucial way and will lead to different scaling limits for the partition
function.

The situation on the Shigh and Slow is similar to the 1-matrix model critical point. Indeed
also in that case, there is a merging of critical point to a branch point. This means that in
a double scaling limit, the partition function is described by a special solution to the Painlevé I
equation. For the Riemann–Hilbert analysis, it means that one should be able to treat the local
parametrices in terms of Painlevé I parametrices, as has been performed in previous works [12, 38]
in the 1-matrix model.

The situation on the critical curve γb is intriguing. The situation is different from the rest
for the critical surface. Nevertheless, we still expect that the phase transition is described by
the same Painlevé I equation as on the critical surfaces. We believe that a 3 × 3 Painlevé I
parametrix (similar to the one arising from the Lax pair in [52]) should be used. We hope to
address this in a future work.

Finally, the multi-critical point is the most important point of the critical surface and we
shall treat this in the sequel to this work [37, 49].
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Figure 3. Possible endpoint behaviors of the measures µ and ν in various regions of the phase
space. Each region is characterized by the behavior of µ, ν at their endpoints. The symbols
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2.5 Strategy of the proof and an associated Riemann–Hilbert problem

The strategy for the proof of Theorem 2.2 is a Deift–Zhou steepest descent analysis [31] of Y,
i.e., a sequence of explicit invertible transformations

Y 7−→ X 7−→ U 7−→ T 7−→ S 7−→ R,
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with the final Riemann–Hilbert problem for R having jumps that tend to the identity matrix
as n→ ∞, uniformly and in L2, with normalized behavior at infinity. Standard argument then
allow us to obtain an asymptotic expansion for R, and thus, utilizing the invertibility of the
transformations, an asymptotic expansion of Y. This can be used to write an expression for the
partition function (1.4).

In Section 3, we analyze the spectral curve of this model. Section 4 is devoted to the first
and second transformations Y 7→ X 7→ U. The transformations U 7→ T 7→ S which correspond
to the opening of lenses are completed in Section 5. In Section 6, we construct the parametrices,
and perform the final transformation S 7→ R. We conclude with Section 7, in which we furnish
a proof of Theorem 2.2.

We will make use of some notations frequently; we establish them here for the convenience
of the reader.

� Throughout, ω := e
2πi
3 = −1

2 + i
√
3
2 is the principal third root of unity,

� We denote the 4× 4 matrix with a 1 in the (i, j)th entry and zeros elsewhere by Eij ,

� The Pauli matrices

σ1 :=

(
0 1
1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
1 0
0 −1

)
.

In particular, for the third Pauli matrix σ3, we will often write expressions such as zCσ3 ,
or ef(z)σ3 . These expressions are defined to be

zCσ3 :=

(
zC 0
0 z−C

)
, ef(z)σ3 :=

(
ef(z) 0

0 e−f(z)

)
.

� The matrix σ̂ij is defined to be the 4×4 matrix which permutes the ith and jth row/column.
For example, the matrix σ̂24 would be

σ̂24 =




1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0


 .

The matrix σ̂ij permutes the ith and jth row and column of a given matrixA by conjugation;
again using our example of σ̂24,

σ̂24Aσ̂24 = σ̂24




a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44


 σ̂24 =




a11 a14 a13 a12
a41 a44 a43 a42
a31 a34 a33 a32
a21 a24 a23 a22


 .

� For readability purposes, blocks of zeros in matrices will be denoted simply by zero, where
there is no cause for ambiguity. For example, the if A is a 3×3 matrix, then the expressions




1 0 0 0
0
0 A
0


 =

(
1 03×1

01×3 A

)
=

(
1 0
0 A

)

all have identical meaning.
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� If A is an n× n matrix and B is an m×m matrix, we define the matrix A⊕B to be the
block diagonal matrix

A⊕B :=

(
A 0
0 B

)
.

� If X(z) is the solution to a Riemann Hilbert problem defined on the contour γ, we write
JX(z) : γ → C as its jump matrix: i.e.,

X+(z) = X−(z)JX(z), z ∈ γ.

We will also sometimes write γX or ΓX to denote the contour γ corresponding to the
Riemann–Hilbert problem for X(z).

3 Definition and analysis of the spectral curve

In this section, we define the spectral curve and an associated set of functions, which we will
later use in the second transformation. These functions are typically referred to as “g-functions”
(or collectively as the g-function) in the Riemann–Hilbert community, see [30]. This function is
used to transform the original Riemann–Hilbert problem, which contains exponentially growing
terms, into a Riemann–Hilbert problem with oscillatory terms. It is required that this special
function satisfy certain inequalities, which we refer to as lensing inequalities, so that we can
eventually transform the resulting Riemann–Hilbert problem with oscillations into one which
is exponentially close to a RHP with constant jumps; this transform is often referred to as
the opening of lenses. We also prove a number of inequalities necessary for the later “lensing”
transformations. In what follows, the role of the g-function will be played by a collection of
functions Ωj(z).

We begin by constructing the spectral curve, and give a basic analysis of the spectral curve for
all values of the parameters (τ, t, q) in the region D bounded by τ = 0, t = 0, and q = 1 planes,
the infinite temperature plane τ = 1, and a “critical surface”, which comprises the remaining
boundary components of the region D.

3.1 Definition of the spectral curve

The analysis of the spectral curve is based on the ansatz that the curve is of genus zero, and
thus rationally parameterized. Let us momentarily discuss the situation formally; once we have
formulated a workable object, we shall prove that it is the correct one. Consider the partition
function

Z =

∫∫
∆(x)∆(y) exp

{
−n

n∑

i=1

(
1

2
x2i +

1

2
y2i +

tq

4
x4i +

tq−1

4
y4i − τxiyi

)} n∏

i=1

dxidyi

=

∫∫
exp−

{∑

i<j

log
1

|xi − xj |
+
∑

i<j

log
1

|yi − yj |

+ n
n∑

i=1

(
1

2
x2i +

1

2
y2i +

tq

4
x4i +

tq−1

4
y4i − τxiyi

)} n∏

i=1

dxidyi.

In the large n limit, under the appropriate scaling, we expect the xi, yi to accumulate to
a limiting distributions that together minimize the term in the exponent; these distributions, µ
and µ̃ should be subject to the stationarity conditions that are given by

X + tqX3 +

∫
dµ(ζ)

ζ −X
− τY = 0,
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Y + tq−1Y 3 +

∫
dµ̃(ζ)

ζ − Y
− τX = 0.

Expanding at infinity, we find that

X + tqX3 − 1

X
− τY = O

(
X−2

)
, (3.1)

Y + tq−1Y 3 − 1

Y
− τX = O

(
Y −2

)
. (3.2)

We will construct solutions to these equations from an algebraic curve S(X,Y ) = 0, by
making the ansatz that it has genus 0, i.e., that it is rationally parameterized.

Proposition 3.1. A 3-parameter family of solutions to the stationarity equations (3.1) and (3.2)
is given by the rational functions

X(u; a, b, c) = A

∫ u
(
u2 − a2

)(
u2 − b2

)

u4
du = A

(
u+

a2 + b2

u
− a2b2

3u3

)
, (3.3)

Y (u; a, b, c) = X
(
u−1; a, c, b

)
= B

(
1

u
+
(
a2 + c2

)
u− a2c2

3
u3
)
,

with τ , t, q, A, and B defined parametrically in terms of a, b, and c as

τ = τ(a, b, c) =
1√(

a4c2 + a2b2c2 + a2 + c2
)(
a4b2 + a2b2c2 + a2 + b2

) , (3.4)

t = t(a, b, c) = − a2bc
(
a4b2c2 + 3a4 + 3a2b2 + 3a2c2 + 3b2c2 − 3

)

9
(
a4c2 + a2b2c2 + a2 + c2

)(
a4b2 + a2b2c2 + a2 + b2

) , (3.5)

q = q(a, b, c) =
c
(
a4b2 + a2b2c2 + a2 + b2

)

b
(
a4c2 + a2b2c2 + a2 + c2

) , (3.6)

A = A(a, b, c) =

√
3
(
a4c2 + a2b2c2 + a2 + c2

)

a4b2c2 + 3a4 + 3a2b2 + 3a2c2 + 3b2c2 − 3
, (3.7)

B = B(a, b, c) = A(a, c, b).

Remark 3.2. Before we give the proof, we first make a slight abuse of notation. Note that
we have defined X(v) and Y (v) already in (2.5) and (2.6). It would be more prudent to use
notations X̂(u; a, b, c) and Ŷ (u; a, b, c). However, this is simply a scaling of the variables: X̂(u) =
X
(
v
√
A/B

)
and Ŷ (u) = Y

(
v
√
A/B

)
. Thus the u and v variable give different parametrizations

of the same objects. To avoid cumbersome notation, we will simply write X(u; a, b, c) and
Y (u; a, b, c). A convenient property of the abc-parametrization is that the branch points of X(u)
and Y (u) are at u = a, b, and u = b, c, respectively.

Proof. We can generically set

X(u) = A
[
u+ α0 + α1u

−1 + α2u
−2 + α3u

−3
]
,

Y (u) = B
[
u−1 + β0 + β1u+ β2u

2 + β3u
3
]
.

This fixes the positions of the infinities of the X- and Y -coordinates in the uniformizing plane
as u = ∞, u = 0, respectively. One then sees that this is the most general form of a rational
function with poles only at u = 0,∞ which can possibly be a solution to the stationarity
equations. This is because the leading terms on the right hand side have equal order. For
example, as u → ∞, tX(u)3 = O

(
u3
)
, and Y (u) = X

(
u−1

)
= O

(
u3
)
, with all other terms of
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order O
(
u2
)
or lower. The free parameters A, B, {αk}, and {βk} must then be chosen so that

the asymptotics

X(u) + tqX(u)3 − 1

X(u)
− τY (u) = O

(
u−2

)
, u→ ∞,

Y (u) + tq−1Y (u)3 − 1

Y (u)
− τX(u) = O

(
u2
)
, u→ 0,

hold. Since the stationarity equations are odd functions of X, Y , we can assume (without loss
of generality) that

X(u) = −X(−u), Y (u) = −Y (−u),

this implies that the branch points of X (resp. Y ) will be symmetric about u = 0. This fixes
the form of X(u), Y (u) as

X(u) = A

(
u+

a2 + b2

u
− a2b2

3u3

)
, Y (u) = B

(
1

u
+
(
c2 + d2

)
u− c2d2

3
u3
)
,

for some parameters a, b, c, d (note that the branch points here are at u = ±a, b, u = ±c, d, re-
spectively). We also have a degree of freedom available arising from reparametrization: u→ λu.
We use this freedom to fix d = a. Inserting these expressions for X(u), Y (u) into the stationarity
equation (3.1), we obtain that

(
tA3 +

1

3
τBa2c2

)
u3 +

(
A+ 3qtA3

(
a2 + b2

)
− τB

(
a2 + c2

))
u

+

(
A
(
a2 + b2

)
+ tA3

(
−a2b2 +

(
a2 + b2

)2
+
(
a2 + b2

)(
2a2 + 2b2

))
− 1

A
− τB

)
u−1

= O
(
u−2

)
.

A similar equation at u = 0 holds upon interchanging u → u−1, b ↔ c, A ↔ B, q ↔ q−1. The
requirement that the above vanishes to order O

(
u−2

)
(and the equivalent condition at u = 0)

yield a total of 6 equations on the coefficients; one of these equations is redundant, and so we
can solve the remaining equations for A, B, t, τ , q in terms of the parameters a, b, c. The unique
solution (up to a sign, and possibly a relabelling b ↔ c) is given by equations (3.4)–(3.7). This
completes the proof. ■

We have now obtained a 3-parameter family of solutions to the stationarity equations up to
terms of order O

(
X−2

)
. Each fixed triple (a, b, c) parametrizes a Riemann surface. However,

if one considers all possible values (a, b, c), not all of them are relevant or suited for steepest
descent analysis. Indeed, it will also be important that the measures µ and ν as given in (2.7)
and (2.8) are positive when we are to open lenses. These constrains will be satisfied for all the
parameters in our phase space R as defined in (2.3).

3.2 Sheet structure of the spectral curve

The associated Riemann surface given by the parametrization (X(u), Y (u)) is called the spec-
tral curve. Let us study the structure of the spectral curve. We shall treat the parametric
curve (X,Y ) as a branched covering of the sphere over the X-coordinate; by construction, the
X-coordinate has branch points (X ′(u) = 0) at u = ±a,±b, and ∞. This discussion is repeated
from the introduction, for sake of clarity, and because of our slight abuse of notation on the
relation between the coordinates u, v.
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Figure 4. The branch cuts in the uniformizing plane u = x+iy away from the multicritical point
(left) and at the multicritical point (right). The noncritical case has a = 1.0184, b = c = 0.9100.
The images of each sheet under the uniformizing map are labelled I, . . . , IV. Note that, at
criticality, the second sheet is split into two connected components; this is consistent with the
picture in the physical plane, depicted in Figures 5 and 6.

Away from the multicritical point and curve γb, the spectral curve is 4-sheeted; this family
of spectral curves have generically the same structure, and are shown in Figure 5. There are 4
branch points, all of which lie on the real axis: at ±α := X(±a), and ±β := X(±b). We have
the inequalities 0 < α < β < ∞. The structure of the curve is as follows: Sheets 1 and 2 are
glued along [−α, α], sheet 2 is glued to sheet 3 along the interval (−∞,−β], and finally sheets 2
and 4 are glued along [β,∞). At the multicritical point a = b = c = 1, and on the curve γb, the
curve further degenerates, and the branch points ±β → ±α. This family of spectral curves is
shown in Figure 6. In this case, sheets 1 and 2 are glued along the interval [−α, α], sheet 2 is
glued to sheet 3 along the interval (−∞,−α], and finally sheet 2 is glued to sheet 4 along the
interval [α,∞).

In the uniformization plane, the spectral curve is shown at and away from the multicritical
point (1, 1, 1) in Figure 4.

3.3 The functions Ω

Of particular importance is the following (multi-valued) function

τΩ(X) = τ

∫
Y dX.

This function will play the role of what is often referred to as the g-function in our Deift/Zhou
steepest descent analysis of the Riemann–Hilbert problem. The function τΩ(X) is in general
a multivalued function in C; its real part, however, can be defined in a single-valued manner
on the spectral curve. The function Ω(u) :=

∫
Y (u)X ′(u)du in the uniformization coordinate

is explicit:

τΩ(u) = τ

∫
Y dX = τ

∫
Y (u)X ′(u)du

=
1

a2b4c2 + 3a2b2 + 3a2c2 + 3b4 + 3b2c2 − 3
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Away from the multicritical point and curve γb, the spectral curve is 4-sheeted; this family
of spectral curves have generically the same structure, and are shown in Figure 5. There are 4
branch points, all of which lie on the real axis: at ±α := X(±a), and ±β := X(±b). We have
the inequalities 0 < α < β < ∞. The structure of the curve is as follows: Sheets 1 and 2 are
glued along [−α, α], sheet 2 is glued to sheet 3 along the interval (−∞,−β], and finally sheets 2
and 4 are glued along [β,∞). At the multicritical point a = b = c = 1, and on the curve γb, the
curve further degenerates, and the branch points ±β → ±α. This family of spectral curves is
shown in Figure 6. In this case, sheets 1 and 2 are glued along the interval [−α, α], sheet 2 is
glued to sheet 3 along the interval (−∞,−α], and finally sheet 2 is glued to sheet 4 along the
interval [α,∞).

In the uniformization plane, the spectral curve is shown at and away from the multicritical
point (1, 1, 1) in Figure 4.

3.3 The functions Ω

Of particular importance is the following (multi-valued) function:

τΩ(X) = τ

∫
Y dX.

This function will play the role of what is often referred to as the g-function in our Deift/Zhou
steepest descent analysis of the Riemann–Hilbert problem. The function τΩ(X) is in general
a multivalued function in C; its real part, however, can be defined in a single-valued manner
on the spectral curve. The function Ω(u) :=

∫
Y (u)X ′(u)du in the uniformization coordinate

is explicit:

τΩ(u) = τ

∫
Y dX = τ

∫
Y (u)X ′(u)du

=
1

a2b4c2 + 3a2b2 + 3a2c2 + 3b4 + 3b2c2 − 3

(
−1

4
b2c2u4 − 3

4
a2b2u−4 (3.8)
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Figure 5. A representative example of a the spectral curve in the physical plane, when the
associated parameters (τ, t,H) /∈ γb ∪

{(
1
4 ,− 5

72 , 0
)}

; the sheets are labelled I, . . . , IV.
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Figure 6. The spectral curve, when the associated parameters (τ, t,H) ∈ γb ∪
{(

1
4 ,− 5

72 , 0
)}

.
Note that the branch points at z = α and z = β have merged here.

+
1

2

(
a2b2c2 + b4c2 + 3b2 + 3c2

)
u2 − 3

2

(
a2b4 + a2b2c2 − a2 − b2

)
u−2

)
− log(u).

From here on, we shall relabel X(u) as

X(u) =: z(u),

as the notation is more convenient and consistent later on. We also define the uniformization
mappings uj(z), j = 1, 2, 3, 4, as the inverse functions to z(u), such that z(uj(z)) is the identity
mapping in sheet j, away from the branch cuts.

We can expand Ω on each sheet of the spectral curve, by inverting the uniformization co-
ordinate (uj(z), j = 1, 2, 3, 4), and inserting these expansions into the expression above for Ω.
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)
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)
− log(u).

From here on, we shall relabel X(u) as

X(u) =: z(u),

as the notation is more convenient and consistent later on. We also define the uniformization
mappings uj(z), j = 1, 2, 3, 4, as the inverse functions to z(u), such that z(uj(z)) is the identity
mapping in sheet j, away from the branch cuts.

We can expand Ω on each sheet of the spectral curve, by inverting the uniformization co-
ordinate (uj(z), j = 1, 2, 3, 4), and inserting these expansions into the expression above for Ω.
Since z = ∞ (corresponding to u = 0 on the lower three sheets, u = ∞ on the first sheet) is
a common branch point for all curves in the family parameterized by R, we can write an expres-
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sion for the expansion of Ωj(z) := Ω(uj(z)) at infinity that holds for all (a, b, c) ∈ R. We have
the following proposition.

Proposition 3.3 (Expansion of Ωj(z) at z = ∞). For any fixed (a, b, c) ∈ R, with t(a, b, c),
τ(a, b, c), q(a, b, c) defined as in (3.4)–(3.6), we have the following expansions of the func-
tions Ωj(z):

τΩ1(z) =
tq

4
z4 +

1

2
z2 − log z + ℓ0 +

C0

z2
+O

(
z−4
)
, (3.9)

τΩ2(z) =





−3ω2

4

τ4/3

(−tq−1)1/3
z4/3 − ω

2

τ2/3

(−tq−1)2/3
z2/3

+
1

3
log z + ℓ1 +

ω2C1

z2/3
+O

(
1

z4/3

)
, Im z > 0,

−3ω

4

τ4/3

(−tq−1)1/3
z4/3 − ω2

2

τ2/3

(−tq−1)2/3
z2/3

+
1

3
log z + ℓ1 +

ωC1

z2/3
+O

(
1

z4/3

)
, Im z < 0,

(3.10)

τΩ3(z) = −3

4

τ4/3

(−tq−1)1/3
z4/3 − 1

2

τ2/3

(−tq−1)2/3
z2/3 +

1

3
log z + ℓ1 +

C1

z2/3
+O

(
1

z4/3

)
, (3.11)

τΩ4(z) =





−3ω

4

τ4/3

(−tq−1)1/3
z4/3 − ω2

2

τ2/3

(−tq−1)2/3
z2/3

+
1

3
log z + ℓ1 +

ωC1

z2/3
+O

(
1

z4/3

)
, Im z > 0,

−3ω2

4

τ4/3

(−tq−1)1/3
z4/3 − ω

2

τ2/3

(−tq−1)2/3
z2/3

+
1

3
log z + ℓ1 +

ω2C1

z2/3
+O

(
1

z4/3

)
, Im z < 0.

(3.12)

Here the constants ℓ0 := ℓ0(a, b, c), ℓ1 := ℓ1(a, b, c) are defined as

ℓ0(a, b, c) =
9a6c2 + 20a4b2c2 + 9a2b4c2 + 18a4 + 18a2b2 + 18a2c2 + 18b2c2

6(a4b2c2 + 3a4 + 3a2b2 + 3a2c2 + 3b2c2 − 3)

− log[A(a, b, c)],

ℓ1(a, b, c) = −3
(
2a6b2 + 2a4b4 + 2a4b2c2 + 2a2b4c2 + a4 + 4a2b2 + b4

)

2a2b2(a4b2c2 + 3a4 + 3a2b2 + 3a2c2 + 3b2c2 − 3)

− 1

3
log

[
1

3
a2b2A(a, b, c)

]
.

and the constant C1 := C1(a, b, c) is defined as

C1(a, b, c) =
c3/2τ7/3

18b3/2(−t)4/3q1/6
(
3a8b4c2 + 3a6b6c2 + 3a8b2 + 3a6b4 + 3a6b2c2 (3.13)

+ 3a4b6 + 3a4b4c2 + 3a2b6c2 − a6 − 9a4b2 − 9a2b4 − b6
)
.

The constant C0 has an explicit expression in terms of a, b, c, but it is irrelevant in further
calculations.

Proof. The proof of this proposition is a straightforward calculation; as we have alluded to,
one must first expand the uniformization coordinate at z = ∞ on each of the sheets, then insert
this expansion into the expression for Ω(u) in the uniformization coordinate (see equation (3.8)).
The expansions of the uniformization coordinate on each sheet near the branch points are given
in Appendix A. ■
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Γ

Figure 7. The contour Γ, which starts at e3πi/4 · ∞, passes through −α, +α on the real axis,
and then goes off to e−πi/4 · ∞.

3.4 Definition of the contours Γ, Γ1, and Γ2

Our next step is to define a number of contour which our Riemann–Hilbert problem will rely on.
These contours will be chosen so that the functions Ωj(z) satisfy certain inequalities on them.
The first such contour is Γ, on which the matrix-valued function Y(z) has jumps. We redefine Γ
to be the contour starting at e

3πi
4 · ∞, passes through z = −α, then continues along the real

axis until it reaches z = +α, then goes off again to infinity in the direction e−
πi
4 . The modified

contour Γ is depicted in Figure 7.

We also define two new contours, Γ1 and Γ2, which will appear in the first transformation.
The contour Γ2 is defined to start at z = −∞, then travel along the real axis until it reaches
z = −β; the contour then goes off to infinity in the sector −π

4 < arg(z + β) < 0. The exact
direction of approach to infinity will be established in the next section, when we will require
certain inequalities to hold on Γ2.

Similarly, we define Γ1 to be the contour starting at infinity in the sector 0 < arg(z − β) < 3π
4 ,

and approaches the point z = β; then, Γ1 goes off to infinity again along the positive real axis.
Again, the exact specifications of Γ1 will be established in the next section to guarantee that
certain inequalities hold. The family of contours Γ, Γ1, and Γ2 are depicted in Figure 8. We label
the regions above Γ1, below Γ2, and bounded between Γ1 and Γ2 by Ωu, Ωℓ, an Ωc, respectively.

3.5 Lensing Inequalities

We now begin the work of proving that the function Ω we constructed indeed satisfies the in-
equalities necessary for lensing. The main idea of this section is contained in this subsection;
it explains how we can extend local inequalities near the branch points to inequalities that
hold on the full branch cuts. Most of the work that remains in the subsequent subsections
involves expanding Ω near the branch points, and checking that the correct inequalities hold
there. This check differs in the generic, critical, and multicritical cases, as the expansions of Ω
near the branch points are different in each case. However, we stress that the proof is essen-
tially the same, and relies only on the following lemma. We will first need some setup in the
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3.4 Definition of the contours Γ, Γ1, and Γ2

Our next step is to define a number of contour which our Riemann–Hilbert problem will rely on.
These contours will be chosen so that the functions Ωj(z) satisfy certain inequalities on them.
The first such contour is Γ, on which the matrix-valued function Y(z) has jumps. We redefine Γ
to be the contour starting at e

3πi
4 · ∞, passes through z = −α, then continues along the real

axis until it reaches z = +α, then goes off again to infinity in the direction e−
πi
4 . The modified

contour Γ is depicted in Figure 7.
We also define two new contours, Γ1 and Γ2, which will appear in the first transformation.

The contour Γ2 is defined to start at z = −∞, then travel along the real axis until it reaches
z = −β; the contour then goes off to infinity in the sector −π

4 < arg(z + β) < 0. The exact
direction of approach to infinity will be established in the next section, when we will require
certain inequalities to hold on Γ2.

Similarly, we define Γ1 to be the contour starting at infinity in the sector 0 < arg(z − β) < 3π
4 ,

and approaches the point z = β; then, Γ1 goes off to infinity again along the positive real axis.
Again, the exact specifications of Γ1 will be established in the next section to guarantee that
certain inequalities hold. The family of contours Γ, Γ1, and Γ2 are depicted in Figure 8. We label
the regions above Γ1, below Γ2, and bounded between Γ1 and Γ2 by Ωu, Ωℓ, an Ωc, respectively.

3.5 Lensing inequalities

We now begin the work of proving that the function Ω we constructed indeed satisfies the in-
equalities necessary for lensing. The main idea of this section is contained in this subsection;
it explains how we can extend local inequalities near the branch points to inequalities that
hold on the full branch cuts. Most of the work that remains in the subsequent subsections
involves expanding Ω near the branch points, and checking that the correct inequalities hold
there. This check differs in the generic, critical, and multicritical cases, as the expansions of Ω
near the branch points are different in each case. However, we stress that the proof is essen-
tially the same, and relies only on the following lemma. We will first need some setup in the
uniformizing plane. Define the polar functions

r+(θ; a, b) =

√
1

2

(
a2 + b2

)
+

√
4

3
a2b2 sin2 θ +

1

4

(
a2 − b2

)2
, θ ∈ (−π, 0) ∪ (0, π),
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Figure 8. The contours Γ, Γ1, and Γ2. Also depicted are the regions Ωℓ and Ωu (shaded), as
well as Ωc (unshaded).
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Figure 9. The curve Im z = 0, and the curve C, which characterizes the places that ∇ReΩ(u)
and ∇ Im z(u) are perpendicular. At the places where C and Im z = 0 intersect, the normal
vectors to these curves are perpendicular, implying that the direction of steepest descent may
change sign, as shown above.
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These functions define the preimages of the branch cuts (without the branch points) in the
uniformizing plane in polar form: r+(θ; a, b) defines the preimage of the cut connecting sheets 1
and 2, and r−(θ; a, b) defines the preimages of the cuts between sheets 2 and 4
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(
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3
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)
. One can obtain these expressions by solving

the equation Im z
(
reiθ
)
= 0 for r (see equation (3.3)). Note that r±(θ; a, b) = r±(θ; b, a). There

are six connected components of these curves, corresponding to the +/− sides of each branch
cut. We now can state the main lemma.
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curves are perpendicular, implying that the direction of steepest descent may change sign, as shown

above.
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These functions define the preimages of the branch cuts (without the branch points) in the uni-
formizing plane in polar form: r+(θ; a, b) defines the preimage of the cut connecting sheets 1
and 2, and r−(θ; a, b) defines the preimages of the cuts between sheets 2 and 4

(
for θ ∈(

−π
3 ,

π
3

)
\ {0}

)
and sheets 2 and 3

(
for θ ∈
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2π
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4π
3
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)
. One can obtain these expressions by

solving the equation Im z
(
reiθ
)
= 0 for r (see equation (3.3)). Note that r±(θ; a, b) = r±(θ; b, a).

There are six connected components of these curves, corresponding to the +/− sides of each
branch cut. We now can state the main lemma.

Lemma 3.4. Define the vector field

n̂ :=
∇ Im z(u)

||∇ Im z(u)||
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(note that this is the normal vector to the preimages of the branch cuts in the uniformizing plane
under the mapping z(u)). For any (a, b, c) ∈ R =

{
(a, b, c) | 0 < b ≤ 1, 1 ≤ a ≤ b−1, 0 < c ≤ b

}
,

the function

∇ReΩ(u) · n̂ =
∂

∂n
ReΩ(u)

is of constant sign on each connected component of the preimages of the branch cuts.

Proof. Let C denote the curve where ∂
∂n ReΩ(u) = 0. In order to prove that the direction of

steepest descent is constant on each component of the branch cuts, it is sufficient to check that
the curves Im z(u) = 0 and C do not intersect.6

First, since Ω(u) and z(u) are analytic functions, the Cauchy–Riemann equations yield that
∂[ReΩ(u)] = 1

2∂Ω(u), and similarly ∂[Im z(u)] = 1
2i∂z(u) (here ∂ denotes the holomorphic

derivative in u). It follows that the ∇ReΩ(u) is perpendicular to ∇ Im z(u) if and only if the
quotient of these two expressions is purely imaginary,

∂Ω(u)

i∂z(u)
∈ iR.

It follows that the curve C is characterized by the condition

Im
∂Ω(u)

∂z(u)
= 0,

which is equivalent to the condition Im ∂Ω
∂z (u) = ImY (u) = 0 (cf. equation (3.8)). We thus must

prove that the components of the branch cuts (a subset of Im z(u) = 0 as defined before) and
the corresponding components of ImY (u) = 0 do not intersect. We have already parameterized
the branch cuts in the uniformizing plane in polar form; we can similarly parameterize the
corresponding components of ImY (u) = 0. Since X(u; a, b) = Y

(
u−1, a, b

)
, we have that

ImY
(
reiθ
)
= 0 =⇒ r =

1

r±(θ; a, c)
.

Therefore, we must prove that the following equations have no solution, for any value of
(a, b, c) ∈ R, and any θ in the corresponding parameter ranges for r+, r−:

(1) r+(θ; a, b) =
1

r+(θ;a,c) ,

(2) r−(θ; a, b) = 1
r−(θ;a,c) ,

(3) r+(θ; a, b) =
1

r−(θ;a,c) ,

(4) r−(θ; a, b) = 1
r+(θ;a,c) .

To show this, we state a sequence of inequalities we shall make use of. Provided 0 < c ≤ b ≤ 1,
for any θ in the parameter ranges for r±, and any 1 ≤ a ≤ b−1, we claim that the following
inequalities hold:

(i) r+(θ; a, b) ≥ 1, with equality only if a = 1,

(ii) r−(θ; a, b) ≤ 1, with equality only if a = b = 1,

(iii) r+(θ; a, b) ≥ r+(θ; a, c), with equality only if b = c,

(iv) r−(θ; a, b) ≥ r−(θ; a, c) with equality only if b = c.

Let us momentarily assume that (i)–(iv) hold, and see how they imply (1)–(4). For the
equation (1), we have that

(1) ⇐⇒ r+(θ; a, b)r+(θ; a, c) = 1,

6Here it is important to note that we have omitted the branch points from the definition of these curves.
Indeed, Im z(u) = 0 and C may intersect at the branch points: this occurs in the case of criticality. However, it
does not affect any of the arguments that follow.
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and since

r+(θ; a, b)r+(θ; a, c)
(iii)

≥ r+(θ; a, c)
2
(i)

≥ 1,

we have only to check that the equation r+(θ; a, b)
2 = 1 has no solutions, for 0 < b ≤ 1,

1 ≤ a ≤ b−1. Similarly, for equation (2),

(2) ⇐⇒ r−(θ; a, b)r−(θ; a, c) = 1,

and so

r−(θ; a, b)r−(θ; a, c)
(iv)

≤ r−(θ; a, b)2
(ii)

≤ 1.

Thus, we have only to check that the equation r−(θ; a, b)2 = 1 has no solution, for 0 < b ≤ 1,
1 ≤ a ≤ b−1. For equations (3) and (4), we obtain that

r+(θ; a, b)r−(θ; a, c)
(iv)

≤ r+(θ; a, b)r−(θ; a, b),

r−(θ; a, b)r+(θ; a, c)
(iii)

≤ r+(θ; a, b)r−(θ; a, b),

and so we have only to show that r+(θ; a, b)r−(θ; a, b) ≤ 1, for 0 < b ≤ 1, 1 ≤ a ≤ b−1.
In summary, our original problem involving equations (1)–(4) has been reduced to showing that
the following equations:

r+(θ; a, b)
2 = 1, r−(θ; a, b)2 = 1, r+(θ; a, b)r−(θ; a, b) = 1, (3.14)

have no solutions, provided 0 < b ≤ 1, 1 ≤ a ≤ b−1. Now, let us check that the first two
equations (3.14) have no solutions. We have that

1 = r±(θ)2 ⇐⇒ 1− 1

2

(
a2 + b2

)
=

√
4

3
a2b2 sin2 θ +

1

4

(
a2 − b2

)2

⇐⇒ a2b2 − a2 − b2 + 1 =
4

3
a2b2 sin2 θ

⇐⇒ 3

4

(
1− 1

b2
− 1

a2
+

1

a2b2

)
= sin2 θ.

Since θ = 0, π are excluded from the range of r±, we need that the left hand side of the above
equation to satisfy one of the inequalities

3

4

(
1− 1

b2
− 1

a2
+

1

a2b2

)
≤ 0 or

3

4

(
1− 1

b2
− 1

a2
+

1

a2b2

)
> 1.

Indeed, if 0 < b ≤ 1, then

1

b2
+

1

a2
− 1

a2b2
≥ 1 +

1

a2
− 1

a2
= 1,

so that

3

4

(
1− 1

b2
− 1

a2
+

1

a2b2

)
≤ 0,

and the necessary inequality holds in the region R. On the other hand, for the other intersection
equation, we have that

1 > r+(θ)r−(θ) ⇐⇒ 1 >
1

4

(
a2 + b2

)2 − 4

3
a2b2 sin2 θ − 1

4

(
a2 − b2

)2
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⇐⇒ a2b2 − 1 <
4

3
a2b2 sin2 θ

⇐⇒ 3

4

(
1− 1

a2b2

)
< sin2 θ,

since 1 ≤ a ≤ b−1, 3
4

(
1− 1

a2b2

)
< 0, and the desired inequality holds.

What remains to be shown is that the inequalities (i)–(iv) hold. Indeed, we have that

r+(θ; a, b) =

√
1

2

(
a2 + b2

)
+

√
4

3
a2b2 sin2 θ +

1

4

(
a2 − b2

)2

≥

√
1

2

(
a2 + b2

)
+

√
0 +

1

4

(
a2 − b2

)2

=

√
1

2

(
a2 + b2

)
+

1

2

(
a2 − b2

)
= a ≥ 1,

which proves (i). Similarly,

r−(θ; a, b) =

√
1

2

(
a2 + b2

)
−
√

4

3
a2b2 sin2 θ +

1

4

(
a2 − b2

)2

≤

√
1

2

(
a2 + b2

)
−
√

0 +
1

4

(
a2 − b2

)2

=

√
1

2

(
a2 + b2

)
− 1

2

(
a2 − b2

)
= b ≤ 1,

proving (ii).
Let us now prove the inequalities (iii), (iv). Set

f(x) :=
1

2

(
a2 + x2

)
, g(x) =

4

3
a2x2 sin2 θ +

1

4

(
a2 − x2

)2
.

Then,

r±(θ; a, x) =
√
f(x)±

√
g(x).

Note that (iii), (iv), are equivalent to showing that r±(θ; a, x) is monotone in x, for any fixed
0 < a < x, and any θ in the corresponding parameter ranges for r±. We have that

d

dx

√
f(x)±

√
g(x) =

f ′(x)± g′(x)
2
√
g(x)

2
√
f(x)±

√
g(x)

.

We must therefore show that

x± x
(
8
3a

2 sin2 θ −
(
a2 − x2

))

2
√

4
3a

2x2 sin2 θ + 1
4(a

2 − x2)2
> 0,

for sin2 θ < 1 in the “+” case, and sin2 θ < 3
4 in the “−” case. Indeed, in the “+” case, since

0 < x < a, algebraic manipulation yields that

2

√
4

3
a2x2 sin2 θ +

1

4

(
a2 − x2

)2
+

8

3
a2 sin2 θ −

(
a2 − x2

)

> 2

√
4

3
a2x2 sin2 θ +

1

4

(
a2 − x2

)2
+

8

3
a2 sin2 θ > 0,
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Im ∂Ω
∂z = 0

Im z = 0

Figure 10. Images of the branch cuts Im z(u) = 0 and Im ∂Ω
∂z = 0 in the uniformizing plane,

for a = 1.059, b = 0.880, c = 0.880. The curves indeed do not intersect, and so the direction of
steepest descent is constant along each connected component of the branch cuts.

> 2

√
4

3
a2x2 sin2 θ +

1

4

(
a2 − x2

)2
+

8

3
a2 sin2 θ > 0,

since all quantities above are positive. In the “−” case, algebraic manipulation yields the fol-
lowing equivalent inequality:

2

√
4

3
a2x2 sin2 θ +

1

4

(
a2 − x2

)2
>

8

3
a2 sin2 θ −

(
a2 − x2

)

⇐⇒ 4

(
4

3
a2x2 sin2 θ +

1

4

(
a2 − x2

)2
)
>

(
8

3
a2 sin2 θ −

(
a2 − x2

))2

⇐⇒ 64

9
a4 sin2 θ

(
3

4
− sin2 θ

)
> 0.

Since sin2 θ < 3
4 (recall the range of θ for r−), we find that the above is positive, and so

x− x
(
8
3a

2 sin2 θ −
(
a2 − x2

))

2
√

4
3a

2x2 sin2 θ + 1
4(a

2 − x2)2
> 0.

It follows that the inequalities (iii) and (iv) hold.
Thus, we have proven that, provided (a, b, c) ∈ R =

{
(a, b, c) | 0 < b ≤ 1, 1 ≤ a ≤ b−1,

0 < c ≤ b
}
, the only intersection points of the branch cuts and the places where the direction

of steepest descent of Ω(u) changes sign are at (possibly) the branch points. The branch cuts
Im z = 0 and the curves Im ∂Ω

∂z = 0 in the uniformizing plane are shown in Figure 10 for
a particular choice of the parameters (a, b, c); one can see explicitly that these curves do not
intersect. ■

This lemma is fundamental in proving the required lensing inequalities; we now proceed to
the proofs of these.
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This lemma is fundamental in proving the required lensing inequalities; we now proceed to
the proofs of these.
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3.6 The generic (noncritical) case: 0 < b < 1, 1 < a < b−1, 0 < c < b

It remains to check that the Ωj(z) := Ω(uj(z)) have the correct sign around each of the lenses.
This amounts to expanding Ω(u) around each of the branch points, and checking that locally,
the signs of the quantities we will be interested are positive. The fact that these inequalities
hold globally across each component of the support follows from the fact the intersection lemma
we have just proven. We have the following proposition.

Proposition 3.5. Local expansions of Ωj(z) around the branch points.

(1) Around z = ±α := z(±a)

τΩ1(z) = ηα(z) + q1(z − α)3/2 +O
(
(z − α)2

)
,

τΩ2(z) = ηα(z)− q1(z − α)3/2 +O
(
(z − α)2

)
,

and

τΩ1(z) =

{
η−α(z) + iq1(z + α)3/2 +O

(
(z + α)2

)
, Im z > 0,

η−α(z)− iq1(z + α)3/2 +O
(
(z + α)2

)
, Im z < 0,

τΩ2(z) =

{
η−α(z)− iq1(z + α)3/2 +O

(
(z + α)2

)
, Im z > 0,

η−α(z) + iq1(z + α)3/2 +O
(
(z + α)2

)
, Im z < 0,

η±α(z) = Ω(±a)∓ α
a2b6 − 3a2b2 − 3b4 − 3

2a2 + 6b2
(z ∓ α).

Note that the constant

q1 :=
2
(
a4 − b4

)(
a4 − 1

)(
1− a4b4

)

a1/2A3/2(a2 − b2)3/2
> 0.

(2) Around z = ±β := z(±b)

τΩ2(z) =

{
ηβ(z) + iq̃1(z − β)3/2 +O

(
(z − β)2

)
, Im z > 0,

ηβ(z)− iq̃1(z − β)3/2 +O
(
(z − β)2

)
, Im z < 0,

τΩ4(z) =

{
ηβ(z)− iq̃1(z − β)3/2 +O

(
(z − β)2

)
, Im z > 0,

ηβ(z) + iiq̃1(z − β)3/2 +O
(
(z − β)2

)
, Im z < 0,

and

τΩ2(z) = η−β(z) + q̃1(z + β)3/2 +O
(
(z + β)2

)
,

τΩ3(z) = η−β(z)− q̃1(z + β)3/2 +O
(
(z + β)2

)
,

η±β(z) = Ω(±β)∓ β
a2b6 − 3a2b2 − 3b4 − 3

2a2 + 6b2
(z ∓ β).

Note that the constant

q̃1 :=
2
(
a4 − b4

)(
1− b4

)(
1− a4b4

)

b1/2A3/2(a2 − b2)3/2
> 0.

Proposition 3.6. Lensing around the cuts. Let Ωj(z) = ϕj(z) + iψj(z), j = 1, 2, 3, 4. Then,
the following inequalities hold:

(1) ϕ4(z)− ϕ2(z) > 0 in a lens around [β,∞),
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(2) ϕ3(z)− ϕ2(z) > 0 in a lens around (−∞,−β],
(3) ϕ2(z)− ϕ1(z) > 0 in a lens around [−α, α].

Proof. We have only to expand the differences ϕj(z)−ϕk(z) around the branch points; our pre-
vious lemmas guarantee that if the correct inequality holds locally, it holds globally as well. For z
sufficiently close to β, the difference ϕ4(z)− ϕ2(z) = Re(Ω4 − Ω2)(z) ∼ Re

[
−2iq(z − β)3/2

]
> 0

in the sector 0 < arg(z − β) < π
3 for |z − β| small enough. Now, for any z ∈ (β,∞),

u2,+(z) = u4,−(z), where uj,±(z) denote the continuous limits of uj(ζ) as ζ → z from the upper
and lower half planes, respectively. Thus, since Ω(u) = Ω(ū), we have that

Ω(u2,+(z)) = Ω(u4,−(z)),

and so Re(Ω4 − Ω2)(z) = 0 for z ∈ [β,∞). Now, by definition of the sheets 2, 4, we have that

∂ ReΩ2

∂n+
= −∂ ReΩ4

∂n−
,

∂ ReΩ2

∂n−
= −∂ ReΩ4

∂n+
,

where ∂
∂n±

denote the normal derivatives in the upper/lower half planes in the z-coordinate,
respectively (note that these normal derivatives and the one appearing in Lemma 3.4 differ
only by an overall positive factor |z′(u)| > 0). On the other hand, by our observation that
Ω(u) = Ω(ū), we obtain the equalities

∂ ReΩ2

∂n+
=
∂ ReΩ2

∂n−
,

∂ ReΩ4

∂n+
=
∂ ReΩ4

∂n−
.

We thus compute that

∂

∂n±
[Re(Ω4 − Ω2)(z)] = 2

∂

∂n±
Re(Ω4)(z).

Since this quantity is positive locally near z = β, Lemma 3.4 allows us to conclude that
∂

∂n±
[Re(Ω4 − Ω2)(z)] > 0 for all z ∈ [β,∞). Therefore, we can open a lens around [β,∞).
Similarly, near z = −β, again using the local expansions of Proposition 3.5, we have that

ϕ3(z) − ϕ2(z) = Re(Ω3 − Ω2)(z) > 0 in the sector 2π
3 < arg(z + β) < π for |z + β| sufficiently

small. Thus, Lemma 3.4 guarantees that we can open a lens around (−∞, β].
Finally, near z = +α (respectively, z = −α), the difference ϕ2(z)−ϕ1(z) = Re(Ω2−Ω1)(z) > 0

for 2π
3 < arg z < π and |z − α| sufficiently small (respectively, 0 < arg(z − β) < π

3 and |z + α|
sufficiently small). Thus, we can also open a lens around the central cut [−α, α]. ■

Proposition 3.7. Inequalities off the real axis. Let Ωj(z) = ϕj(z)+ iψj(z), j = 1, 2, 3, 4. Then,
the following inequalities hold:

(1) ϕ2(z)− ϕ4(z) > 0 for z ∈ Γ1 ∩ {Im z > 0},
(2) ϕ2(z)− ϕ3(z) > 0 for z ∈ Γ2 ∩ {Im z < 0},
(3) ϕ1(z)− ϕ2(z) > 0 for z ∈ Γ \ {Im z = 0}.

Proof. We prove ϕ2(z)−ϕ4(z) > 0 for z ∈ Γ1 ∩{Im z > 0}; the proofs of the other inequalities
follow from similar argumentation. Using (3.5), we have that ϕ2(z)− ϕ4(z) > 0 for |z− β| suffi-
ciently small in the sector 2π

3 < |arg(z − β)| < π. Furthermore, at infinity, using equations (3.10)
and (3.12), we see that ϕ2(z)− ϕ4(z) > 0 for |z| sufficiently large in the sector 3π

4 < |arg z| < π.
Consider the domain

E := {z | ϕ2(z)− ϕ4(z) > 0},
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by the lensing inequalities (3.6), the boundary of this domain is bounded away from the branch
cuts, and ϕ2(z) − ϕ4(z) = 0 there. Since ϕ2(z) − ϕ4(z) is not identically zero, the maximum
principle tells us that the domain E is necessarily unbounded, and reaches infinity in the sector
3π
4 < |arg z| < π. Thus, we may freely redefine Γ1 so that ϕ2(z) − ϕ4(z) > 0 along Γ1 for all
z ∈ Γ1 ∩ {Im z > 0}. ■

Remark 3.8 (inequalities on the critical surface). In fact, all of the inequalities necessary for
lensing hold on each component of the critical surface. However, this requires a separate analysis
in each case, as one must perform a local expansion of the functions Ωj(z) around each of the
branch points, and the characteristic property of each of the components of the critical surface,
as we shall see in the next remark, is that the functions Ωj(z) have different expansions in
these regions in general. Since we are only interested in the genus 0 partition function in this
work, we omit the proof of these inequalities: this being said, the astute reader should have
no trouble replicating the calculations performed above in each of the critical cases. We will
demonstrate the proof of the relevant inequalities at the multicritical point explicitly in Part III
of this work [37].

4 The first and second transformations Y 7→ X 7→ U

4.1 Idea of the transformation

The main idea of the transformation Y 7→ X is illustrated in [39], who refer to an unpublished
manuscript of Bertola, Harnad, and Its as the origin of the idea. The point is that the weights
appearing in the jump matrix, f(z) and its derivatives, satisfy a modified form of the Pearcey
differential equation:

t

N2τ2q
f ′′′(z) + f ′(z)−Nτ2zf(z) = 0, (4.1)

whose solutions are the Pearcey-type integrals

wj(z) :=

∫

γj

exp

[
N

(
τzw−1

2
w2 − t

4q
w4

︸ ︷︷ ︸
−V (q−1w)

)]
dw.

It is also useful to notice that any solution w(z) = w(z; τ, t, q,N) to (4.1) satisfies the partial
differential equations

∂w

∂t
= − 1

4N3τ4
∂4w

∂z4
=

q

4Nτ2t

∂2w

∂z2
− qz

4t

∂w

∂z
− q

4t
w,

τ
∂w

∂τ
= z

∂w

∂z
.

In the following subsection, we analyze the asymptotics of these integrals, and consider an
associated Riemann–Hilbert problem for the wj(z)’s, which we shall make use of in the first
transformation Y 7→ X.

4.2 Riemann–Hilbert problem and asymptotics
for the Pearcey-type integrals wj(z)

We begin by utilizing classical steepest descent analysis to determine the asymptotics of each of
the integrals

wj(z) =

∫

γj

exp
[
N(τzw − V (w))

]
dw, (4.2)
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γ1

γ2

γ3

γ4

Figure 11. The contours γj , j = 1, . . . , 4.

as z → ∞, where γj , j = 1, . . . , 4 are one of the contours in Figure 11. Before studying the
asymptotics of the integrals (4.2), we will study the solutions to the so-called saddle point
equation. The saddle point equation is defined to be

0 =
d

dw

[
τzw − 1

2
w2 − t

4q
w4

]
⇐⇒ w3 +

q

t
w − τq

t
z = 0.

The large z asymptotics of the integrals (4.1) are determined in terms of certain solutions to the
saddle point equation, in a sense we shall make explicit later on. We define sk(z), k = 1, 2, 3
to be particular solutions to the saddle point equation, defined as follows. First, we define the
Riemann surface of this equation as S, consisting of three sheets Sk, k = 1, 2, 3:

S1 := C \
(
(−∞,−z∗] ∪ [z∗,∞)

)
,

S2 := C \[z∗,∞),

S3 := C \(−∞,−z∗].

Here, z∗ := ± 2
3τ

√
3

√
q
−t > 0 are the branch points of the saddle point equation. Let s2(z) be

the unique solution of the saddle point equation which is real for z ∈ R \{±z∗}. This solu-
tion admits an analytic continuation to all of S2. We then define s1(z), s3(z) as the analytic
continuations of s2(z) to sheets S1 and S3, respectively. We have the following lemma, regarding
the properties of the sk(z).

Lemma 4.1.

(1) Boundary values of sk(z). The following relations hold:

s3,±(z) = s1,∓(z), z ∈ (−∞,−z∗], s1,±(z) = s2,∓(z), z ∈ [z∗,∞).

(2) Asymptotics of sk(z). As z → ∞,

s1(z) =

{
−ω2

( τq
−t
)1/3

z1/3
[
1 +O

(
z−1/3

)]
, Im z > 0,

−ω
( τq
−t
)1/3

z1/3
[
1 +O

(
z−1/3

)]
, Im z < 0,

s2(z) = −
(
τq

−t

)1/3

z1/3
[
1 +O

(
z−1/3

)]
,

s3(z) =

{
−ω
( τq
−t
)1/3

z1/3
[
1 +O

(
z−1/3

)]
, Im z > 0,

−ω2
( τq
−t
)1/3

z1/3
[
1 +O

(
z−1/3

)]
, Im z < 0.
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The large z asymptotics of the integrals (4.1) are determined in terms of certain solutions to the
saddle point equation, in a sense we shall make explicit later on. We define sk(z), k = 1, 2, 3
to be particular solutions to the saddle point equation, defined as follows. First, we define the
Riemann surface of this equation as S, consisting of three sheets Sk, k = 1, 2, 3,

S1 := C \
(
(−∞,−z∗] ∪ [z∗,∞)

)
,

S2 := C \[z∗,∞),

S3 := C \(−∞,−z∗].
Here z∗ := ± 2

3τ
√
3

√
q
−t > 0 are the branch points of the saddle point equation. Let s2(z) be

the unique solution of the saddle point equation which is real for z ∈ R \{±z∗}. This solu-
tion admits an analytic continuation to all of S2. We then define s1(z), s3(z) as the analytic
continuations of s2(z) to sheets S1 and S3, respectively. We have the following lemma, regarding
the properties of the sk(z).

Lemma 4.1.

(1) Boundary values of sk(z). The following relations hold:

s3,±(z) = s1,∓(z), z ∈ (−∞,−z∗], s1,±(z) = s2,∓(z), z ∈ [z∗,∞).

(2) Asymptotics of sk(z). As z → ∞,

s1(z) =





−ω2

(
τq

−t

)1/3

z1/3
[
1 +O

(
z−1/3

)]
, Im z > 0,

−ω
(
τq

−t

)1/3

z1/3
[
1 +O

(
z−1/3

)]
, Im z < 0,

s2(z) = −(
τq

−t

)1/3

z1/3
[
1 +O

(
z−1/3

)]
,

s3(z) =





−ω
(
τq

−t

)1/3

z1/3
[
1 +O

(
z−1/3

)]
, Im z > 0,

−ω2

(
τq

−t

)1/3

z1/3
[
1 +O

(
z−1/3

)]
, Im z < 0.
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(3) Symmetries of sk(z). For each k = 1, 2, 3, we have that sk(−z) = −sk(z), sk(z̄) = sk(z).
Furthermore, if Re z < 0, then Re s2(z) > 0.

These properties are straightforward to verify; the proof is so similar to that of [40, Lem-
mas 2.1 and 2.3] that we omit it. For further details, we refer to this work. Consequentially, we
have the following corollary.

Corollary 4.2. For sk(z) defined as above, k = 1, 2, 3, put

θk(z) := τzsk(z)− V (sk(z)), k = 1, 2, 3.

(Note that θ′k(z) = τsk(z), so that θk(z) are, up to a factor of τ , the primitives of the func-
tions sk(z)). Then, the functions θk(z) have the large-z asymptotics

θ1(z) =





−3ω2

4

τ4/3

(−tq−1)1/3
z4/3 − ω

2

τ2/3

(−tq−1)2/3
z2/3

+
q

6t
− ω2

54τ2/3(−tq−1)4/3z2/3
+O

(
1

|z|4/3
)
, Im z > 0,

−3ω

4

τ4/3

(−tq−1)1/3
z4/3 − ω2

2

τ2/3

(−tq−1)2/3
z2/3

+
q

6t
− ω

54τ2/3(−tq−1)4/3z2/3
+O

(
1

|z|4/3
)
, Im z < 0,

(4.3)

θ2(z) = −3

4

τ4/3

(−tq−1)1/3
z4/3 − 1

2

τ2/3

(−tq−1)2/3
z2/3 +

q

6t
− 1

54τ2/3(−tq−1)4/3z2/3
+O

(
1

|z|4/3
)
,

θ3(z) =





−3ω

4

τ4/3

(−tq−1)1/3
z4/3 − ω2

2

τ2/3

(−tq−1)2/3
z2/3

+
q

6t
− ω

54τ2/3(−tq−1)4/3z2/3
+O

(
1

|z|4/3
)
, Im z > 0,

−3ω2

4

τ4/3

(−tq−1)1/3
z4/3 − ω

2

τ2/3

(−tq−1)2/3
z2/3

+
q

6t
− ω2

54τ2/3(−tq−1)4/3z2/3
+O

(
1

|z|4/3
)
, Im z < 0.

With this information about the saddle points sk(z) in place, we are ready to state the
following proposition.

Proposition 4.3. Define the function S(w) by

S(w) :=

√
2π

N
(
1 + 3tq−1w2

)eN(τzw−V (z)).

Then, the functions wj(z), j = 1, 2, 3, 4, defined by (4.2), have large-z asymptotics given by

w1(z) = −S(s3(z))
[
1 +O

(
z−4/3

)]
,

w2(z) =





S(s1(z))
[
1 +O

(
z−4/3

)]
, 0 < arg z < π,

S(s3(z))
[
1 +O

(
z−4/3

)]
, −π

2 < arg z < 0,

S(s2(z))
[
1 +O

(
z−4/3

)]
, π < arg z < −π

2 ,

w3(z) = −S(s2(z))[1 +O
(
z−4/3

)
],

w4(z) =





S(s2(z))
[
1 +O

(
z−4/3

)]
, π

2 < arg z < π,

S(s3(z))
[
1 +O

(
z−4/3

)]
, 0 < arg z < π

2 ,

S(s1(z))
[
1 +O

(
z−4/3

)]
, −π < arg z < 0.
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Proof. Classical steepest descent analysis (cf., for example, [71]) tells us that the asymptotics
of the integrals wj(z) are given by

wj(z) = ±
√

2π

NV ′′(s∗(z))
eN(τzs∗(z)−V (s∗(z)))

(
1 +O

(
z−2/3

))
,

where ∗ ∈ {1, 2, 3}, and s∗(z) is the dominant contributing saddle point to the integral. The
proposition then follows from determining the dominant saddle in each quadrant; the sign in
front of the square root is determined by the orientation of the contour γj as it passes through
the relevant saddle point. ■

We now define the row vectors

w⃗j(z) :=

(
wj(z),

w′
j(z)

Nτ
,
w′′
j (z)

(Nτ)2

)
,

where ′ here denotes the derivative with respect to z. We now define a 3× 3 matrix W(z) as

W(z) =







−w⃗2(z)

w⃗3(z)

w⃗1(z)


 , z ∈ Ωu,



w⃗3(z) + w⃗4(z)

w⃗3(z)

w⃗1(z)


 , z ∈ Ωc,



w⃗4(z)

w⃗3(z)

w⃗1(z)


 , z ∈ Ωℓ.

W(z) is defined so that it is the unique solution to the following Riemann–Hilbert problem.

Proposition 4.4. W(z) is the unique solution to the following Riemann–Hilbert problem:

(1) W(z) is analytic in C \(Γ1 ∪ Γ2), with boundary values

W+(z) =







1 0 1

0 1 0

0 0 1


W−(z) =: J1W−(z), z ∈ Γ1,



1 1 0

0 1 0

0 0 1


W−(z) =: J2W−(z), z ∈ Γ2

(note that these matrices commute, and that their product is J1J2 = J).

(2) At infinity, W(z) is normalized as

W(z) = cN · eNΘ(z)A(z)B(z)K̂

[
I3×3 +O

(
1

z

)]
, z → ∞,

where the constant cN := i
√

2π
3N eN

q
6t , the matrix Θ(z) is defined to be

Θ(z) =

{
diag(λ3(z), λ1(z), λ2(z)), Im z > 0,

diag(λ2(z), λ1(z), λ3(z)), Im z < 0,
(4.4)
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where the functions λk(z) are defined by the exact formulas

λk(z) = −3ωk−1

4

τ4/3

(−tq−1)1/3
z4/3 − ω1−k

2

τ2/3

(−tq−1)2/3
z2/3.

and finally, the matrices A(z), B(z), and K̂ are given by

A(z) =








−ω 1 ω2

−1 1 1

−ω2 1 ω


 , Im z > 0,



ω2 −1 −ω
−1 1 1

−ω 1 ω2


 , Im z < 0,

B(z) =



z−1/3 0 0
0 1 0

0 0 z1/3


 ,

K̂ =




(
−tq−1

)−1/6
τ−1/3 0 − n+27tq−1

54(−tq−1)13/6τ1/3

0
(
−tq−1

)−1/2
0

0 0 −
(
−tq−1

)−5/6
τ1/3


 .

Proof. The proof of this proposition is just a tedious check that the formulas we have previously
derived for the asymptotics of the wj(z)’s indeed guarantee that the W(z) solves the above
Riemann–Hilbert problem. Uniqueness follows from standard arguments with Morera’s and
Liouville’s theorem. We remark that the terms decaying in z as z → ∞ in the functions θj(z)
can be absorbed into the asymptotic expansion I+O

(
z−1
)
, by passing this part of the expansion

to the right of the matrices A(z)B(z). More precisely, the expansion of the Laurent series is7

I3×3 +




0 −N3−72N2t/q−891Nt2/q2−810t3/q3

5832Nt3/q3τ
0

−N+9t/q
54τt/q 0 N3+36N2t/q−81Nt2/q2−810t3/q3

5832Nt3/q3τ

0 −N−9t/q
54τt/q 0


 z−1

+O(z−2). ■

Remark 4.5. We have introduced functions λk(z) in the above proposition. These functions
have been chosen so that

diag(θ1(z), θ2(z), θ3(z)) = Θ(z) +O(1), z → ∞.

The reason for the introduction of these functions is to match the asymptotic theory of ordinary
differential equations with rational coefficients; such an equation will have a large z expansion
consistent with the above.

We furthermore have the following proposition, which will be useful later in the computation
of the τ -function.

Proposition 4.6. W(z) satisfies the following differential equations:

∂W

∂z
= W ·Mz(z),

∂W

∂t
= W ·Mt(z),

∂W

∂τ
= W ·Mτ (z),

∂W

∂H
= W ·MH(z), (4.5)

7The regular series expansion here either by (i) calculating subleading asymptotics of the saddle point expansion
to high enough order, or (ii) using the fact that the asymptotic expansion itself should satisfy the differential
equation(s) (4.6), and determining the coefficients of the subleading expansion recursively.
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where the matrices Mz(z), Mt(z), Mτ (z), and MH(z) are defined by

Mz(z) = Nτ



0 0 τqz/t
1 0 −q/t
0 1 0


 ,

Mt(z) =
N

4t



−1/N τqz/t −τ2qz2/t+ q

Nt
−τz −(q/t+ 2/N) 2τqz/t
1 −τz −(q/t+ 3/N)


 ,

Mτ (z) = Nz



0 0 τqz/t
1 0 −q/t
0 1 0


 ,

MH(z) = −N
4



−1/N τqz/t −τ2qz2/t+ q

Nt
−τz −(q/t+ 2/N) 2τqz/t
1 −τz −(q/t+ 3/N)


 .

Proof. This can be inferred immediately from the differential equation (4.1) and the relations

∂w

∂t
= − e−H

4N3τ4
∂4w

∂z4
, τ

∂w

∂τ
= z

∂w

∂z
,

∂w

∂H
= −t∂w

∂t
.

As a consistency check, one may verify that the compatibility conditions between these equations
(i.e., the zero-curvature equations) hold trivially. ■

Remark 4.7. It is useful to notice that the function A(z)B(z) is a solution to the following
Riemann–Hilbert problem: A(z)B(z) is analytic in C \R, and satisfies the jump condition

A+(z)B+(z) =








0 0 1

0 1 0

−1 0 0


A−(z)B−(z), z > 0,




0 1 0

−1 0 0

0 0 1


A−(z)B−(z), z < 0.

This is consistent with the fact that, for z ∈ R sufficiently large, Θ(z) has jumps

Θ+(z) =








0 0 1

0 1 0

−1 0 0


Θ−(z), z > R > 0,




0 1 0

−1 0 0

0 0 1


Θ−(z), z < −R < 0.

4.3 The transformation Y 7→ X

We now define the transformation Y 7→ X. We set

X(z) :=

(
1 0

0 cNK̂

)
Y(z)

(
e−NV (z) 0

0 W−1(z)

)
.

By construction, X(z) is piecewise analytic on C \(Γ1∪Γ2∪Γ). X(z) satisfies the following RHP.
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Proposition 4.8. X(z) is the unique solution to the following Riemann–Hilbert Problem:

X+(z) = X−(z)×





(
1 0

0 J−1
1

)
, z ∈ Γ1,

(
1 0

0 J−1
2

)
, z ∈ Γ2,

(
1 1 0 0

0⃗1×3 I3×3

)
, z ∈ Γ,

Subject to the normalization condition

X(z) =

[
I+O

(
1

z

)](
1 0
0 B−1(z)A−1(z)

)



zn 0 0 0

0 z−n/3 0 0

0 0 z−n/3 0

0 0 0 z−n/3


 e−NΛ(z), (4.6)

where Λ(z) is defined as the diagonal matrix

Λ(z) =

(
V (z) 0
0 Θ(z)

)
,

where Θ(z) is the diagonal 3× 3 matrix defined by (4.4).

Proof. The asymptotic condition (4.6) follows almost immediately from the definition of X(z);
along with the definition of the matrix W(z). Indeed, this is obvious in the regions Ωu and Ωℓ,
and follows from definition of W(z). The only detail to check is that the asymptotics of W(z)
in the region Ωc are correct. We see that W(z) in this region is obtained by adding the recessive
solution −w⃗1(z) to the first row; since this solution is recessive in the region Ωc, the asymptotics
of −w⃗2(z) − w⃗1(z) (= w⃗3(z) + w⃗4(z)) are the same as the asymptotics of −w⃗2(z) there. Thus,
the asymptotics of X(z) from the proposition hold.

Now, we address the jump conditions of X(z). Since the matrix function
(
e−NV (z) 0

0 W−1(z)

)

has jumps only on Γ1, Γ2 (arising from the jumps ofW(z)), and these contours do not intersect Γ,
the first two jump conditions are clearly satisfied. It remains to check the jump of X(z) across Γ.
The jump of Y(z) on Γ is

JY = I+ e−NV (z)




0 f(z) f ′(z)
Nτ

f ′′(z)
(Nτ)2

0 0 0 0
0 0 0 0
0 0 0 0


 =: I+ e−NV (z)




0 f⃗(z)
0 0 0 0
0 0 0 0
0 0 0 0


 ,

where f⃗(z) is the row vector

f⃗(z) :=

(
f(z),

f ′(z)
Nτ

,
f ′′(z)
(Nτ)2

)
.

Now, since Γ is homologically equivalent to −γ2 − γ1, we have that L⃗(z) = −w⃗2(z) − w⃗1(z).
Thus, the jump of X(z) across Γ is

(
eNV (z) 0

0 W(z)

)

I+ e−NV (z)




0 f⃗(z)
0 0 0 0
0 0 0 0
0 0 0 0






(
e−NV (z) 0

0 W−1(z)

)



The Ising Model Coupled to 2D Gravity: Genus Zero Partition Function 41

= I+




0 f⃗(z)W−1(z)
0 0 0 0
0 0 0 0
0 0 0 0


 = I+




0 (−w⃗2(z)− w⃗1(z))W
−1(z)

0 0 0 0
0 0 0 0
0 0 0 0




=




1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 .

Here we have used the relations

w⃗1(z)W
−1(z) = (0, 0, 1), w⃗2(z)W

−1(z) = (−1, 0,−1),

w⃗3(z)W
−1(z) = (0, 1, 0), w⃗4(z)W

−1(z) = (1,−1, 0),

resulting from the fact that, in a neighborhood of Γ, the matrix W(z) admits the expression

W(z) =



w⃗3(z) + w⃗4(z)

w⃗3(z)
w⃗1(z)


 ,

along with the identity W(z)W−1(z) = I3×3. ■

Remark 4.9. Note that, if we had equivalently chosen γ3+γ4 as the homological representative
for Γ, the same resulting jump matrix is obtained.

4.4 The transformation X 7→ U

Define the matrix

G(z) :=




exp[nτΩ1(z)] 0 0 0
0 exp[nτΩ2(z)] 0 0
0 0 exp[nτΩ3(z)] 0
0 0 0 exp[nτΩ4(z)]


 .

We now are ready to perform the transformation X 7→ U. Set

U(z) := [I− nC1 · E24]e
−nLX(z)G(z),

whereG(z) is defined as above, C1 is the constant appearing in the z−2/3 term of the asymptotics
of the Ωj(z)’s (cf. equation (3.13)), and L is the diagonal constant (in z) matrix

L := diag(ℓ0, ℓ1, ℓ1, ℓ1).

Clearly, U(z) is analytic in C \(Γ ∪ Γ1 ∪ Γ2); the goal of this subsection is to show that U(z) is
the unique solution to its own Riemann–Hilbert problem.

Proposition 4.10. The function U(z) is the unique solution to the following Riemann–Hilbert
problem:

U+(z) = U−(z)
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×





I− E24e
−nτ [Ω2(z)−Ω4(z)], z ∈ Γ1 ∩ {Im z > 0},



1 0 0 0

0 e−nτ [Ω2,−(z)−Ω4,−(z)] 0 −1

0 0 1 0

0 0 0 enτ [Ω2,−(z)−Ω4,−(z)]



, z ∈ Γ1 ∩ {Im z = 0},

I− E23e
−nτ [Ω2(z)−Ω3(z)], z ∈ Γ2 ∩ {Im z < 0},




1 0 0 0

0 e−nτ [Ω2,−(z)−Ω3,−(z)] −1 0

0 0 enτ [Ω2,−(z)−Ω3,−(z)] 0

0 0 0 1



, z ∈ Γ2 ∩ {Im z = 0},

I+ E12e
−nτ [Ω1(z)−Ω2(z)], z ∈ Γ \ {Im z = 0},



e−nτ [Ω1,−(z)−Ω2,−(z)] 1 0 0

0 enτ [Ω1,−(z)−Ω2,−(z)] 0 0

0 0 1 0

0 0 0 1



, z ∈ Γ ∩ {Im z = 0}.

The asymptotics of U(z) are given by

U(z) =

[
I+O

(
1

z1/3

)](
1 0
0 B−1(z)A−1(z)

)
, z → ∞.

Proof. The jump conditions satisfied by U(z) are readily verified from the definitions of
X(z), G(z). Furthermore, the “exponential asymptotics” of X(z) are removed by multiplication
by G(z); comparison of formulas (3.9)–(3.12) with (4.6), along with the explicit expressions for
the asymptotics of the functions λk(z) (see equation (4.3)) shows that this is indeed the case.
Indeed, we have that, as z → ∞,

U(z) = [I− nC1 · E24]e
−nL[I+O

(
z−1
)](zn 0

0 z−n/3I3×3

)

×
(
1 0
0 B−1(z)A−1(z)

)
e−nΘ̂(z)G(z)

= [I− nC1 · E24]
[
I+O

(
z−1
)](1 0

0 B−1(z)A−1(z)

)

×
(
1 +O(z−2) 0

0 I3×3 + nĈz−2/3 +O(z−4/3)

)
.

Here Ĉ is the piecewise constant diagonal matrix

Ĉ =

{
diag

(
ω2C1, C1, ωC1

)
, Im z > 0,

diag(ωC1, C1, ω
2C1), Im z < 0.

If we interchange the order of the last two matrices, we obtain that, as z → ∞,

U(z) = [I− nC1 · E24]
[
I+O

(
z−1
)][

I+ nC1 · E24 +O
(
z−1/3

)](1 0
0 B−1(z)A−1(z)

)

=
[
I+O

(
z−1/3

)](1 0
0 B−1(z)A−1(z)

)
.

We will analyze the jumps of this new matrix after opening lenses; this is performed in the
next section. ■
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5 The third and fourth transformations U 7→ T 7→ S

Here we perform the lensing transformations. The first lensing transformation will open lenses
around the unbounded branch cuts (−∞,−β] ∪ [β,∞); this will constitute the transforma-
tion U 7→ T. The lens opening around the central cut [−α, α] is performed next; this will
constitute the transformation T 7→ S. We remark here that the choice of (a, b) (i.e., whether the
spectral curve is critical, generic, or multicritical) is irrelevant here, as all of the lensing proposi-
tions of Section 3.5 guarantee the same inequalities hold around the branch points. These cases
will become distinguished when we later try to find a parametrix.

5.1 The transformation U 7→ T

The opening of lenses here is based on the factorization of the jump matrix
(
e−ng+(z) −1

0 e−ng−(z)

)
=

(
1 0

−e−ng−(z) 1

)(
0 −1
1 0

)(
1 0

−e−ng+(z) 1

)
,

where g+(z), g−(z) are the boundary values of one of the functions Ω3(z)−Ω2(z), Ω4(z)−Ω2(z)
from above/below the contour.

By the lensing propositions of the previous section, there exist lens-shaped regions such
as those depicted in Figure 12 around (−∞,−β] (respectively, [β,∞)) such that the differ-
ences Re[Ω3 − Ω2] (respectively, Re[Ω4−Ω2]) are positive in this region. Define Γ1,u, Γ1,l as the
boundaries of the lensing region around [β,∞) in the upper and lower half planes, and similarly
define Γ2,u, Γ2,l as the boundaries of the lensing region around (−∞,−β]. The sectors enclosed
by these contours are labelled as follows:

� Σ1,u is the region enclosed by Γ1,u and [β,∞),

� Σ1,l is the region enclosed by Γ1,l and [β,∞),

� Σ2,u is the region enclosed by Γ2,u and (−∞,−β],
� Σ2,l is the region enclosed by Γ2,l and (−∞,−β].

These contours are depicted in Figure 12. Define matrices

V1(z) =




1 0 0 0
0 1 0 0
0 0 1 0

0 −e−nτ [Ω4(z)−Ω2(z)] 0 1


 ,

V2(z) =




1 0 0 0
0 1 0 0

0 −e−nτ [Ω3(z)−Ω2(z)] 1 0
0 0 0 1


 .

We define the transformation U 7→ T by setting

T(z) =





U(z)V −1
1 (z), z ∈ Σ1,u,

U(z)V1(z), z ∈ Σ1,l,

U(z)V −1
2 (z), z ∈ Σ2,u,

U(z)V2(z), z ∈ Σ2,l,

U(z), elsewhere.

Clearly, T(z) is a piecewise analytic function off of the contours Γ1, Γ2, Γ, Γ1,u, Γ1,l, Γ2,u,
and Γ2,l. In fact, T(z) is the unique solution to the following Riemann–Hilbert problem.



44 M. Duits, N. Hayford and S.-Y. LeeThe Ising Model Coupled to 2D Gravity: Genus Zero Partition Function 43

Γ

Γu

Γl

Γ2

Γ2,u

Γ2,l

Γ1,u

Γ1,l

Γ1

Figure 12. The opened lenses.

5 The third and fourth transformations U 7→ T 7→ S

Here, we perform the lensing transformations. The first lensing transformation will open lenses
around the unbounded branch cuts (−∞,−β] ∪ [β,∞); this will constitute the transforma-
tion U 7→ T. The lens opening around the central cut [−α, α] is performed next; this will
constitute the transformation T 7→ S. We remark here that the choice of (a, b) (i.e., whether the
spectral curve is critical, generic, or multicritical) is irrelevant here, as all of the lensing proposi-
tions of Section 3.5 guarantee the same inequalities hold around the branch points. These cases
will become distinguished when we later try to find a parametrix.

5.1 The transformation U 7→ T

The opening of lenses here is based on the factorization of the jump matrix
(
e−ng+(z) −1

0 e−ng−(z)

)
=

(
1 0

−e−ng−(z) 1

)(
0 −1
1 0

)(
1 0

−e−ng+(z) 1

)
,

where g+(z), g−(z) are the boundary values of one of the functions Ω3(z)−Ω2(z), Ω4(z)−Ω2(z)
from above/below the contour.

By the lensing propositions of the previous section, there exist lens-shaped regions such
as those depicted in Figure 12 around (−∞,−β] (respectively, [β,∞)) such that the differ-
ences Re[Ω3 − Ω2] (respectively, Re[Ω4−Ω2]) are positive in this region. Define Γ1,u, Γ1,l as the
boundaries of the lensing region around [β,∞) in the upper and lower half planes, and similarly
define Γ2,u, Γ2,l as the boundaries of the lensing region around (−∞,−β]. The sectors enclosed
by these contours are labelled as follows:

� Σ1,u is the region enclosed by Γ1,u and [β,∞),

� Σ1,l is the region enclosed by Γ1,l and [β,∞),

� Σ2,u is the region enclosed by Γ2,u and (−∞,−β],
� Σ2,l is the region enclosed by Γ2,l and (−∞,−β].

Figure 12. The opened lenses.

Proposition 5.1. The function T(z) is the unique solution to the following RHP:

T+(z) = T−(z)





I− E42e
−nτ [Ω4(z)−Ω2(z)], z ∈ Γ1,u ∪ Γ1,l,

I− E32e
−nτ [Ω3(z)−Ω2(z)], z ∈ Γ2,u ∪ Γ2,l,



1 0 0 0

0 0 0 −1

0 0 1 0

0 1 0 0



, z ∈ [β,∞),




1 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 1



, z ∈ (−∞,−β],

I− E24e
−nτ [Ω2(z)−Ω4(z)], z ∈ Γ1 ∩ {Im z > 0},

I− E23e
−nτ [Ω2(z)−Ω3(z)], z ∈ Γ2 ∩ {Im z < 0},

I+ E12e
−nτ [Ω1(z)−Ω2(z)], z ∈ Γ \ [−α, α],



e−nτ [Ω1,−(z)−Ω2,−(z)] 1 0 0

0 enτ [Ω1,−(z)−Ω2,−(z)] 0 0

0 0 1 0

0 0 0 1



, z ∈ [−α, α].

Furthermore, T(z) has asymptotics

T(z) =
[
I+O

(
z−1/3

)](1 0
0 B−1(z)A−1(z)

)
, z → ∞.
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Proof. The proof of this proposition follows immediately from the definition of T(z). ■

5.2 The transformation T 7→ S

We now open the lens around the segment [−α, α]. This is based on the following factorization
of the jump matrix:




e−nτ [Ω2,+(z)−Ω1,+(z)] 1 0 0

0 e−nτ [Ω2,−(z)−Ω1,−(z)] 0 0
0 0 1 0
0 0 0 1




=




1 0 0 0

e−nτ [Ω2,−(z)−Ω1,−(z)] 1 0 0
0 0 1 0
0 0 0 1







0 1 0 0
−1 0 0 0
0 0 1 0
0 0 0 1




×




1 0 0 0

e−nτ [Ω2,+(z)−Ω1,+(z)] 1 0 0
0 0 1 0
0 0 0 1


 .

By the lensing propositions of Section 3, there exists a lens-shaped region around [−α, α] such
that

Re[Ω2 − Ω1](z) > 0.

Define contours Γu, Γl as the boundaries of this lens-shaped region in the upper and lower half
planes, respectively. Further, put Σu, Σl to be the regions enclosed by [−α, α] and Γu, Γl,
respectively. Define the invertible matrix V0(z) in the lensed region Σu ∪ Σl by

V0(z) :=




1 0 0 0

e−nτ [Ω2(z)−Ω1(z)] 1 0 0
0 0 1 0
0 0 0 1


 .

We define the piecewise analytic function S(z) by

S(z) :=





T(z)V −1
0 (z), z ∈ Σl,

T(z)V0(z), z ∈ Σu,

T(z), otherwise.

In this case, S(z) is the unique solution to the following RHP.

Proposition 5.2. The function S(z) is the unique solution to the following Riemann–Hilbert
problem: S(z) is piecewise analytic off the contours

Γ1, Γ2, Γ, Γ1,u, Γ1,l, Γ2,u, Γ2,l, Γl, Γu,
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satisfying the jump condition

S+(z) = S−(z)





I− E42e
−nτ [Ω4(z)−Ω2(z)], z ∈ Γ1,u ∪ Γ1,l,

I− E32e
−nτ [Ω3(z)−Ω2(z)], z ∈ Γ2,u ∪ Γ2,l,



1 0 0 0

0 0 0 −1

0 0 1 0

0 1 0 0



, z ∈ [β,∞),




1 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 1



, z ∈ (−∞,−β],




0 1 0 0

−1 0 0 0

0 0 1 0

0 0 0 1



, z ∈ [−α, α],

I− E24e
−nτ [Ω2(z)−Ω4(z)], z ∈ Γ1 ∩ {Im z > 0},

I− E23e
−nτ [Ω2(z)−Ω3(z)], z ∈ Γ2 ∩ {Im z < 0},

I+ E12e
−nτ [Ω1(z)−Ω2(z)], z ∈ Γ \ [−α, α],

I+ E21e
−nτ [Ω2(z)−Ω1(z)], z ∈ Γu ∪ Γl.

Furthermore, S(z) has asymptotics

S(z) =

[
I+O

(
z−1
)](1 0

0 B−1(z)A−1(z)

)
, z → ∞.

Proof. Again, the proof of this proposition follows immediately from the definition of S(z).
The fact that the stronger condition

S(z) =

[
I+O

(
z−1
)](1 0

0 B−1(z)A−1(z)

)
, z → ∞,

holds is due to the fact that the jumps of A(z)B(z) match the jumps of S(z) at infinity, as per
Remark 4.7. Thus, O

(
z−1/3

)
can be replaced with O

(
z−1
)
in the asymptotics of S(z). ■

6 Construction of parametrices
and the transformation S 7→ R

All of the jumps of S are either constant, or exponentially small. Our next task is to try and
eliminate these constant jumps. We will accomplish this task by searching for an approximate
solution, called the global parametrix to the Riemann–Hilbert problem at hand; this approximate
solution will match the constant jumps of S exactly, but the difference of jumps near the branch
points will be “bad”, requiring us to find local approximations to the RHP (local parametrices)
there. Aside from the proofs of the lensing inequalities, this is really the first place we will see
a difference between the multicritical, critical, and generic (non-critical) cases.
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(
1 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 1

) (
0 1 0 0

−1 0 0 0
0 0 1 0
0 0 0 1

) (
1 0 0 0
0 0 0 −1
0 0 1 0
0 1 0 0

)

Figure 13. The jumps of the global parametrix M(z) on R. Note that, when a, b→ 1, branch
points merge, and the cuts cover the whole real line.

6.1 Global parametrix

If we ignore the exponentially small jumps of S(z), we obtain the following model RHP for
a 4× 4 matrix-valued function M(z):





M is analytic in C \R,
M+(z) =M−(z)

(
1 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 1

)
, z ∈ (−∞,−β],

M+(z) =M−(z)
(

0 1 0 0
−1 0 0 0
0 0 1 0
0 0 0 1

)
, z ∈ [−α, α],

M+(z) =M−(z)
(

1 0 0 0
0 0 0 −1
0 0 1 0
0 1 0 0

)
, z ∈ [β,∞),

M(z) =
[
I+O

(
z−1
)]( 1 0

0 B−1(z)A−1(z)

)
, z → ∞.

(6.1)

In general, solutions to (6.1) will not be unique. Uniqueness can be guaranteed by imposing
additionally that

M(z) = O
((
z ∓ α

)−1/4)
, z → ±α,

M(z) = O
((
z ∓ β

)−1/4)
, z → ±β. (6.2)

Then, from the usual Liouville argument, it is clear that if a solution to (6.1) (with the con-
straint (6.2) imposed) exists, it is unique. We show that a solution exists by direct construction.

Proposition 6.1. The solution to the global parametrix is given by

Mjk(z) =

{
ψj(uk(z)), Im z > 0,

ψj(uℓ(z))Sℓk, Im z < 0,

(here, summation over ℓ is implied) where uk(z) is the restriction of the uniformizing coordinate
to the kth sheet, and the functions ψj(u) are given by

ψ1

(
u
)
=

u2√(
u2 − b2

)(
u2 − a2

) , ψ2

(
u
)
=

32/3A1/3

a1/3b1/3
2a2b2 − 3

(
a2 + b2

)
u2

18u
√(

u2 − b2
)(
u2 − a2

)

Figure 13. The jumps of the global parametrix M(z) on R. Note that, when a, b → 1, branch points

merge, and the cuts cover the whole real line.

6.1 Global parametrix

If we ignore the exponentially small jumps of S(z), we obtain the following model RHP for
a 4× 4 matrix-valued function M(z):





M is analytic in C \R,

M+(z) =M−(z)




1 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 1



, z ∈ (−∞,−β],

M+(z) =M−(z)




0 1 0 0

−1 0 0 0

0 0 1 0

0 0 0 1



, z ∈ [−α, α],

M+(z) =M−(z)




1 0 0 0

0 0 0 −1

0 0 1 0

0 1 0 0



, z ∈ [β,∞),

M(z) =
[
I+O

(
z−1
)]
(
1 0

0 B−1(z)A−1(z)

)
, z → ∞.

(6.1)

In general, solutions to (6.1) will not be unique. Uniqueness can be guaranteed by imposing
additionally that

M(z) = O
((
z ∓ α

)−1/4)
, z → ±α,

M(z) = O
((
z ∓ β

)−1/4)
, z → ±β. (6.2)

Then, from the usual Liouville argument, it is clear that if a solution to (6.1) (with the con-
straint (6.2) imposed) exists, it is unique. We show that a solution exists by direct construction.
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Proposition 6.1. The solution to the global parametrix is given by

Mjk(z) =

{
ψj(uk(z)), Im z > 0,

ψj(uℓ(z))Sℓk, Im z < 0,

(here, summation over ℓ is implied) where uk(z) is the restriction of the uniformizing coordinate
to the kth sheet, and the functions ψj(u) are given by

ψ1

(
u
)
=

u2√(
u2 − b2

)(
u2 − a2

) , ψ2

(
u
)
=

32/3A1/3

a1/3b1/3
2a2b2 − 3

(
a2 + b2

)
u2

18u
√(

u2 − b2
)(
u2 − a2

)

ψ3

(
u
)
=

ab

3
√(

u2 − b2
)(
u2 − a2

) , ψ4

(
u
)
=

a1/3b1/3

32/3A1/3

u√(
u2 − b2

)(
u2 − a2

) ,

and S = diag(1,−1, 1, 1) = [σ3 ⊕ I2].

Proof. Let us assume we are in either the generic (noncritical) or critical case, we have that
α = α(a, b) < β(a, b) = β. Following [39], we will solve find it convenient to solve this problem
in the uniformizing coordinate z = z(u):

z(u) = A(a, b)

(
u+

a2 + b2

u
− a2b2

3u3

)
.

Consider the general row vector

ψ⃗(z) =

{
[fu(u1(z)), g

u(u2(z)), h
u(u3(z)), k

u(u4(z))], Im z > 0,

[f l(u1(z)), g
l(u2(z)), h

l(u3(z)), k
l(u4(z))], Im z < 0.

where fu, gu, hu, ku
(
respectively, f l, gl, hl, kl

)
are analytic functions away from the real axis,

to be determined. Suppose ψ⃗(z) satisfies the jumps of the global parametrix. Now, consider
the analytic continuation of ψ⃗ through (−∞,−β]: upon continuation, u2(z) and u3(z) are
interchanged. On the other hand, the analytic continuation is determined by the jump condition
of the global parametrix. This leads to the constraint

[fu(u1(z)), g
u(u3(z)), h

u(u2(z)), k
u(u4(z))] =

[
f l(u1(z)), h

l(u3(z)),−gl(u2(z)), kl(u4(z))
]
,

for z ∈ (−∞,−β]. In particular, this implies the equalities fu = f l, ku = kl, gu = hl, and
hu = −gl. Similar analysis on the other cuts yields the further compatibility conditions gu = kl,
ku = −gl, fu = −gl, gu = f l. Thus, the global parametrix depends on only on the unknown
function: fu =: ψ. Therefore,

ψ⃗(z) =

{
[ψ(u1(z)), ψ(u2(z)), ψ(u3(z)), ψ(u4(z))], Im z > 0,

[ψ(u1(z)),−ψ(u2(z)), ψ(u3(z)), ψ(u4(z))], Im z < 0.

We have thus shown that, in the upper half plane,

ψ⃗(z) = [ψ(u1(z)), ψ(u2(z)), ψ(u3(z)), ψ(u4(z))],

where ψ⃗(z) defines a (possibly multivalued) analytic function in the uniformizing plane, which is
defined by its components ψ(uj(z)) in each of the images of the sheets j = 1, 2, 3, 4. Suppose ψ⃗(z)
satisfies the jump conditions of (6.1). Let us compute the monodromy of ψ around each of the
branch points. In the uniformizing coordinate, the branch points are mapped on to ±a and ±b
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(
Note: provided we are away from the multi-critical point, we have that 0 < b < 1 ≤ a ≤ b−1.

)

By direct computation using the Riemann–Hilbert problem, we find that ψ(u) has square-root
singularities at each of the branch points ±a, ±b, and possibly a pole singularity at u = 0. The
form of ψ(u) is then fixed to be

ψ(u) =
p3(u)

u
√
(u2 − a2)(u2 − b2)

,

where p3(u) is some polynomial of degree ≤ 3, and the positive branch cut of the square root
is chosen, with branch cuts on the intervals [−a,−b] ∪ [b, a]. The form of ψ(u) is fixed by the
following constraints. For any choice of p3(u), ψk(u) is analytic in C \γ, where γ is the image of
the cuts in the uniformizing plane, and satisfies the following conditions:

ψ+(u) = −ψ−(u), u ∈ γ,

ψ(u) = O(1), u→ ∞,

ψ(u) = O
(
u−1

)
, u→ 0,

ψ(u) = O
(
(u∓ a)−1/2

)
, u→ ±a,

ψ(u) = O
(
(u∓ b)−1/2

)
, u→ ±b.

These conditions guarantee that the entries of M(z) are O(1) as z → ∞ on the first sheet,
and O

(
z1/3

)
on sheets 2–4. It also guarantees that M(z) has the correct jumps. For a given

row, we can use the normalization condition of the Riemann–Hilbert problem to determine the
coefficients of p3(u).

Setting p3(u) = c0 + c1u+ c2u
2 + c3u

3, then we have the following large z expansions of the
functions ψ(uj(z)):

ψ(u1(z)) = c3 +
c2A

z
+

(
(a2 + b2)c3 + 2c1

)
A2

2z2
+

(3(a2 + b2)c2 + 2c0)A
3

2z3
+O

(
z−4
)
,

ψ(u2(z)) =





− 3
1
3 c0

(ab)
5
3

ω2z
1
3

A
1
3

+
c1
ab

− 2a2b2c2 + 3c0(a
2 + b2)

3
1
3 (ab)

7
3

ωA
1
3

z
1
3

+
3

1
3 (2a2b2c3 − (a2 + b2)c1)

6a
5
3 b

5
3

ω2A
2
3

z
2
3

+O
(
z−1
)
, Im z > 0,

− 3
1
3 c0

(ab)
5
3

ωz
1
3

A
1
3

+
c1
ab

− 2a2b2c2 + 3c0(a
2 + b2)

3
1
3 (ab)

7
3

ω2A
1
3

z
1
3

+
3

1
3 (2a2b2c3 − (a2 + b2)c1)

6a
5
3 b

5
3

ωA
2
3

z
2
3

+O
(
z−1
)
, Im z < 0,

ψ(u3(z)) = − 3
1
3 c0

(ab)
5
3

z
1
3

A
1
3

+
c1
ab

− 2a2b2c2 + 3c0(a
2 + b2)

3
1
3 (ab)

7
3

A
1
3

z
1
3

+
3

1
3 (2a2b2c3 − (a2 + b2)c1)

6a
5
3 b

5
3

A
2
3

z
2
3

+O
(
z−1
)
,

ψ(u4(z)) =





− 3
1
3 c0

(ab)
5
3

ωz
1
3

A
1
3

+
c1
ab

− 2a2b2c2 + 3c0(a
2 + b2)

3
1
3 (ab)

7
3

ω2A
1
3

z
1
3

+
3

1
3 (2a2b2c3 − (a2 + b2)c1)

6a
5
3 b

5
3

ωA
2
3

z
2
3

+O
(
z−1
)
, Im z > 0,

− 3
1
3 c0

(ab)
5
3

ω2z
1
3

A
1
3

+
c1
ab

− 2a2b2c2 + 3c0(a
2 + b2)

3
1
3 (ab)

7
3

ωA
1
3

z
1
3

+
3

1
3 (2a2b2c3 − (a2 + b2)c1)

6a
5
3 b

5
3

ω2A
2
3

z
2
3

+O
(
z−1
)
, Im z < 0,
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Since
( 1 0
0 A(z)B(z)

)
M(z) has no jumps near infinity, it admits the expansion

(
1 0
0 A(z)B(z)

)
M(z) = I+O

(
z−1
)
, z → ∞.

This fact allows us to determine the constants {ci} for each row; the rest of the proof follows
from direct computation. A similar analysis in the lower half plane may be performed, and the
same result for ψ(z) is obtained. The expression in the lower half plane can also be obtained
by analytic continuation of the solution in the upper half plane, in accordance with the jump
conditions of the global parametrix. ■

Remark 6.2. So far, we have ignored the multicritical case, when a = b = c = 1. In this
case, the branch points in both the spectral and uniformizing planes merge into a pair of
branch points, say, ±α. If we follow the same procedure as before, we find that any row
vector ψ(u) = [ψ(u1(z)), . . . , ψ(u4(z))] has no monodromy, and thus defines a meromorphic
function on the spectral curve. In fact, if we complete the calculations, we find that the so-
lution to the global parametrix in the multicritical case is just the degeneration of the general
global parametrix as a, b, c→ 1. Direct inspection of the general global parametrix shows us
that (a, b, c) = (1, 1, 1) is the only point in R where the rows of the global parametrix are single-
valued in the uniformizing plane. The same is true when we approach a point on the curves γb;
this is beyond the scope of the present work.

The next proposition will become useful when we study the local parametrix problem.

Proposition 6.3. M(z) satisfies the symmetry condition

M(−z) = [σ3 ⊕ σ3]M(z)[σ3 ⊕ σ1]. (6.3)

Proof. First, note that the previous proposition yields that

ψj(−u) = −ψj(u), j mod 2 ≡ 0, ψj(−u) = ψj(u), j mod 2 ≡ 1.

Furthermore, the uniformizing coordinates uj(z) satisfy the following relations (cf. Appendix A
for details):

u1(−z) = −u1(z), u2(−z) = −u2(z),
u3(−z) = −u4(z), u4(−z) = −u3(z).

Thus, we can compute entrywise the transformation M(−z). For example, if z belongs to the
upper half plane, then −z is in the lower half plane, and we obtain that

M11(−z) = ψ1(u1(−z)) = ψ1(−u1(z)) = ψ1(u1(z)),

M22(−z) = −ψ2(u2(−z)) = −ψ2(−u2(z)) = ψ2(u2(z)),

M33(−z) = ψ3(u3(−z)) = ψ3(−u4(z)) = ψ4(u4(z)).

Note that Im z > 0 became relevant in the calculation for the 2-2 entry. Calculation of the
remaining entries yields equation (6.3). ■

Remark 6.4. Note here that the right multiplication [σ3 ⊕ σ1] = [σ3 ⊕ I2][I2 ⊕ σ1] has two
purposes: the block [I2⊕σ1] = σ̂34 interchanges of columns 3 and 4, and the block [σ3⊕ I2] = S
accounts for the change in sign of the global parametrix upon moving from the upper to the
lower half plane (and vice versa).
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Remark 6.5. The final step in the steepest descent analysis is to calculate the local parametrices
near the branch points, where the global parametrix is a bad approximation to S(z). In the next
section, many of the jumps will involve differences of the Ωj(z)’s. For this reason, we introduce
the notation

δΩij(z) := Ωi(z)− Ωj(z),

for i, j ∈ {1, . . . , 4}.
We have now found an approximate solution to the Riemann–Hilbert problem for S(z).

Indeed, if we consider the matrix

Rout(z) := S(z)M−1(z),

we see that Rout(z) → I as z → ∞. Furthermore, the jumps of Rout(z) are all exponentially
small (in n), with one exception: near the branch points ±α, ±β, the jumps are not close to
the identity, as n→ ∞. Therefore, we must try to find a better approximation of S(z) near the
branch points.

Remark 6.6. Here is the first place in the Riemann–Hilbert analysis where we will see explicitly
that the generic, critical, and multicritical cases differ. In this work, we are interested only in
the generic situation. In Part III, we will address the multicritical situation; the other critical
cases we hope to study in a later work. We record here how the local parametrices for each of
these cases should work out. One should compare this to the remarks in Section 2.4.

(1) The generic case: Airy parametrices. For (τ, t,H) off the critical surface, the situation is
generic, and the behavior of the δΩij(z)’s near the branch points is

δΩij(z) ∼ (z ± α)3/2
(
resp. ∼ (z ± β)3/2

)
,

cf. Proposition 3.5. By now, it is well-established in the literature that this behavior
leads to Airy-type parametrices at each of the branch points. Since this computation is
familiar, we omit the explicit calculation of the all of the parametrices here. We present
the calculation of the local parametrix at z = −β in the next subsection.

(2) (τ, t,H) ∈ γlow,0: Painlevé I. For (τ, t,H) on the low-temperature critical curve (i.e., the
curve defined by the equation t = − 1

12 + 2
9τ

2, 0 < τ < 1
4 , H = 0), the behavior of the

δΩij(z)’s near each of the four branch points ±α, ±β, is

δΩij(z) ∼ (z ± α)5/2
(
resp. ∼ (z ± β)5/2

)
.

It is also widely acknowledged in the literature (cf., for example, [38]) that such local
behavior leads to a Painlevé I-type Riemann–Hilbert problem, which has been the subject
of intensive study [54, 55]. We expect that the same analysis applies to the situation at
hand, and leads to a description of the partition function in terms of the same solution to
Painlevé I that appears in the description of the critical 1-matrix model [38, 43, 44]. Since
we are mainly interested in the behavior of the partition function in the generic case and
at the multicritical point, we omit the explicit calculation of the parametrices here.

(3) (τ, t,H) ∈ γhigh,0 ∪ Shigh: Painlevé I and Airy. For (τ, t,H) on the high-temperature
critical surface, the behavior of the δΩij(z)’s the branch points is

δΩij(z) ∼ (z ± α)5/2, δΩij(z) ∼ (z ± β)3/2,

as z → ±α, z → ±β, respectively. This indicates that the appropriate local parametri-
ces to use near z = ±β are Airy-type parametrices, by our previous commentary for the
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generic situation. Similarly, we expect that near the branch points z = ±α, one should
use Painlevé I parametrices. Thus, the local parametrix structure on the high-temperature
critical curve is a mix of the low-temperature critical and generic situations. On the sup-
port of the main cut, the density is still critical, and Painlevé I parametrices are needed;
however, the other cuts cease to be “critical”, as they were in the low-temperature regime.
We again omit the explicit calculation of the parametrices here, as our main interests lie
elsewhere.

(4) (τ, t,H) ∈ Slow: Airy and Painlevé I. Similarly to the high-temperature surface, on the
low-temperature surface both Airy and Painlevé I-type parametrices appear. In this case,
the behavior of the δΩij(z)’s the branch points is

δΩij(z) ∼ (z ± α)3/2, δΩij(z) ∼ (z ± β)5/2.

Thus, one must construct Airy-type parametrices at z = ±α, and Painlevé I parametrices
near z = ±β.

(5) (τ, t,H) ∈ γb: New Painlevé I parametrix. On the critical curve γb (the interface of the
surfaces Slow and Shigh), the branch points at z = +α,+β (respectively, z = −α,−β)
merge, and one obtains a pair of cubic branch points z = ±α, at which the δΩij(z)’s
behave as

δΩij(z) ∼ (z ± α)5/3.

To the best of our knowledge, an appropriate model Riemann–Hilbert problem for such
a parametrix has not yet appeared in the literature. Some preliminary calculations (see
also Part II [49]) show that the “right” parametrix is a 3× 3 RHP for a function Ψ(ξ;x),
which has asymptotics

Ψ(ξ;x) = g(ξ)

[
I+

Ψ1(x)

ξ1/3
+O

(
1

ξ2/3

)]
eΘ(ξ;x),

where g(ξ) = O
(
ξ1/3

)
, Θ(ξ;x) is a diagonal matrix whose entries are analytic continuations

of the function θ1(ξ;x) =
3
5ξ

5/3 + xξ1/3, and the jumps of Ψ appearing only from the
Stokes phenomenon. Some calculation reveals that this model Riemann–Hilbert problem
is related to the Painlevé I equation, in that d

dx [Ψ1(x)]11 = u(x), and u(x) solves a scaled
version of the Painlevé I equation. The associated Lax pair has appeared before in the
literature [52]; one might hope to relate this parametrix to the “standard” 2×2 parametrix
for Painlevé I via the techniques of Liechty and Wang [64], who studied a similar relation
between two instances of Painlevé II parametrices. Both seem to be instances of the so-
called (p, q) ↔ (q, p) duality of string equations [45, 46] (for PII, q = 2, p = 4, and for PI,
q = 2, p = 3). It would be interesting to investigate this correspondence in more detail.
For now, we leave this problem open.

(6) (τ, t,H) =
(
1
4 ,− 5

72 , 0
)
: A new critical phenomenon. Finally, if we are at the multicritical

point, we again find that the branch points at z = +α,+β (respectively, z = −α,−β)
merge, and one obtains a pair of cubic branch points z = ±α, at which the δΩij(z)’s
behave as

δΩij(z) ∼ (z ± α)7/3.

This requires the construction of a new 3 × 3 parametrix, which we discuss fully in
Part II [49]. This parametrix is connected to the (3, 4) string equation [33], and is meant
to describe the Ising phase transition coupled to gravity, cf. [21, 34, 47, 48]. We fully
investigate how the multicritical partition function of the 2-matrix model studied in this
work is connected to this equation in Part III of this work [37].
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6.2 Calculation of the local parametrices

We now construct the local parametrices. Define four discs

D±α := {z ∈ C | |z ∓ α| < ϵ}, D±β := {z ∈ C | |z ∓ β| < ϵ},

where ϵ > 0 is a radius, to be determined. Our new parametrix M∞(z) will be defined as

M∞(z) =





M(z), z ∈ C \(D±α ∪D±β),

P (±α)(z), z ∈ D±α,

P (±β)(z), z ∈ D±β.

The functions P (±α)(z) will be chosen to so that the following conditions are met:

(1) P (±α)(z) matches the jumps of S(z) exactly in the discs D±α,

(2) P (±α)(z) =
[
I+O

(
n−δ

)]
M(z), for z ∈ D±α, n→ ∞ for some δ > 0.

The functions P (±β)(z) should be chosen so that identical statements to the above hold, with α
replaced with β. In the case of generic values of the parameters, one should expect that near the
branch points z = ±α,±β, an Airy-type parametrix can be used to describe the local behavior
of the Riemann–Hilbert problem at hand. This is a common calculation in the literature (cf.,
for example, [30]). Before calculating the parametrices, it is useful to notice that we only have
to calculate two of the parametrices; the others can be calculated by symmetry. This statement
is summarized in the following lemma.

Lemma 6.7. Suppose P (+β)(z) satisfies conditions (1) and (2) above. Then, P (−β)(z) can be
constructed as

P (−β)(z) = [σ3 ⊕ σ3]P
(+β)(−z)[σ3 ⊕ σ1].

Proof. Let us verify condition (2) first. Indeed, if z belongs to a sufficiently small neighborhood
of z = −β, by Proposition 6.3, we have that

[σ3 ⊕ σ3]P
(+β)(−z)[σ3 ⊕ σ1] = [σ3 ⊕ σ3]

[
I+O

(
n−δ

)]
M(−z)[σ3 ⊕ σ1]

=
[
I+O

(
n−δ

)]
M(z),

where M(z) above denotes the local expansion of M(z) about z = −β. Now, let us check
condition (1) By direct calculation,

P
(−β)
+ (z) = [σ3 ⊕ σ3]P

(+β)
+ (−z)[σ3 ⊕ σ1]

= [σ3 ⊕ σ3]P
(+β)
− (−z)JP (−z)[σ3 ⊕ σ1]

= P
(−β)
− (z)[σ3 ⊕ σ1]JP (−z)[σ3 ⊕ σ1],

where JP (z) denotes the jumps of P (+β)(z). We must verify that [σ3⊕σ1]JP (−z)[σ3⊕σ1] agrees
with the jumps of S(z) in a neighborhood of z = −β; this is done by direct calculation. For
example, for z ∈ (−∞,−β] ∩D−α, −z ∈ [β,∞) ∩D+α. Furthermore, we have that

[σ3 ⊕ σ1]JP (−z)[σ3 ⊕ σ1] = [σ3 ⊕ σ1]




1 0 0 0
0 0 0 −1
0 0 1 0
0 1 0 0


 [σ3 ⊕ σ1] =




1 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 1


 ,
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Figure 14. The opened lenses after the final transformation.

which indeed agrees with the jump of S(z) there, upon reorientation of the jump contour.
Similarly, if z ∈ Γ2 ∩ {Im z < 0} ∩D−, then −z ∈ Γ1 ∩ {Im z > 0} ∩D+, and

[σ3 ⊕ σ1]JP (−z)[σ3 ⊕ σ1] = [σ3 ⊕ σ1]
[
I− E24e

−nτδΩ24(−z)][σ3 ⊕ σ1]

= I+ E23e
−nτδΩ24(−z) = I+ E23e

−nτδΩ23(z),

by the symmetry of the functions Ωj(z) (and again reorientation of the jump contour). The rest
of the calculations are similar, so we omit them. ■

We state without proof the same lemma for the parametrices at z = ±α:

Lemma 6.8. Suppose P (+α)(z) satisfies conditions (1) and (2) above. Then, P (−α)(z) can be
constructed as

P (−α)(z) = [σ3 ⊕ σ3]P
(+α)(−z)[σ3 ⊕ σ1].

Thus, it is sufficient to calculate the parametrix at z = α, z = β only, and use the above
symmetry relations as the definition of P (−α)(z), P (−β)(z).

For brevity, we only compute explicitly the parametrix at z = −β. The rest of the local
parametrices are calculated in an identical manner.

Let A(ζ) denote the unique solution to the following 2× 2 Riemann–Hilbert problem:

A+(ζ) = A−(ζ)×





( 1 1
0 1 ), arg ζ = 0,

( 1 0
1 1 ), arg ζ = ±2π/3,(
0 1

−1 0

)
, arg ζ = π.

A(ζ) =
[
I+O

(
ζ−1
)]
ζ−

1
4
σ3Ue−

2
3
ζ3/2σ3 , ζ → ∞, (6.4)

Figure 14. The opened lenses after the final transformation.

which indeed agrees with the jump of S(z) there, upon reorientation of the jump contour.
Similarly, if z ∈ Γ2 ∩ {Im z < 0} ∩D−, then −z ∈ Γ1 ∩ {Im z > 0} ∩D+, and

[σ3 ⊕ σ1]JP (−z)[σ3 ⊕ σ1] = [σ3 ⊕ σ1]
[
I− E24e

−nτδΩ24(−z)][σ3 ⊕ σ1]

= I+ E23e
−nτδΩ24(−z) = I+ E23e

−nτδΩ23(z),

by the symmetry of the functions Ωj(z) (and again reorientation of the jump contour). The rest
of the calculations are similar, so we omit them. ■

We state without proof the same lemma for the parametrices at z = ±α.
Lemma 6.8. Suppose P (+α)(z) satisfies conditions (1) and (2) above. Then, P (−α)(z) can be
constructed as P (−α)(z) = [σ3 ⊕ σ3]P

(+α)(−z)[σ3 ⊕ σ1].

Thus, it is sufficient to calculate the parametrix at z = α, z = β only, and use the above
symmetry relations as the definition of P (−α)(z), P (−β)(z).

For brevity, we only compute explicitly the parametrix at z = −β. The rest of the local
parametrices are calculated in an identical manner.

Let A(ζ) denote the unique solution to the following 2× 2 Riemann–Hilbert problem:

A+(ζ) = A−(ζ)×





(
1 1

0 1

)
, arg ζ = 0,

(
1 0

1 1

)
, arg ζ = ±2π/3,

(
0 1

−1 0

)
, arg ζ = π.

A(ζ) =
[
I+O

(
ζ−1
)]
ζ−

1
4
σ3Ue−

2
3
ζ3/2σ3 , ζ → ∞, (6.4)
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where here U = 1√
2

(
1 i
i 1

)
. The solution to the RHP (6.4) in the sector 0 < arg ζ < 2π/3 is

given by

A(ζ) =
√
2π

(
Ai(ζ) −ω2Ai(ω2ζ)

−i Ai′(ζ) iωAi′(ω2ζ)

)
.

Here Ai(ζ) denotes the usual Airy function; the solution to the RHP (6.4) in the other sectors
can be obtained by analytic continuation, and application of the jump condition.

Define the conformal mapping

ζ(z) :=

[
3

4
nτδΩ23(z)

]2/3
.

Note that ζ(z) is univalent in a neighborhood of z = −β, since δΩ23(z) = const · (z + β)3/2[1 +
O(z + β)]. Finally, set

P̂ (z) := A(ζ(z))e
2
3
ζ(z)3/2σ3σ3.

We redefine the jump contours of A(ζ) so that the jump contours of P̂ (z) align with those
of S(z), in a neighborhood of z = −β. The following lemma then holds.

Lemma 6.9. The jumps of 1⊕ P̂ (z)⊕ 1 and S(z) agree, in a neighborhood of z = −β.

Proof. This is an immediate consequence of the fact that multiplication of the matrix A(ζ(z))
by p := e

3
2
ζ(z)3/2σ3σ3 conjugates its jumps by this factor; in other words, JP̂ (z) = p−1JA(z)p. ■

Now, consider 2× 2 matrix-valued function

m̃(z) := (z + β)−
1
4
σ3Uσ3.

It follows immediately that the jump of 1⊕ m̃⊕ 1 and the jump of the global parametrix M(z)
match in a neighborhood of z = −β. Therefore, one can locally represent the global parametrix as

M(z) = H(z)[1⊕ m̃(z)⊕ 1],

for some locally holomorphic matrix function H(z). Furthermore, since ζ(z) = n2/3(z + β)g(z),
for some non-vanishing analytic function g(z) in a neighborhood of z = −β, by a slight re-
definition of H(z), we can rewrite M(z) as

M(z) = H̃(z)
[
1⊕ n

1
6
σ3 [ζ(z)]−

1
4
σ3Uσ3 ⊕ 1

]
,

where H̃(z) is some n-independent invertible function, analytic in a neighborhood of z = −β.
We now define the parametrix in a sufficiently small disc about z = −β as

P (−β)(z) :=M(z)
[
1⊕ σ3U

−1[ζ(z)]
1
4
σ3 ⊕ 1

]
P̂ (z).

We remark that P (−β)(z) and P̂ (z) have identical jumps inside the disc at z = −β, since

M(z)
[
1⊕ σ3U

−1[ζ(z)]
1
4
σ3 ⊕ 1

]

has no jumps there, by our previous considerations. The parametrix at z = +β can be con-
structed using our previous symmetry considerations, cf. Lemma 6.7. One can similarly construct
parametrices at P (±α)(z), by replacing in the definition of P̂ (z): (1) the conformal map ζ(z)
with ζ(z) :=

[
3
4nτδΩ24(z)

]
2/3, (2) conjugating by σ̂34, and (3) readjusting the jump contours, if
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needed. Such a construction is identical to that of P−β(z), and so we omit the explicit calcula-
tion.

Finally, set

R(z) =





S(z)M−1(z), z outside the discs at z = ±α, z = ±β,
S(z)

(
P (±α))−1

(z), z inside the discs at z = ±α,
S(z)

(
P (±β))−1

(z), z inside the discs at z = ±β.

We have the following proposition.

Proposition 6.10. On the boundary of the discs at z = ±α,±β,

R+(z) = R−(z)
[
I+O

(
n−1

)]
, n→ ∞.

Proof. We furnish a proof only on the boundary of the disc z = −β. Let us assume the
boundary of the disc at z = −β is oriented counterclockwise. Then,

R+(z) = S(z)
(
P (−β))−1

(z) = S(z)M−1(z)M(z)
(
P (−β))−1

(z)

= R−(z)M(z)
(
P (−β))−1

(z).

Now, we have that

M(z)
(
P (−β))−1

(z)

=M(z)[1⊕ P̂−1(z)⊕ 1]
[
1⊕ [ζ(z)]−

1
4
σ3U ⊕ 1

]
M−1(z)

=M(z)
[
1⊕ σ3e

− 2
3
ζ(z)3/2A−1(ζ(z))⊕ 1

]
︸ ︷︷ ︸

1⊕P̂−1(z)⊕1

[
1⊕ [ζ(z)]−

1
4
σ3Uσ3 ⊕ 1

]

×
[
1⊕ σ3U

−1[ζ(z)]
1
4
σ3n−

1
6
σ3 ⊕ 1

]
H̃−1(z)︸ ︷︷ ︸

M−1(z)

= H̃(z)
[
1⊕ n

1
6
σ3 [ζ(z)]−

1
4
σ3Uσ3 ⊕ 1

]
︸ ︷︷ ︸

M(z)

[
1⊕ σ3e

− 2
3
ζ(z)3/2A−1(ζ(z))⊕ 1

]

×
[
1⊕ n−

1
6
σ3 ⊕ 1

]
H̃−1(z)

= H̃(z)
[
1⊕ n

1
6
σ3 [ζ(z)]−

1
4
σ3Uσ3 ⊕ 1

][
1⊕ σ3U

−1[ζ(z)]
1
4
σ3
[
I2×2 +O

(
ζ−1
)]

⊕ 1
]

×
[
1⊕ n−

1
6
σ3 ⊕ 1

]
H̃−1(z)

= H̃(z)
[
1⊕ n

1
6
σ3 ⊕ 1

][
1⊕

[
I2×2 +O

(
ζ−1
)]

⊕ 1
][
1⊕ n−

1
6
σ3 ⊕ 1

]
H̃−1(z).

Since O
(
ζ−1
)
= O

(
n−2/3

)
in the z-plane, by crude estimation we see that the above jump is at

worst

[
1⊕ n

1
6
σ3 ⊕ 1

][
1⊕

[
I2×2 +O

(
ζ−1
)]

⊕ 1
][
1⊕ n−

1
6
σ3 ⊕ 1

]
= I+O

(
n−1/3

)
, n→ ∞

(conjugation by an n-independent holomorphic matrix does not change the error). In fact, as is
typical for the Airy parametrix, a more detailed expansion of the above product reveals that
cancellations occur, and one finds that indeed

R−(z)−1R+(z) =M(z)
(
P (−β))−1

(z) = I+O
(
n−1

)
, n→ ∞.

Thus, we have proven what is desired. ■
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Aside from the jumps on the local discs, all other jumps of R(z) are exponentially close to the
identity matrix as n→ ∞, as we have already seen; furthermore, this bound improves as z → ∞.
If we let ΓR denote the union of all of the jump contours of R(z), and JR(z) : ΓR → C denote
the jumps of R(z), then we have that

JR(z) = I+O
(
e−cn(|z|+1)

)
, n→ ∞,

uniformly for z ∈ ΓR \ (D±α ∪D±β), for some positive constant c > 0. Using similar arguments
as in [39, 40], we can conclude the following.

Proposition 6.11. There exists a constant C > 0 such that, for every n, and uniformly for
z ∈ C \ΓR,

||R(z)− I|| ≤ C

n(1 + |z|) .

This allows us to conclude that R(z) admits a large n asymptotic expansion in powers
of n−1, cf. [30, Theorem 7.10]. Since all of the Riemann–Hilbert transformations we made were
invertible, by tracing back these transformations we can obtain a large n asymptotic expansion
of Y(z). This concludes the steepest descent analysis.

7 Proof of main theorem and concluding remarks

7.1 Calculation of the free energy

We are now in a position where we are able to calculate the asymptotics of the partition function.
As noted in the introduction, the partition function for the 2-matrix model can be written in
terms of an isomonodromic τ function, as per [9]. Explicitly, the τ -function is expressible
in terms of the solution of the Riemann–Hilbert problem for Y(z). Since we have succeeded
in finding the asymptotics of Y(z), we in turn can produce an asymptotic expression for the
partition function. The expression for the τ -differential is

d log τn(τ, t) =

〈
Y−1Y′

(
0 0

0 ∂W
∂τ W−1

)〉
dτ +

〈
Y−1Y′

(
0 0

0 ∂W
∂T W−1

)〉
dT

+

〈
Y−1Y′

(
0 0

0 ∂W
∂T̄

W−1

)〉
dT̄ , (7.1)

where ′ denotes the derivative with respect to the spectral variable z, W is the matrix which
appears in the first transformation, T := qt, T̄ = t/q, and for a given matrix-valued 1-form A(z),
we have introduced the notation

⟨A(z)⟩ := Res
z=∞

tr [A(z)] .

The partition function’s differential is then

d
logZn(τ, t, q;N)

τ
−n(n−1)

2 Cn,N
= d log

[(
τ

t2

)n
2
(n
3
−1)

τn

]
,

and the free energy can be written as

d log
Zn(τ, t, q;N)

Zn(τ, 0, 0;N)
= d log

[(
1− τ2

)n2/2

τn2/3tn(
n
3
−1)

τn

]
.
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The derivations of the above formulae for the τ -function and partition function are sketched in
Appendix B. Combined with the asymptotic formulae of the previous sections, these formulae
allow us to finally prove the main theorem. Let us recall the main theorem (this is identical to
Theorem 2.2).

Theorem. Let (τ, t,H) belong to the region D. Then, as n→ ∞,

F (τ, t,H) := lim
n→∞

1

n2
log

Zn(τ, t,H;n)

Zn(τ, 0, 0;n)

=
3

4
+

1

2
log

(
1− τ2

)
σ(τ, t,H)

−3t
−
∫ σ(τ,t,H)

0

(
λ(u)− 1

2
λ(u)2

)
du

u
,

where λ(u) is the rational function

λ(u) = −1

t

[
1

9
τ2u
(
u2 − 3

)
+

1

3

u

(u+ 1)2
− 2

3

(
u

u2 − 1

)2

[coshH − 1]

]
,

and σ(τ, t,H) from Definition 2.1.

Proof. Let σ̂ := diag(1,−1/3,−1/3,−1/3), and set

Y(1) := lim
z→∞

z
[
Y(z)z−nσ̂ − I

]
, Y(2) := lim

z→∞
z2
[
Y(z)z−nσ̂ − I− Y(1)

z

]
.

Using the expression (7.1), and the fact that the matrices M•, • ∈ {τ, t, q}, are all polynomials
of degree at most 2 in z, we can derive an explicit expression for the tau function in terms of
the entries of Y(z):

ϱτ = −τqn
t

[
Y

(1)
12 Y

(1)
41 +Y

(1)
22 Y

(1)
42 +Y

(1)
32 Y

(1)
43 +Y

(1)
42 Y

(1)
44 −2Y

(2)
42 +

1

τ
Y

(1)
43

− t

τq
Y

(1)
34 − t

τq
Y

(1)
23

]
,

ϱt = − τ

4t
ϱτ +

nτq

4t2

[
Y

(1)
43 +Y

(1)
32 −2n

3τ
− 2t

τq

]
, ϱq = − t

q
ϱt.

The above three formulae tell us that we must compute the asymptotics of Y(z) to two sub-
leading orders in z at infinity. In an appropriately chosen sector (chosen so that we are outside
of the lenses) at infinity, the asymptotics of Y(z) we have calculated are given by

Y(z) =

(
1 0

0 c−1
N K̂−1

)
enL[I+ nC1 · E24]

[
I+O

(
n−2

)]
M(z)G−1(z)

(
enV (z) 0

0 W(z)

)
. (7.2)

This implies that we must compute:

� the regular expansion of M(z)B−1(z)A−1(z) at infinity to order z−2,

� the expansion of the effective potentials Ωj(z) to second order, j = 1, 2, 3, 4; in particular,
we write

τΩ3(z) = −3

4

τ4/3

(−t/q)1/3 z
4/3 − 1

2

τ2/3

(−t/q)2/3 z
2/3 +

1

3
log z + ℓ1

+
C1

z2/3
+

C2

z4/3
+
C3

z2
+O

(
z−8/3

)
, z → ∞,

with similar expressions for Ω2(z), Ω4(z),

� the regular part of the expansion of W(z), up to order z−2.

The explicit expressions for C1, C2 are given as

C1(a, b, c) =
c3/2τ7/3

18b3/2(−t)4/3q1/6
(
3a8b4c2 + 3a6b6c2 + 3a8b2 + 3a6b4 + 3a6b2c2
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+ 3a4b6 + 3a4b4c2 + 3a2b6c2 − a6 − 9a4b2 − 9a2b4 − b6
)
,

C2(a, b, c) = − c2τ8/3

54b2(−t)5/3q1/3
(
6a10b4c2 + 9a8b6c2 + 6a6b8c2 + 2a10b2 − 6a8b4 + 2a8b2c2

− 6a6b6 − 6a6b4c2 + 2a4b8 − 6a4b6c2 + 2a2b8c2 − a8

− 10a6b2 − 12a4b4 − 10a2b6 − b8
)
.

With these calculations in hand, one may insert the asymptotic expansions derived above
into (7.2), and furthermore insert these expressions into the expressions of ρτ , ρt, and ρq, to
obtain

1

n2
ϱτ =

2

3

C1

τ1/3

(
−q
t

)2/3
+ 4C2

(
−τq
t

)1/3
+O

(
n−2

)
,

1

n2
ϱt = − τ

4t
ϱτ +

2

τ1/3
C1 −

q2

27t3
− 2q

3t2
+O

(
n−2

)
,

1

n2
ϱq = − t

q
ϱt +O

(
n−2

)
.

Now, τ , t, q, C1, and C2 all have explicit expressions in terms of a, b, c, and so we can compute
the tau differential in these coordinates. We thus obtain an expression for dF . This expression is
exact, and can thus be integrated. Since we know the value of this expression at (τ, 0, 0) (namely,
F (τ, 0, 0) ≡ 0), we obtain an exact expression for the function F (τ, t,H). The final result is
yielded by comparing the result of the previously outlined calculation to the expression (2.2). ■

7.2 Concluding remarks

This work is the first in our series of papers on the Ising transition on the 2-matrix model: the
study of the free energy of this model at the multicritical point will be the subject of [37, 49].
These works are perhaps one of the main reasons the 2-matrix model merits study, and will
hopefully shed light on minimal matter coupled to gravity. Aside from this work, there are still
many other interesting questions we did not pursue in this work which absolutely merit further
study. We discuss some of these problems below.

Genus expansion of the free energy. One of the more pressing questions we did not address
is the conjectured genus expansion of the free energy [32, 41]. It is conjectured that the follow-
ing N → ∞ asymptotic expansion holds, in the genus 0 region of phase space we considered in
this work:

1

N2
log

ZN (τ, t, q;N)

ZN (τ, 0, 0;N)
∼ F (τ, t, q) +

∞∑

g=1

Fg(τ, t, q)

N2g
,

where Fg(τ, t, q) is the analog of (1.5) (see also equation (1.4)), but with the sum taken over
all connected, 4-regular, genus g maps. We fully expect that this is the case, and this result
should follow from a more careful look at the Riemann–Hilbert analysis performed in this work.
Concretely, there have been several works which give formulae for the genus 1 contribution to
the free energy F1(τ, t,H) [29, 41]. It is of therefore of interest to confirm if our results agree
with the findings of these works.

Critical partition function and Painlevé I. One corollary of the famous Yang–Lee theo-
rem [63, 86] is that the partition function for the Ising model should be an analytic function of
all of its parameters, away from the segment H = 0, [0, Tc), where Tc is the critical tempera-
ture. Indeed, this formally seems to be the case for the model studied here, even when coupled
to gravity. However, the spectral curve seemingly undergoes a phase transition on the critical
surface for H ̸= 0, characterized by the critical curves γb depicted in Figure 2. This transition is
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characterized by a merging of the measures µ1 and µ2 discussed in Remark 2.4. This does not
necessarily imply that the partition function itself undergoes a transition, but certainly closer at-
tention to this case is needed. Some preliminary analysis reveals the appearance of a special 3×3
parametrix, which involves Painlevé I. The Lax pair associated to this parametrix has appeared
in the literature [52], but the parametrix itself requires a more careful analysis, especially if one
wants to identify the particular solution appearing when one approaches γb. More generally,
this parametrix, along with the (3, 4) parametrix discussed in Part II of this work [49], belong
to a hierarchy of string equations of type (3, p), where p = 3k+1, 3k+2. A more comprehensive
study of these equations, as well as the more general (q, p) string equations, is needed, if one is
interested in completing the picture of minimal models coupled to gravity.

Yang–Lee zeros of the partition function. Another tantalizing feature of the model we studied
comes from the works of [3, 4, 79]. It is well-known that the Ising model [63, 86] that the partition
function for the Ising model, as a function of the complexified parameter eH , has all of its zeros
on the unit circle. This is often thought of as the mechanism through which the ferromagnetic
phase transition occurs, and is comes with its own associated minimal CFT (the Yang–Lee
edge, the so-called “(2, 5)” minimal model, cf. [22]). However, it is far from obvious that sums
of such partition functions should also exhibit this feature. Nevertheless, the numerical results
of [3, 4, 29, 79] seem to indicate that this is indeed the case. A proper study of this phenomenon
would require the study of the partition function defined by (1.1) for complex values of the
parameters, as one would need to study this model with imaginary external field (H → iH).
A drawback of our current approach is that the construction of the spectral curve relied on the
ansatz that the associated “S-curves” all lie on the real axis; it is not clear that this remains true
when the parameters of the model are complexified (indeed, this is not the case for the 1-matrix
model, cf., for example, [10, 13]). It would be interesting if one could characterize these S-curves
in terms of some canonical quadratic differential, as has been performed for some closely related
matrix models (see [62, 77] for this construction pertaining to the 1-matrix model with/without
hard walls, and [65, 66, 67] for the construction related to the external source model).

A Expansion of the uniformizing coordinate
near the branch points

Here we list the relevant expansions of the uniformizing coordinate on each sheet of the spectral
curve. We have included Figure 15, which depicts the leading order asymptotics of the uniformiz-
ing coordinate near each of the branch points, for the convenience of the reader. The expansions
at infinity hold for all (a, b, c) ∈ R = {0 < b ≤ 1, 0 < c ≤ b, 1 ≤ a ≤ b−1}, and so we list them
first. Let A = A(a, b, c). Then,

u1(z) =
z

A
−
(
a2 + b2

)
A

z
−
(
5
3a

2b2 + a4 + b4
)
A3

z3
−
(
14
3

(
a4b2 + a2b4

)
+ 2a6 + 2b6

)
A5

z5

+O
(
z−7
)
,

u2(z) =





−
(
a2b2

3

)1/3
ωA1/3

z1/3
+

(a2 + b2)A

3z

−
(

3

a2b2

)1/3 ω2(a4 + a2b2 + b4)A5/3

9z5/3
+O

(
z−7/3

)
, Im z > 0,

−
(
a2b2

3

)1/3
ω2A1/3

z1/3
+

(a2 + b2)A

3z

−
(

3

a2b2

)1/3 ω(a4 + a2b2 + b4)A5/3

9z5/3
+O

(
z−7/3

)
, Im z < 0,
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u3(z) = −
(
a2b2

3

)1/3A1/3

z1/3
+

(a2 + b2)A

3z
−
(

3

a2b2

)1/3 (a4 + a2b2 + b4)A5/3

9z5/3
+O

(
z−7/3

)
,

u4(z) =





−
(
a2b2

3

)1/3
ω2A1/3

z1/3
+

(a2 + b2)A

3z

−
(

3

a2b2

)1/3 ω(a4 + a2b2 + b4)A5/3

9z5/3
+O

(
z−7/3

)
, Im z > 0,

−
(
a2b2

3

)1/3
ωA1/3

z1/3
+

(a2 + b2)A

3z

−
(

3

a2b2

)1/3 ω2(a4 + a2b2 + b4)A5/3

9z5/3
+O

(
z−7/3

)
, Im z < 0,

On the other hand, the local expansions of the uniformizing coordinate differ in the non-
critical/critical cases and multicritical cases. We indicate the behavior of the uniformization
coordinate around these branch points here.

A.1 Expansion of the uniformizing coordinate
in the generic and critical cases

All of the following expansions are valid for 0 < b < 1, 1 ≤ a ≤ b (and also 0 < c ≤ b, but this
parameter does not play a role). We also let A := A(a, b, c) > 0 be as in (3.7).

� Expansion at z = +α. As z → α, letting ζ = z − α,

u1(z) = a+
a3/2

A
1
2 (a2 − b2)

1
2

ζ
1
2 +

a2
(
3a2 − 7b2

)

6A(a2 − b2)2
ζ +

a5/2C2

72A
3
2 (a2 − b2)

7
2

ζ
3
2 +O

(
ζ2
)
,

u2(z) = a− a3/2

A
1
2 (a2 − b2)

1
2

ζ
1
2 +

a2
(
3a2 − 7b2

)

6A(a2 − b2)2
ζ − a5/2C2

72A
3
2 (a2 − b2)

7
2

ζ
3
2 +O

(
ζ2
)
,

and u3(z), u4(z) have regular expansions. Here C2 := C2(a, b, c) > 0.

� Expansion at z = −α. As z → −α, letting ζ = z + α,

u1(z) =





−a+ ia3/2

A
1
2 (a2 − b2)

1
2

ζ
1
2 +

a2(3a2 − 7b2)

6A(a2 − b2)2
ζ

+
ia5/2C2

72A
3
2 (a2 − b2)

7
2

ζ
3
2 +O

(
ζ2
)
, Im ζ > 0,

−a− ia3/2

A
1
2 (a2 − b2)

1
2

ζ
1
2 +

a2(3a2 − 7b2)

6A(a2 − b2)2
ζ

− ia5/2C2

72A
3
2 (a2 − b2)

7
2

ζ
3
2 +O

(
ζ2
)
, Im ζ < 0,

u2(z) =





−a− ia3/2

A
1
2 (a2 − b2)

1
2

ζ
1
2 +

a2(3a2 − 7b2)

6A(a2 − b2)2
ζ

− ia5/2C2

72A
3
2 (a2 − b2)

7
2

ζ
3
2 +O

(
ζ2
)
, Im ζ > 0,

−a+ ia3/2

A
1
2 (a2 − b2)

1
2

ζ
1
2 +

a2(3a2 − 7b2)

6A(a2 − b2)2
ζ

+
ia5/2C2

72A
3
2 (a2 − b2)

7
2

ζ
3
2 +O

(
ζ2
)
, Im ζ < 0,

and u3(z), u4(z) have regular expansions. Here C2 := C2(a, b, c) > 0.
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The expansions at z = ±β can be obtained in a similar manner, by exchanging the roles of a, b
in the expansions. We obtain that

� Expansion at z = +β. As z → β, letting ζ = z − β,

u2(z) =





b+
ib3/2

A
1
2 (a2 − b2)

1
2

ζ1/2 − (7a2 − 3b2)b2

6A(a2 − b2)2
ζ

+
ib5/2C̃2

72A
5
2 (a2 − b2)

7
2

ζ
3
2 +O

(
ζ2
)
, Im ζ > 0,

b− ib3/2

A
1
2 (a2 − b2)

1
2

ζ1/2 − (7a2 − 3b2)b2

6A(a2 − b2)2
ζ

− ib5/2C̃2

72A
5
2 (a2 − b2)

7
2

ζ
3
2 +O

(
ζ2
)
, Im ζ < 0,

u4(z) =





b− ib3/2

A
1
2 (a2 − b2)

1
2

ζ1/2 − (7a2 − 3b2)b2

6A(a2 − b2)2
ζ

− ib5/2C̃2

72A
5
2 (a2 − b2)

7
2

ζ
3
2 +O

(
ζ2
)
, Im ζ > 0,

b+
ib3/2

A
1
2 (a2 − b2)

1
2

ζ1/2 − (7a2 − 3b2)b2

6A(a2 − b2)2
ζ

+
ib5/2C̃2

72A
5
2 (a2 − b2)

7
2

ζ
3
2 +O

(
ζ2
)
, Im ζ < 0,

and u1(z), u3(z) have regular expansions. Here C̃2 := C̃2(a, b, c) > 0.

� Expansion at z = −β. As z → −β, letting ζ = z + β,

u2(z) = −b− b3/2

A
1
2 (a2 − b2)

1
2

ζ1/2 −
(
7a2 − 3b2

)
b2

6A(a2 − b2)2
ζ − b5/2C̃2

72A
5
2 (a2 − b2)

7
2

ζ
3
2 +O

(
ζ2
)
,

u3(z) = −b+ b3/2

A
1
2 (a2 − b2)

1
2

ζ1/2 −
(
7a2 − 3b2

)
b2

6A(a2 − b2)2
ζ +

b5/2C̃2

72A
5
2 (a2 − b2)

7
2

ζ
3
2 +O

(
ζ2
)
,

and u1(z), u4(z) have regular expansions. Here

C̃2 := C̃2(a, b) = 101a4 − 30a2b2 + 9b4 = C2(b, a).

A.2 Expansions of the uniformizing coordinate
at the multicritical point and γb

� Expansion at z = +α. Let ζ := z−α, A = A(1, 1, c) > 0; as ζ → 0, we have the expansions:

u1(z) = 1 +

(
3

4A

)1/3

ζ1/3 +
3

4

(
3

4A

)2/3

ζ2/3 +
21

64A
ζ +

37

192

(
3

4A

)4/3

ζ4/3 +O
(
ζ5/3

)
,

u2(z) =





1 +

(
3

4A

)1/3

ω2ζ1/3 +
3

4

(
3

4A

)2/3

ωζ2/3 +
21

64A
ζ

+
37

192

(
3

4A

)4/3

ω2ζ4/3 +O
(
ζ5/3

)
, Im ζ > 0,

1 +

(
3

4A

)1/3

ωζ1/3 +
3

4

(
3

4A

)2/3

ω2ζ2/3 +
21

64A
ζ

+
37

192

(
3

4A

)4/3

ωζ4/3 +O
(
ζ5/3

)
, Im ζ < 0,
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u3(z) = −1

3
+

1

64A
ζ − 27

16384A2
ζ2 +

891

4194304A3
ζ3 +O

(
ζ4
)
,

u4(z) =





1 +

(
3

4A

)1/3

ωζ1/3 +
3

4

(
3

4A

)2/3

ω2ζ2/3 +
21

64A
ζ

+
37

192

(
3

4A

)4/3

ωζ4/3 +O
(
ζ5/3

)
, Im ζ > 0,

1 +

(
3

4A

)1/3

ω2ζ1/3 +
3

4

(
3

4A

)2/3

ωζ2/3 +
21

64A
ζ

+
37

192

(
3

4A

)4/3

ω2ζ4/3 +O
(
ζ5/3

)
, Im ζ < 0.

� Expansion at z = −α. Let ζ := z+α, A = A(1, 1, c) > 0; as ζ → 0, we have the expansions:

u1(z) =





−1 +

(
3

4A

)1/3

ωζ1/3 − 3

4

(
3

4A

)2/3

ω2ζ2/3 +
21

64A
ζ

− 37

192

(
3

4A

)4/3

ωζ4/3 +O
(
ζ5/3

)
, Im ζ > 0,

−1 +

(
3

4A

)1/3

ω2ζ1/3 − 3

4

(
3

4A

)2/3

ωζ2/3 +
21

64A
ζ

− 37

192

(
3

4A

)4/3

ω2ζ4/3 +O
(
ζ5/3

)
, Im ζ < 0,

u2(z) =





−1 +

(
3

4A

)1/3

ω2ζ1/3 − 3

4

(
3

4A

)2/3

ωζ2/3 +
21

64A
ζ

− 37

192

(
3

4A

)4/3

ω2ζ4/3 +O
(
ζ5/3

)
, Im ζ > 0,

−1 +

(
3

4A

)1/3

ωζ1/3 − 3

4

(
3

4A

)2/3

ω2ζ2/3 +
21

64A
ζ

− 37

192

(
3

4A

)4/3

ωζ4/3 +O
(
ζ5/3

)
, Im ζ < 0,

u3(z) = −1 +

(
3

4A

)1/3

ζ1/3− 3

4

(
3

4A

)2/3

ζ2/3+
21

64A
ζ − 37

192

(
3

4A

)4/3

ζ4/3+O
(
ζ5/3

)
,

u4(z) =
1

3
+

1

64A
ζ +

27

16384A2
ζ2 +

891

4194304A3
ζ3 +O

(
ζ4
)
.

We also note the following symmetry properties of these coordinates:

Proposition A.1. The expansions uj(z) and uj(−z), j = 1, 2, 3, 4 are related by

u1(−z) = −u1(z), u2(−z) = −u2(z),
u3(−z) = −u4(z), u4(−z) = −u3(z).

Proof. This proposition can be observed directly from the expansions of uj(z) given above. ■

B The isomonodromic tau function

The partition function of the 2-matrix model was identified with an isomonodromic τ -function
by Bertola and Marchal, cf. [9]. Their derivation is relatively straightforward, and applies almost
directly to our situation. However, some of the details of the calculation are different enough
that the proof merits discussion. We present the proof of the fact that the partition function for
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Figure 15. The uniformizing plane for generic values of the parameters (a, b, c). The leading
asymptotic behavior of uj(z) on each sheet is given in the appropriate local coordinate. For
example, in a neighborhood of u = a, the local coordinate ζ = const · (z − β), and u2(z) ∼
−ζ1/2

[
1 +O

(
ζ1/2

)]
, whereas u3(z) ∼ ζ1/2

[
1 +O

(
ζ1/2

)]
.

the 2-matrix model is an isomonodromic τ -function here. The proof mirrors almost directly that
of Bertola and Marchal’s; one should consult their work and references therein for further details
and commentary. For sake of readability, let us introduce the notation, for a given matrix-valued
1-form A(z),

⟨A(z)⟩ := Res
z=∞

tr[A(z)].

Recall that, in general, the nth monic biorthogonal polynomial pn(z) with respect to the weight8

eNW (z,w) := eN [τzw−V (z;T )−V (w;T̄ )]

8Here we take N > 0 as a free parameter, in general different from the index of the biorthogonal polynomial.
We will later set N = n.

Figure 15. The uniformizing plane for generic values of the parameters (a, b, c). The leading asymptotic

behavior of uj(z) on each sheet is given in the appropriate local coordinate. For example, in a neigh-

borhood of u = a, the local coordinate ζ = const · (z − β), and u2(z) ∼ −ζ1/2
[
1 + O

(
ζ1/2

)]
, whereas

u3(z) ∼ ζ1/2
[
1 +O

(
ζ1/2

)]
.

the 2-matrix model is an isomonodromic τ -function here. The proof mirrors almost directly that
of Bertola and Marchal’s; one should consult their work and references therein for further details
and commentary. For sake of readability, let us introduce the notation, for a given matrix-valued
1-form A(z),

⟨A(z)⟩ := Res
z=∞

tr[A(z)].

Recall that, in general, the nth monic biorthogonal polynomial pn(z) with respect to the weight8

eNW (z,w) := eN [τzw−V (z;T )−V (w;T̄ )]

(
Here V (z;T ) := 1

2z
2 + T

4 z
4, and we take T , T̄ as independent parameters in general

)
on con-

tour(s) (Γ,Γ) is given in terms of the solution to the following Riemann–Hilbert problem:

8Here we take N > 0 as a free parameter, in general different from the index of the biorthogonal polynomial.
We will later set N = n.
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(1) Yn(z) is a piecewise analytic function in C \Γ.
(2) Yn(z) has boundary values

Yn,+(z) = Yn,−(z)e−NV (z)

[
I+ w(z)E12 +

1

Nτ
w′(z)E13 +

1

N2τ2
w′′(z)E14

]
, z ∈ Γ,

where w(z) :=
∫
Γ e

N [τzw−V (w,T̄ )]dw (note that in the general situation, the integration
contour Γ is allowed to differ from the jump contour Γ; in this work, this distinction is
irrelevant).

(3) As z → ∞,

Yn(z) =

[
I+

Y
(1)
n

z
+

Y
(2)
n

z2
+O

(
1

z3

)]

zn 0 0
0 z−mn−1Irn 0
0 0 z−mnI3−rn


 ,

where mn ∈ N, rn ∈ {0, 1, 2} are such that n = 3mn + rn.

Note that, when n = 3k is a multiple of 3, the above coincides with the Riemann Hilbert problem
analyzed in the present work. If we put hn

(
τ, T, T̄ ;N

)
to be the norming constant for the monic

nth-order polynomials,

∫

Γ

∫

Γ
pn(z)qm(w)e

NW (z,w)dzdw = hn
(
τ, T, T̄ ;N

)
δnm,

then the partition function of this model is defined to be

Zn
(
τ, T, T̄ ;N

)
:=

n−1∏

k=0

hn
(
τ, T, T̄ ;N

)
.

We now summarize some of the basic results pertaining to this RHP which we will need in our
analysis of the τ -differential.

The solution to this Riemann–Hilbert problem is given explicitly,

Yn(z) =




pn(z) CΓ[pnw](z)
1
NτCΓ[pnw

′](z) 1
N2τ2

CΓ[pnw
′′](z)

Qn−1(z) CΓ[Qn−1w](z)
1
NτCΓ[Qn−1w

′](z) 1
N2τ2

CΓ[Qn−1w
′′](z)

Qn−2(z) CΓ[Qn−2w](z)
1
NτCΓ[Qn−2w

′](z) 1
N2τ2

CΓ[Qn−2w
′′](z)

Qn−3(z) CΓ[Qn−3w](z)
1
NτCΓ[Qn−3w

′](z) 1
N2τ2

CΓ[Qn−3w
′′](z)


 ,

where Qn−1, Qn−2, and Qn−3 are some appropriately chosen polynomials of degrees n−1, n−2,
and n− 3, respectively, pn(z) is the n

th monic biorthogonal polynomial, and

CΓ[f ](z) :=
1

2πi

∫

Γ

f(x)

x− z
dz

denotes the Cauchy transform with respect to the contour Γ. We can also relate the Riemann–
Hilbert problem for Yn(z) to the Riemann–Hilbert problem for Yn+1(z) by means of a raising
operator

Yn+1(z) = Rn(z)Yn(z),

where Rn(z) := R
(1)
n z +R

(0)
n is a degree 1 matrix-valued polynomial in z. The existence of Rn(z)

follows immediately from the fact that Yn+1(z)Y
−1
n (z) has no jumps, and thus extends to an

entire function. The asymptotics of Yn+1(z)Y
−1
n (z) uniquely fix the form of Rn(z). Setting
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α0 := rN + 1, we have that R
(1)
n = E11, whereas the matrix

(
R

(0)
n

)
jk

has entries as given in the
following table:

k = α0 k = 1 k ̸= 1, α0

j = α0

−(Y
(2)
n )α0,1+

∑
ℓ̸=α0

(Y
(1)
n )α0,ℓ

(
Y

(1)
n

)
ℓ,1

(Yn,1)α0,1
−
(
Y

(1)
n

)
α0,1

−
(
Y

(1)
n

)
α0,k

j = 1 1

(Y
(1)
n )α0,1

0 0

j ̸= 1, α0
(Y

(1)
n )j,1

(Y
(1)
n )α0,1

0 δjk

This implies that the matrix Rn(z) is determined entirely in terms of Yn(z).
The isomonodromic τ -differential corresponding to Y := Yn is defined to be

d log τn :=
〈
Y−1
n Y′

n dŴŴ
−1〉

,

where Ŵ(z) is essentially the augmented W-matrix from the first transformation

Ŵ(z) :=

(
e−NV (z) 0

0 W−1(z)

)
,

with the only difference here being that V (z) = 1
2z

2 + T̄
4 z

4. For now, we treat the parame-
ter N in the matrix Ŵ as a fixed parameter independent of the index of the polynomial n; we
shall later set N = n. Since multiplication by Ŵ yields a constant jump RHP, we have the
following formulae for the differential of dŴŴ

−1
: renders Y

dŴŴ
−1

=

(
0 0

0 −W−1 ∂W
∂τ

)
dτ +

(
0 0

0 −W−1 ∂W
∂T

)
dT +

(
−Nz4/4 0

0 0

)
dT̄ .

In [9], the parameters of the isomonodromic τ -differential come from the coefficients of the
potential (as opposed to our case, where one of the parameters is the coefficient of the interaction
term XY ; namely, τ), and the definition of dŴŴ

−1
is slightly different. However, it is only

important to the proof that Ŵ renders the jumps of Y constant, which we have already seen
(indeed, this was the point of the first transformation Y 7→ X).

The biorthogonal polynomials double as a particular sequence of multiple orthogonal polyno-
mials. Summarizing the arguments of [9], one can use the sequence of raising operators arising
from the multiple orthogonality to produce the next biorthogonal polynomial in the sequence.
Let us denote this raising operator generically by Rn(z). Rn(z) is defined so that

Yn+1(z) = Rn(z)Yn(z). (B.1)

Generically, Rn(z) is a degree 1 polynomial in z; its inverse is also a degree 1 polynomial in z.
We have the following proposition.

Proposition B.1.

d log
τn+1

τn
= −

〈
R−1
n R′

ndYnY
−1
n

〉
.

Proof. By equation (B.1), we have that

Y−1
n+1Y

′
n+1 = Y−1

n R−1
n R′

nYn+Y−1
n Y′

n .

Thus, the quotient of τ differentials is

d log
τn+1

τn
=
〈[
Y−1
n R−1

n R′
nYn+Y−1

n Y′
n

]
dŴŴ

−1〉−
〈
Y−1
n Y′

n dŴŴ
−1〉

=
〈
Y−1
n R−1

n R′
nYn dŴŴ

−1〉
.
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Now, recall that YnW has constant jumps, and so the differential d[YnW]W−1Y−1
n has

coefficients which are polynomial in z, by the standard Liouville argument. This statement can
be rewritten as

Yn dŴŴ
−1

Y−1
n = dYnY

−1
n +polynomial.

Inserting the above into our expression for the τ -quotient, we obtain that

d log
τn+1

τn
=
〈
R−1
n R′

n[polynomial]−R−1
n R′

ndYnY
−1
n

〉
;

since R−1
n R′

n is a polynomial in z, the first term is a polynomial in z, and thus has no residues
at infinity. This completes the proof. ■

We can use the explicit form of the raising operators obtained before to get an expression for
the τ -differential in terms of the coefficients of Yn(z). The exact expression is summarized by
the following proposition.

Proposition B.2. The ratio of consecutive τ differentials, up to multiplication by a function
independent of the isomonodromic times, is given by

τn+1

τn
=
(
Y(1)
n

)
1,α0

.

Proof. This follows immediately from inspection of the previous proposition, and the explicit
form of the matrices Rn(z). For details, see [9]. ■

Furthermore, we can relate the coefficients
(
Y

(1)
n

)
1,α0

to the biorthogonality coefficients hn.

Proposition B.3. The matrix coefficient
(
Y

(1)
n

)
1,α0

is given in terms of the nth normalizing
constant of the biorthogonal polynomials:

(
Y(1)
n

)
1,α0

=

(
T

τ

)S
hn,

where S ∈ N, α0 ∈ {0, 1, 2} are such that n = 3S + α0 − 1.

Proposition B.4. The isomonodromic τ -function τn is related to the partition function Zn(τ, t,
H;N) for n a multiple of 3 by the formula

Zn
(
τ, T, T̄ ;N

)
=
( τ
T

)n
2
(n
3
−1)

τn.

Remark B.5. We remark that there is a minor error in the statement of the above proposition
in [9]. The power of (T/τ) should be inverse to what it reads in their Theorem 3.4 (see page 17).
The proof is otherwise correct, and there are no essential changes to the results otherwise.

Thus, we have an explicit expression for the partition function in terms of quantities we can
calculate, by making the change of variables T = qt, T̄ = q−1t. However, the calculation of the
differential in the variable T̄ is computationally difficult, as it would require us to calculate the
expansion of Y to 4 subleading terms. However, we can use the fact that the partition function
is symmetric in T , T̄ ; in other words,

d logZn
(
τ, T, T̄ ;N

)
= d logZn

(
τ, T̄ , T ;N

)
.
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If we set

ϖτ

(
τ, T, T̄ , n;N

)
:=
〈
Y−1
n Y′

n ŴτŴ
−1〉

, ϖT

(
τ, T, T̄ , n;N

)
:=
〈
Y−1
n Y′

n ŴTŴ
−1〉

,

then we have the following proposition, which follows immediately from the symmetry

logZn(T, T̄ ) = logZn(T̄ , T ),

and our previous calculations.

Proposition B.6. The partition function is given by the expression

d logZn = d log
( τ

T T̄

)n
2
(n
3
−1)

+ϖτ

(
τ, T, T̄ , n;N

)
dτ +ϖT

(
τ, T, T̄ , n;N

)
dT

+ϖT

(
τ, T̄ , T, n;N

)
dT̄ .

C Explicit formulae for the spectral curve
and the critical surface

Here we present explicit formulae for the spectral curve S(X,Y ) = 0, and the critical surface
Ξ(τ, t, q) = 0. Both of these formulae are rather longer and not particularly enlightening.
We have therefore relinquished their presentation in the main text and placed them here, for
the sake of completeness.

C.1 Implicit formula for the spectral curve

One can eliminate the parameter u from the pair of functions (X(u), Y (u)) to obtain an implicit
formula for the Riemann surface these functions parametrize

S(X(u), Y (u)) = 0.

S(X,Y ) is a degree 6 polynomial in X and Y , with rational coefficients in the variables τ , t, q,
and σ (recall that σ is defined as a special solution to the algebraic equation (2.1)). Explicitly,
this polynomial is

S(X,Y ) = τqX4 + τq−1Y 4 − tX3Y 3 − qX3Y − q−1Y 3X + tτ−1X2Y 2

+ s2(σ; τ, t, q)X
2 + s2

(
σ; τ, t, q−1

)
Y 2 + s1(σ; τ, t, q)XY + s0(σ; τ, t, q).

where si(σ; τ, t, q) are given by

s2(σ; τ, t, q) =
1− 6σ − 3σ2

27τt(σ + 1)3
− 1

27τt

(
σ3τ2 + 3σ2τ2 − 9στ2 − 27τ2 + 1

)

− (q − 1)σ

27τt(σ2 − 1)3
[(
9τ2 − 9

)
+ 9(q + 1)σ +

(
4q−1 −

(
28τ2 + 6

))
σ2

− 6(q + 1)σ3 +
(
30τ2 + 3

)
σ4 + (q + 1)σ5 − 12σ6τ2 + σ8τ2

]
,

s1(σ; τ, t, q) = − 8
(
5σ + 3

)

81(σ + 1)2t
− σ6τ2 − 15σ4τ2 + 27σ2τ2 − 3σ2 + 243τ2 + 24σ + 171

243t

− 4σ3
(
σ2 + 3

)

81t(σ2 − 1)2
[
q + q−1 − 2

]
,

s0(σ; τ, t, q) = − σ

19683t2τq2(σ2 − 1)4

[
15qσ6τ2 + 9qσ5t+

(
12− 111τ2

)
qσ4
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+ 15

(
q2 − 6

5
tq + 1

)
σ3 +

(
177τ2 − 15

)
qσ2 − 54

(
q2 − 1

6
tq + 1

)
σ

+ 81
(
1− τ2

)
q

]2
.

C.2 Implicit formula for the critical surface

Recall that the critical surface is characterized by the vanishing of the discriminant of the
polynomial I(σ; τ, t, q), defined in equation (2.1). In other words, let Ξ(τ, t, q) denote this
discriminant. Then, we have that

(τ, t, q) ∈ SL ∪ SH =⇒ Ξ(τ, t, q) = 0.

Explicitly, we can write this curve as
(
C = 1

2

(
q + q−1

)
= cosh(H)

)

J (τ, t, C) := 32400000tτ4C5 + 1350000τ4
(
τ4 + 288t2 − 2τ2 + 1

)
C4

+36000tτ2
(
3160τ6 + 28026t2τ2 − 2745τ4 + 4374t2 − 1215τ2

)
C3

+
(
3840000τ12 − 423014400t2τ8 − 10560000τ10 − 1700611200t4τ4

− 235612800t2τ6 + 7440000τ8 − 306110016t6 + 2173003200t4τ2

− 666646200t2τ4 + 1440000τ6 + 25223400t2τ2 − 2160000τ4
)
C2

+
(
−10174464tτ12 + 403107840t3τ8 + 60549120tτ10 − 3809369088t5τ4

+ 2205895680t3τ6 − 197475840tτ8 − 3673320192t7 + 8865853056t5τ2

− 2979218880t3τ4 + 147277440tτ6 − 25509168t5 + 249930360t3τ2

− 1451520tτ4 + 1275264tτ2
)
C

− 65536τ16 + 5308416t2τ12 + 1277952τ14 − 161243136t4τ8 − 29859840t2τ10

− 7827456τ12 + 2176782336t6τ4 − 362797056t4τ6 − 21772800t2τ8

+15861760τ10 − 11019960576t8 + 8979227136t6τ2 − 5048925696t4τ4

+806993280t2τ6 − 12437760τ8 − 153055008t6 + 583036704t4τ2

+42729120t2τ4 + 2624256τ6 − 531441t4 + 6601824t2τ2

+546048τ4 + 20736τ2 = 0.

One can readily check that r⃗low(b, c), r⃗high(b, c) (defined below), indeed both parametrize the
above algebraic equation.

D Parametrization of the phase space

Here we discuss the parametrization of Dq by (3.4)–(3.6) in more detail and prove Proposi-
tion 2.5.

D.1 The critical surfaces

Let us start by studying the critical surfaces defined in Definition 2.4. Note that, by definition,
the low and high temperature curves are given by the pair of parametric equations r⃗•(b, c) =
⟨τ•(b, c), t•(b, c), q•(b, c)⟩, • ∈ {low, high}, defined by

r⃗low(b, c) :=

〈
b3√

N1(b, c)N2(b, c)
,−bc

(
b6c2 + 4

3b
2c2 + 1

)

3N1(b, c)N2(b, c)
,
bcN2(b, c)

N1(b, c)

〉
,
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r⃗high(b, c) :=

〈
1√

M1(b, c)M2(b, c)
,−bc

(
4b2c2 + 3b2 + 3c2

)

9M1(b, c)M2(b, c)
,
cM2(b, c)

bM1(b, c)

〉
,

respectively, where

N1(b, c) = 2b4c2 + b2 + c2, N2(b, c) = b4 + b2c2 + 2,

M1(b, c) = b2c2 + 2c2 + 1, M2(b, c) = b2c2 + 2b2 + 1.

In both cases, the parameter range for (b, c) is 0 < b < 1, 0 < c < b. The critical curve γb,
defined as the boundary connecting the surfaces Slow and Shigh, is given parametrically as

r⃗(c) =

〈
1√

(3c2 + 1)(c2 + 3)
,− c

(
7c2 + 3

)

9(c2 + 3)(3c2 + 1)
,
c
(
c2 + 3

)

3c2 + 1

〉
, 0 < c < 1,

which results from the limit b→ 1 in either of the critical surfaces r⃗low, r⃗high.
Note that by changing variables from (τ, t, q) to

(
τ2, t, q

)
the parametrizations become rational

and thus the surface Slow and Shigh are algebraic.

Lemma D.1. The union Slow ∪ Shigh of the low- and high-temperature critical surface is the
graph of a function of 0 < τ < 1 and 0 < q < 1.

Proof. It suffices to show that the projection of Shigh∪Slow∪γb to the t = 0 plane is a bijection
onto the square defined by 0 < τ < 1 and 0 < q < 1.

The projection of the surface Shigh to the t = 0 plane is obtained by setting t = 0 in its
parameterization. The parameterization becomes singular near b = c = 0, but this can be
resolved by setting c̃ = c/b, leading to the map

(τ, q) =

(
1√

(1 + 2c̃2b2 + c̃2b4)(1 + 2b2 + c̃2b4)
,
c̃
(
1 + 2b2 + c̃2b4

)

1 + 2c̃2b2 + c̃2b4

)
. (D.1)

Note that this defines a smooth map on R2, but we are mainly interested in its restriction
to the closure of the parameter space given by unit square 0 ≤ b ≤ 1 and 0 ≤ c̃ < 1. The
map (b, c̃) 7→ (τ, q) is differentiable and the Jacobian never vanishes in the open square. This
implies that it is locally a diffeomorphism. The image of the boundary is given by the following
observations:

� For b = 0, we find τ = 1 and 0 ≤ q ≤ 1.

� For b = 1, we obtain the projection of curve γb to the t = 0 plane.

� For c̃ = 0, we find q = 0 and 1/
√
3 ≤ τ ≤ 1.

� For c̃ = 1, we find q = 1 and 1/4 ≤ τ ≤ 1.

It is also easy to verify that the map (D.1) provides a bijection from the boundary of the
unit square to the boundary of this region.

Concluding, (D.1) is a continuous map from the closed unit square, that is locally diffeomor-
phic and maps the boundary bijective to the boundary of the image. Since ϕ is continuous and
the unit square is compact, it is also a proper map (pre-image of compacts sets are compact).
By furthering invoking the Hadamard–Caccioppoli theorem [60], one find that the map defines
a homeomorphism, from the closed unit disk onto its image. Moreover, the image of the bound-
ary divides R2 into two components and the image equals the bounded component. In other
words, the projection of Shigh is the region enclosed by τ = 1, q = 0, q = 1 and the projection
of γb to the t = 0 plane.

In a similar fashion, one can show that the projection of Slow is the region enclosed by τ = 0,
q = 0, q = 1 and the projection of γb to the t = 0 plane. The projections together thus fill out
the unit square bijectively and this is proves the statement. ■
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D.2 Proof of Proposition 2.5

Proof. We will characterize the image of the parametrization inspired by the following simple
principle: if D is an open set with compact closure and ϕ : D → Rn is a continuous function
such that ϕ(D) open, then ∂ϕ(D) ⊂ ϕ(∂D). Since the Jacobian (2.4) does not vanish in the
interior of R, the map Π maps R◦ to an open subset of R3. However, R is not compact and Π
is not continuous for b → 0. Nevertheless, as we will show below by a limiting procedure, the
boundary ∂Π(R) can still be found from the behavior of Π near the boundary ∂R.

For ε > 0, define Rε = R ∩ {b > ε}. Then the closure of Rε is compact and Π is continuous
up to the boundary. The boundary of Π(Rε) consists of the images of the boundary part of Rε

given by respectively a = b−1, a = 1, c = b, c = 0 and b = ε. The first two conditions, lead to the
critical surfaces Slow and Shigh (note that for ε ↓ 0 this will only trace our part of these surface
but when ε ↓ 0 we retrieve the entire surfaces again). The condition c = b gives us (part of) the
plane q = 1. The condition c = 0 turns out to be obsolete as it leads to both t = 0 and q = 0
and this is the part where the critical surfaces meet the t = 0 plane. So it remains to investigate
the behavior of the image of b = ε when ε ↓ 0. Note that the image of b = ε under Π gives a
smooth surface. We claim that for ε ↓ 0 this surface will converge to parts of the planes τ = 0
and t = 0.

To study the ε ↓ 0 limit we start, as in the proof of Lemma D.1, by setting c = c̃b, and
consider the parametrization by a, b and c̃. Now 0 ≤ c̃ ≤ 1 and the limit b = ε ↓ 0 simply gives

τ(a, b, c) → 1/a2, t(a, b, c) → 0, q(a, b, c) → c̃.

One can readily verify that this parameterizes the t = 0 wall of the phase space for 0 < q < 1:

{(τ, t, q) | t = 0, 0 < τ < 1, 0 < q < 1}.
The τ = 0 plane can obtained in a similar way. To this end, set a = ã/b, c̃ = c/b, with 0 < ã ≤ 1
and 0 ≤ c̃ ≤ 1. Then for b = ε ↓ 0 we find

τ(a, b, c) → 0, t(a, b, c) → − ã2c̃

3(1 + ã2)(1 + ã2c̃2)
, q(a, b, c) → c̃

(
1 + ã2

)

1 + ã2c̃2
.

One can readily verify that the above parametrizes the following set:
{
(τ, t, q) | τ = 0, − 1

12
q < t < 0, 0 < q < 1

}
. (D.2)

Equality t = −q/12 in this limiting procedure is obtained by setting ã = 1 and thus a = b−1.
Therefore, (D.2) is the part of the plane τ = 0 enclosed by t = 0, q = 0, q = 1 and the part of
the boundary of Slow that is in the τ = 0 plane.

Concluding, after taking the limit ε ↓ 0, we find that Π maps R◦ to the open region in R3 for
which the boundary consists of the critical surfaces Slow ∪Shigh ∪ γb and the four planes defined
by respectively q = 0, q = 1, t = 0 and τ = 0.

Next we show that Π(R) = D. Note that, by Lemma D.1, we can write

Π(R) = {(t, τ, q) | 0 < τ < 1, q ∈ R, t0(τ, q) < t < 0},
for some function t0. It remains to show that t0(τ, q) = tcr(τ, q). We first note that it by
a simple but tedious computation one can show that σ = a2bc indeed solves (2.1), for τ , t, q
as defined in (3.4)–(3.6). It is also clear that σ depends continuously on a, b, c in the interior
of R and for b→ 0 we find σ → 0. Moreover, since the Jacobian of Π is not vanishing in
the interior of R, we see that σ is even differentiable as a function of t. We thus proved that
σ(t) = a2bc for t0 ≤ t < 0. Finally, at the boundary the Jacobian vanishes and σ(t) = a2bc is no
longer differentiable as a function of t and thus no longer analytic in t. By definition, we must
have tcr = t0. This finishes the proof. ■
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E Calculations from physics: the genus 0 partition function

In this appendix, we study the genus 0 free energy, which is defined in terms of the partition
function

Zn(τ, t,H;N) :=

∫

Hn

∫

Hn

exp

{
tr

[
τXY − 1

2
X2 − 1

2
Y 2 − teH

4N
X4 − te−H

4N
Y 4

]}
dXdY. (E.1)

The (genus 0) free energy is then defined as the ratio

F (τ, t,H) = lim
N→∞

1

N2
log

ZN (τ, t,H;N)

ZN (τ, 0, 0;N)
.

More precisely, we reproduce the following results from the physics literature:

(1) Zn(τ, t,H;N) is a generating function for partition functions of the Ising model on genus
g 4-regular graphs, in a sense we shall make precise. This is the result of Kazakov (for
H = 0) and Kazakov and Boulatov (H ̸= 0) [14, 57]. This is presented in Appendix E.1.

(2) The large N limit of the genus 0 partition function admits an exact expression in terms
of the solution to a certain implicit equation. This is also the result of [14, 57]. This is
presented in Appendix E.2.

(3) We check that the results of these calculations indeed agree. We calculate the first few
terms of this generating function by hand, and show that this result agrees with the exact
formula from [14, 57]. This is presented in Appendix E.3.

(4) The asymptotics of the Taylor coefficients of σ(τ, t,H) are derived, and explicitly so for
the special case H = 0, which is again a result of [57].

We present these results in more detail here, as the calculations are somewhat involved and the
methods from the physics literature are perhaps unfamiliar to the target audience of this work.
This appendix is meant to hopefully clarify these results; we do not claim any originality here.
We also stress that these methods are formal: they are best thought of as guiding principles.

E.1 Wick expansion of the partition function

In this appendix, we replicate in detail the Wick expansion of the free energy, and show that
it is a formal generating function for the Ising model on random 4-regular genus g graphs. We
begin by considering the Gaussian model:

dP(X,Y ) =
1

Zn(τ, 0, 0;N)
exp

{
N tr

[
τXY − 1

2
X2 − 1

2
Y 2

]}
dXdY. (E.2)

Let ⟨·⟩n denote the expected value with respect to this measure. Then, one can directly compute
the following.

Lemma E.1. The matrix elements Xij, Yij have the following means and covariances:

⟨Xij⟩n = 0, ⟨Yij⟩n = 0, (E.3)

⟨XijXkℓ⟩n = ⟨YijYkℓ⟩n =
1

N(1− τ2)
δiℓδjk, ⟨XijYkℓ⟩n = ⟨YijXkℓ⟩n =

τ

N(1− τ2)
δiℓδjk.

Proof. We only sketch the idea of the proof here. The main point is that one can explicitly
compute the moment generating function of this model. Let J,K ∈ Hn be a fixed Hermitian
matrices, and consider the quantity

f(J,K) := ⟨exp(tr JX +KY )⟩n,



The Ising Model Coupled to 2D Gravity: Genus Zero Partition Function 73

where the expected value is taken with respect to the measure (E.2). By the usual trick of
completing the square, one can compute that

f(J,K) = exp

{
1

N(1− τ2)
tr

[
1

2
J2 +

1

2
K2 − τJK

]}
.

Taking derivatives with respect to the appropriate matrix elements of J , K yields (E.3). ■

Now, since the entries of both X, Y are all centered Gaussian variables, we can apply Wick’s
theorem to calculate the expected value of any higher order moment in terms of the covari-
ances (E.3). Let us now explain how to calculate expected values of the form

〈
k∏

p=1

trXip

ℓ∏

q=1

trY jq

〉

n

, (E.4)

where (i1, . . . , ip) and (j1, . . . , jp) are sequences of positive integers. The main takeaway will be
that one can interpret this expected value digramatically; we shall now explain this procedure.
Let K =

∑k
p=1 ip, L =

∑ℓ
q=1 jq, and E = K + L. We assume that E is even; otherwise, this

expected value is automatically zero. We can apply Wick’s theorem to (E.4), and convert this
expected value into a sum over all possible pairings of the indices:

〈
k∏

p=1

trXip

ℓ∏

q=1

trY jq

〉

n

=
∑

I

∑

π∈ΠE

∏

{(ra,rb),(rc,rd)}∈π
⟨ZrarbZrcrd⟩n,

where ΠE denotes the set of pairings of E elements, the sum I runs over all of the indices of the
traces trXip , p = 1, . . . , k, and trY jq , q = 1, . . . , j, and

Zrarb :=

{
Xrarb , (ra, rb) belongs to the index set of one of the traces trXip , p=1, . . . , k,

Yrarb , (ra, rb) belongs to the index set of one of the traces trY iq , q=1, . . . , j.

Interchanging the order of summation, we see that each pairing π contributing a factor of

w[Rπ] :=
∑

I

∏

{(ra,rb),(rc,rd)}∈π
⟨ZrarbZrcrd⟩n

to the expected value. To each such pairing π, we associate a 2-colored ribbon graph Rπ as
follows:

(1) Draw k X-colored vertices, each with degree ip, p = 1, . . . , k, with half-edges labelled by
the indices of the trace of the corresponding vertex.

(2) Draw ℓ Y -colored vertices, each with degree jq, q = 1, . . . , ℓ, with half-edges labelled by
the indices of the trace of the corresponding vertex.

(3) Pair the half-edges according to the pairing prescribed by π.

The resulting diagram is called a 2-colored ribbon graph. We will sometimes denote a 2-colored
ribbon graph (associated to a pairing π) on V := k + ℓ vertices, with k vertices of the first
color, and ℓ := V − k of the second color, by Rπ(k, ℓ). The size of such a ribbon graph is the
number of vertices, denoted |Rπ(k, ℓ)| = V . We call such a coloring a coloring of type (k, ℓ).
The contribution of such a graph to the Wick sum we will denote by w[Rπ(k, ℓ)], or by w[Rπ],
when the coloring type is clear.

Let us compute more explicitly the contribution to the sum of a particular pairing (ribbon
graph) π (Rπ). The ribbon graph associated to the pairing π will by construction have V vertices,
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and E edges, by the handshaking lemma. Each face in the resulting ribbon graph corresponds to
a collection of indices which will be identified byWick’s theorem, since ⟨ZabZcd⟩n = ⋆

n(1−τ2)δadδbc,
where Z is either X, Y , and ⋆ is either 1 or τ . Thus, the number of independent summation
indices I ′ left over after accounting for the identified indices is the same as the number of faces,
which we shall denote by F . The contribution will be multiplied by a factor of τD, where D
counts the number of edges connecting X-colored vertices to Y -colored vertices. Thus, we see
that w[Rπ] is (upon identifying N := n):

w[Rπ] =
1

nE

(
1

1− τ2

)E
nF τD =

(
1

1− τ2

)E
nχ(Rπ)−V τD.

Let U denote the number of edges in Rπ connecting X-colored vertices to X-colored vertices
and Y -colored vertices to Y -colored vertices. Then, we have the equality D + U = E, the total
number of edges in Rπ. If we define S := D − U , then D = 1

2(E + S), and we can express the
weight w[Rπ] finally as

w[Rπ] =

(
τ1/2

1− τ2

)E
nχ(Rπ)−V τ

1
2
S . (E.5)

Note that, since E is always even, as the graph comes from a pairing, so there is no problem
defining the square root. What we have proven is the following proposition:

Proposition E.2. Let X, Y be Gaussian random matrices, distributed according to the mea-
sure (E.2), with parameter N := n. Let (i1, . . . , ik), (j1, . . . , jℓ) be a k- (respectively, ℓ)-tuple of
positive integers, and set V := k + ℓ. Furthermore, put E := 1

2

(∑
p ip +

∑
q jq
)
. Then,

nV

〈
k∏

p=1

trXip

ℓ∏

q=1

trY jq

〉

n

=

(
τ1/2

1− τ2

)E∑

g≥0

eg(τ)

n2g−2
,

where eg(τ) is a polynomial in τ , defined by

eg(τ) =
∑

Rπ

τ
1
2
S(Rπ),

where the sum runs over all genus g unordered (k, ℓ)-colored ribbon graphs, and S(Rπ) is the
number of edges in Rπ between like-colored vertices minus the number of edges between unalike
vertices.

Now, let us apply this proposition to the matrix integral (E.1). Expanding exp
[
− t

4N trX4
]
,

exp
[
− t

4N trY 4
]
as series in t, we obtain that

exp

[
− t

4N
trX4

]
exp

[
− t

4N
trY 4

]

=
∞∑

V=0

(−t/4N)V

V !

∑

k+j=V

V !

k!j!

(
trX4

)k(
trY 4

)j
e(k−j)H .

If we insert this expression into equation (E.1), and divide by the Gaussian partition function
Zn(τ, 0, 0;N), we obtain that

Zn(τ, t,H;N)

Zn(τ, 0, 0;N)
=

∞∑

M=0

(−t/4N)V

V !

∑

k+j=V

V !

k!j!

〈(
trX4

)k(
trY 4

)j〉
n
e(k−j)H ,
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where the expected value here is taken with respect to the Gaussian measure (E.2). It is
important to notice that, provided k+j = V , V !

k!j! counts the number of 2-colorings of V objects,
with k of the first color and j of the second. Expanding the expected value

〈(
trX4

)k(
trY 4

)j〉
n

using Wick’s theorem and the diagrammatic rules we established, we obtain that

Zn(τ, t,H;N)

Zn(τ, t,H;N)
=

∞∑

V=0

(−t/4N)V

V !

∑

k+j=V

V !

k!j!

∑

|Rπ(k,j)|=V
w[Rπ(k, j)]e

(k−j)H ,

where the innermost sum runs over all 2-colored ribbon graphs on V vertices with k edges of the
first color and j of the second, k+ j = V . The colorings in this case are unlabelled, in the sense
that any graph of a fixed type with coloring (k, j) are considered to be the same. However, we
can count labelled colorings by noticing that

(1) If we color any labelled ribbon graph Rπ in two different ways with precisely k vertices of
the first color and j of the second, the resulting weights these diagrams contribute to the
sum are identical.

(2) If k+ j = V , there are precisely V !
k!j! possible colorings of type (k, j) on a given graph on V

vertices.

Thus, we see that inner sum over k, j can be interpreted as a sum over the distinct possible
colorings of the vertices, and we have that

Zn(τ, t,H;N)

Zn(τ, 0, 0;N)
=

∞∑

V=0

(−t/4N)V

V !

∑

|Rπ |=V
wh[Rπ],

where we have defined a modified weight function

wh[Rπ] := w[Rπ]e
(k−j)H ,

and the internal sum now runs over all labelled, 2-colored ribbon graphs on V -vertices, with any
coloring scheme. For our purposes, it is useful switch the order of summation over colorings and
graphs, i.e., to write the above as

Zn(τ, t,H;N)

Zn(τ, 0, 0;N)
=

∞∑

V=0

(−t/4N)V

V !

∑

ribbon
graphs
Rπ

∑

colorings of
Rπ

wh[Rπ]e
(k−j)H ,

where the sum
∑

ribbon
graphs
Rπ

is a sum over all uncolored, labelled ribbon graphs on V vertices, and
∑

colorings of
Rπ

runs over all possible 2-colorings of Rπ. Now, using the formula for the weights w[Rπ] of colored
ribbon graphs we derived earlier (cf. equation (E.5)), and using the fact that E = 2V by the
handshaking lemma, we have that (again putting N := n):

Zn(τ, t,H;n)

Zn(τ, 0, 0;n)
=

∞∑

V=0

1

V !

( −tτ
4(1− τ2)2

)V ∑

ribbon
graphs
Rπ

nχ(Rπ)
∑

colorings of
Rπ

τ
1
2
S(Rπ)e(k−j)H .
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For a fixed graph Rπ, this sum is nothing but the partition function for the Ising model on this
graph, with the parameter identification τ = e−2β, H = βh. Thus, we have shown that

Zn(τ, t,H;n)

Zn(τ, 0, 0;n)
=

∞∑

V=0

1

V !

( −tτ
4(1− τ2)2

)V ∑

ribbon
graphs
Rπ

nχ(Rπ)ZRπ(β, h).

A general principle in the theory of generating functions is the following. Suppose we have
an exponential generating function which counts the number of labelled objects. Then, its
logarithm counts the number of connected objects of the same kind. For more details pertaining
to this fact, one may consult, for example, the book [78, Section 5], instead a sum over connected
ribbon graphs:

log
Zn(τ, t,H;n)

Zn(τ, 0, 0;n)
=

∞∑

V=1

1

V !

( −tτ
(1− τ2)2

)V ∑

ribbon
graphs
Rπ

′
nχ(Rπ)ZRπ(β, h),

where ′ denotes the sum only over connected diagrams, and β, h are related to τ , H via the
formulae

τ = e−2β, H = βh.

In particular, if we divide through by n2, and take a limit as n→ ∞, we obtain that

F (τ, t,H) := lim
n→∞

1

n2
log

Zn(τ, t,H;n)

Zn(τ, 0, 0;n)
=

∞∑

V=1

1

V !

( −tτ
4(1− τ2)2

)V ∑

ribbon
graphs
Rπ

′
ZRπ(β, h), (E.6)

where the internal sum runs over all connected, 4-valent planar ribbon graphs on V vertices.

E.2 Formal calculation of the genus 0 partition function

Here we calculate the genus 0 partition function in the limit as N := n tends to infinity. Define
the function V (z; t) := 1

2z
2 + t

4z
4, and put

W (x, y) := τxy − V
(
x, teH

)
− V

(
y, te−H

)
.

We consider the family of biorthogonal polynomials defined by the formula

hk(τ, t,H;N)δkj = hkδkj =

∫∫
Pk(x)Qk(y)e

NW (x,y)dxdy,

where the integration is carried out over an appropriately chosen contour, so that the above
integral makes sense. The genus zero generating function for the Ising model on random spherical
quadrangulations is then

F (τ, t,H) := lim
N→∞

1

N2
log

N∏

k=0

hk(τ, t,H;N)

hk(τ, 0, 0;N)
.

In order to calculate F (τ, t,H), we must first study some properties of the corresponding
biorthogonal polynomials. We have the following lemma.
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Lemma E.3. The polynomials {Pk(x)}, {Qk(y)} satisfy the recursion relations

xPk(x) = Pk+1(x) +RkPk−1(x) + SkPk−3(x), (E.7)

yQk(y) = Qk+1(y) + R̃kQk−1(y) + S̃kQk−3(y). (E.8)

Proof. We sketch the proof of (E.7). Obviously, xPk(x) = Pk+1(x) +
∑k

j=0 cjkPj(x). Multi-
plying this relation by Qℓ(y) and integrating against the measure eNW (x,y)dxdy, one obtains

ckℓhℓ =

∫∫
xPk(x)Qℓ(y)e

NW (x,y)dxdy.

Using the identity xeNW (x,y) = 1
Nτ

(
∂
∂y e

NW (x,y)
)
+ 1

τ

(
y + te−Hy3

)
, one sees that

ckℓhℓ =

∫∫
Pk(x)Qℓ(y)

[
1

Nτ

(
∂

∂y
eNW (x,y)

)
+

1

τ

(
y + te−Hy3

)]
dxdy.

Since ℓ < k+1, the first term vanishes identically, since integration by parts yields the integrand
as −Pk(x)Q′

ℓ(y)e
NW (x,y), and Q′

ℓ(y) is a polynomial of degree less than k. Similarly, last two
terms can only be nonzero if ℓ = k, k − 1, k − 3; the k term is also zero, by the symmetry of
the integration measure upon the change of variables (x, y) → (−x,−y). The result (E.8) is
obtained in an identical manner. ■

We now show that the recursion coefficients satisfy additional relations.

Lemma E.4. Define fk := hk/hk−1. The coefficients Rk, Sk, R̃k, S̃k satisfy the following
relations:

τSk = te−Hfkfk−1fk−2, (E.9)

τRk = fk
[
1 + te−H

(
R̃k+1 + R̃k + R̃k−1

)]
, (E.10)

k

N
= −τfk + R̃k + te−H

[
S̃k+2 + S̃k+1 + S̃k + R̃k

(
R̃k+1 + R̃k + R̃k−1

)]
, (E.11)

τ S̃k = teHfkfk−1fk−2, (E.12)

τR̃k = fk
[
1 + teH

(
Rk+1 +Rk +Rk−1

)]
, (E.13)

k

N
= −τfk +Rk + teH

[
Sk+2 + Sk+1 + Sk +Rk

(
Rk+1 +Rk +Rk−1

)]
. (E.14)

Proof. We only prove the first relation; the last three are proven identically. Multiplying
equation (E.7) by τQk−3(y), and integrating with respect to the measure eNW (x,y)dxdy, we
find that

τSkhk−3 =

∫∫
τxPk(x)Qk−3(y)e

NW (x,y)dxdy.

Using the identity τxeNW (x,y) = 1
N

(
∂
∂y e

NW (x,y)
)
+
(
y + te−Hy3

)
, we see that

τSkhk−3 =

∫∫
τPk(x)Qk−3(y)

[
1

N

(
∂

∂y
eNW (x,y)

)
+
(
y + te−Hy3

)]
dxdy.

The first term drops out upon integrating by parts; similarly, since deg[yQk−3] = k−2, the second
term also evaluates to 0. On the last term, we use iteratively the recursion formula (E.8):

τSkhk−3 = te−H
∫∫

Pk(x) [Qk(y) + lower degree polynomials ] eNW (x,y)dxdy

= te−Hhk. ■
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In planar limit, we assume the scaling k
N → λ, fk → f(λ), and so on. The above formu-

las (E.9)–(E.14) imply that, in the limit as N → ∞,

τS(λ) = te−Hf(λ)3,

τR(λ) = f(λ)
[
1 + 3te−HR̃(λ)

]
,

λ = −τf(λ) + R̃(λ) + 3te−H
[
S̃(λ) + R̃(λ)2

]
, (E.15)

τ S̃(λ) = teHf(λ)3,

τ R̃(λ) = f(λ)
[
1 + 3teHR(λ)

]
,

λ = −τf(λ) +R(λ) + 3teH
[
S(λ) +R(λ)2

]
, (E.16)

and these relations we can solve for S(λ), R(λ), R̃(λ), and S̃(λ) in terms of f(λ), and the param-
eters τ , t, H:

S(λ) =
te−H

τ
f(λ)3, S̃(λ) =

teH

τ
f(λ)3,

R(λ) =
τ + 3te−Hf(λ)
τ2 − 9t2f(λ)2

f(λ), R̃(λ) =
τ + 3teHf(λ)

τ2 − 9t2f(λ)2
f(λ).

These formulae can then be subsequently substituted into either equations (E.15) or (E.16)
(they yield the same equation in the end) to obtain an implicit formula for the function f(λ) =
f(λ; τ, t,H):

λ = −τf(λ) + τ + 3te−Hf(λ)
τ2 − 9t2f(λ)2

f(λ) +
3teH

(
τ + 3te−Hf(λ)

)2

(τ2 − 9t2f(λ)2)2
f(λ)2 +

3t2f(λ)3

τ
(E.17)

⇐⇒ λ = −τf(λ) + 3t2

τ
f(λ)3 +

τf(λ)

(τ − 3tf(λ))2
+

6τ2tf(λ)2

(τ2 − 9t2f(λ)2)2
[coshH − 1].

In particular, when t = H = 0, we obtain the solution

f(λ; τ, 0, 0) =
τλ

1− τ2
.

Returning again to the calculation of the function F (τ, t,H), note that, by the definition of
the variables fk,

∏N
k=0 hk = hN0

∏N
k=1 f

N−k
k , and so

1

N2
log

N∏

k=0

hk(τ, t,H;N)

hk(τ, 0, 0;N)
=

1

N
log

h0(τ, t,H;N)

h0(τ, 0, 0;N)
+

N∑

k=1

(
1− k

N

)
log

fk(τ, t,H;N)

fk(τ, 0, 0;N)

1

N
.

Taking the limit as N → ∞, the first term vanishes (the argument of the logarithm is bounded),
and the second term approximates a Riemann integral; we thus obtain the formula

F (τ, t,H) = lim
N→∞

1

N2
log

N∏

k=0

hk(τ, t,H;N)

hk(τ, 0, 0;N)
=

∫ 1

0
(1− λ) log

f(λ; τ, t,H)

f(λ; τ, 0, 0)
dλ

=
3

4
− 1

2
log

τ

1− τ2
+

∫ 1

0
(1− λ) log f(λ; τ, t,H)dλ. (E.18)

This, along with the implicit formula (E.17), are enough (in principle) to determine the function
F (τ, t,H). Integrating the above formula by parts,

F (τ, t,H) =
3

4
− 1

2
log

τ

1− τ2
+

[(
λ− 1

2
λ2
)
log f(λ; τ, t,H)

]1

0
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−
∫ 1

0

(
λ− 1

2
λ2
)
f ′(λ; τ, t,H)

f(λ; τ, t,H)
dλ

=
3

4
− 1

2
log

τ

1− τ2
+

1

2
log f(1; τ, t,H)−

∫ 1

0

(
λ− 1

2
λ2
)
f ′(λ; τ, t,H)

f(λ; τ, t,H)
dλ

(Here we have used the fact that f(0; τ, t,H) ≡ 0). Making the change of variables u =
f(λ; τ, t,H), du

u = f ′
f dλ,

F (τ, t,H) =
3

4
− 1

2
log

τ

1− τ2
+

1

2
log f(1; τ, t,H)−

∫ f(1;τ,t,H)

0

(
λ̃(u)− 1

2
λ̃(u)2

)
du

u
,

where λ̃(u) is defined by use of the implicit equation (E.17):

λ̃(u) = −τu+
3t2

τ
u3 +

τu

(τ − 3tu)2
+

6τ2tu2

(τ2 − 9t2u2)2
[coshH − 1].

The integration can be carried out directly, since λ(u) is a rational function. Finally, defining

σ(τ, t,H) := −3t

τ
f(1; τ, t,H),

and making an appropriate change of variables, we obtain the following Proposition:

Proposition E.5. The genus 0 partition function admits the expression

F (τ, t,H) =
3

4
+

1

2
log

(
1− τ2

)
σ(τ, t,H)

−3t
−
∫ σ(τ,t,H)

0

(
λ(u)− 1

2
λ(u)2

)
du

u
,

where λ(u) is the rational function

λ(u) = −1

t

[
1

9
τ2u
(
u2 − 3

)
+

1

3

u

(u+ 1)2
− 2

3

(
u

u2 − 1

)2

[coshH − 1]

]

and σ = σ(τ, t,H) is defined implicitly by the equation

t = −1

9
τ2σ

(
σ2 − 3

)
− 1

3

σ

(1 + σ)2
+

2

3

(
σ

1− σ2

)2

[coshH − 1].

This is the result originally obtained by Kazakov (H = 0, cf. [57]) and Boulatov (H ̸= 0,
cf. [14]). If one expands the function F (τ, t,H) as a series in t, one obtains that

F (τ, t,H) = 4τ−1 coshH

( −tτ
4(1− τ2)2

)
+
(
8τ2 + 64 + 72τ−2 cosh(2H)

)1
2

( −tτ
4(1− τ2)2

)2

+

(
3456

τ3
cosh(H)

(
2 cosh(2H) + τ4 + 2τ2 − 1

))1

6

( −tτ
4(1− τ2)2

)3

+O
(
t4
)
. (E.19)

E.3 Comparison with explicit calculation

On the other hand, we can compute the first few contributions to the genus 0 free energy by
hand. The following graphs (shown in Figure 16) contribute at genus zero:

V = 1. For one vertex, there is one type of graph contributing, shown in the figure. The partition
function for the Ising model on this graph is, in the variables τ , H,

Z
(1)
1 (τ,H) = 2τ−1 coshH.
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2 · Z(1)
1 (τ,H) 4 · Z(1)

2 (τ,H) 32 · Z(2)
2 (τ,H)

64 · Z(1)
3 (τ,H) 512 · Z(2)

3 (τ,H) 384 · Z(3)
3 (τ,H)

768 · Z(4)
3 (τ,H)

Figure 16. The isomorphism classes of graphs contributing at genus 0 to the free energy, up

to V = 3 vertices. Each isomorphism class of graph contributes a factor of Ni · Z(i)
V (τ,H).

V = 2. For two vertices, there are two nonisomorphic types of graphs contributing, shown in
the figure. Their corresponding partition functions are

Z
(1)
2 (τ,H) = 2τ−2 cosh(2H) + 2τ2, Z

(2)
2 (τ,H) = 2τ−2 cosh(2H) + 2.

V = 3. There are four nonisomorphic types of graphs contributing, shown in the figure. Their
partition functions are

Z
(1)
3 (τ,H) = 2τ−3 cosh(3H) + 6τ cosh(H),

Z
(2)
3 (τ,H) = 2τ−3 cosh(3H) + 2τ−1 cosh(H) + 4τ cosh(H),

Z
(3)
3 (τ,H) = 2τ−3 cosh(3H) + 6τ−1 cosh(H),

Z
(4)
3 (τ,H) = 2τ−3 cosh(3H) + 4τ−1 cosh(H) + 2τ cosh(H).

Observe that we can write the genus zero free energy (E.6) equivalently as

F (τ, t,H) =

∞∑

V=0

( ∑

|G|=V
NGZG(τ,H)

)
1

V !

( −tτ
4(1− τ2)2

)V
,

where the internal sum is taken over isomorphism classes of graphs G on V vertices, and NG

counts the number of labelled graphs isomorphic to G when one “forgets” the labelling. In this
way, one can explicitly compute that

F (τ, t,H) =
[
2 · Z(1)

1 (τ,H)
]( −tτ

4(1− τ2)2

)

Figure 16. The isomorphism classes of graphs contributing at genus 0 to the free energy, up to V = 3

vertices. Each isomorphism class of graph contributes a factor of Ni · Z(i)
V (τ,H).

V = 2. For two vertices, there are two nonisomorphic types of graphs contributing, shown in
the figure. Their corresponding partition functions are

Z
(1)
2 (τ,H) = 2τ−2 cosh(2H) + 2τ2, Z

(2)
2 (τ,H) = 2τ−2 cosh(2H) + 2.

V = 3. There are four nonisomorphic types of graphs contributing, shown in the figure. Their
partition functions are

Z
(1)
3 (τ,H) = 2τ−3 cosh(3H) + 6τ cosh(H),

Z
(2)
3 (τ,H) = 2τ−3 cosh(3H) + 2τ−1 cosh(H) + 4τ cosh(H),

Z
(3)
3 (τ,H) = 2τ−3 cosh(3H) + 6τ−1 cosh(H),

Z
(4)
3 (τ,H) = 2τ−3 cosh(3H) + 4τ−1 cosh(H) + 2τ cosh(H).

Observe that we can write the genus zero free energy (E.6) equivalently as

F (τ, t,H) =

∞∑

V=0

( ∑

|G|=V
NGZG(τ,H)

)
1

V !

( −tτ
4(1− τ2)2

)V
,

where the internal sum is taken over isomorphism classes of graphs G on V vertices, and NG

counts the number of labelled graphs isomorphic to G when one “forgets” the labelling. In this
way, one can explicitly compute that

F (τ, t,H) =
[
2 · Z(1)

1 (τ,H)
]( −tτ

4(1− τ2)2

)

+
[
4 · Z(1)

2 (τ,H) + 32 · Z(2)
2 (τ,H)

]1
2

( −tτ
4(1− τ2)2

)2

+
[
64 · Z(1)

3 (τ,H) + 512 · Z(2)
3 (τ,H) + 384 · Z(3)

3 (τ,H) + 768 · Z(4)
3 (τ,H)

]
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× 1

6

( −tτ
4(1− τ2)2

)3

+O
(
t4
)

= 4τ−1 coshH

( −tτ
4(1− τ2)2

)
+
(
8τ2 + 64 + 72τ−2 cosh(2H)

)1
2

( −tτ
4(1− τ2)2

)2

+

(
3456

τ3
cosh(H)

(
2 cosh(2H) + τ4 + 2τ2 − 1

))1

6

( −tτ
4(1− τ2)2

)3

+O
(
t4
)
,

which is in agreement with the formula (E.19) originally obtained by Kazakov.

Remark E.6. High/low temperature limits of the free energy. As a final remark, let us show
that in the limit τ,H → 0, the free energy of the quartic-two matrix model reduces to twice the
free energy of the quartic 1-matrix model. Intuitively, one should expect this result because τ
acts as a coupling parameter between the matrices X and Y ; when τ,H → 0, we obtain two
independent copies of the quartic 1-matrix model. Recall that the free energy for the quartic
1-matrix model is

F(t) := lim
N→∞

log
Z

(1)
N (t;N)

Z
(1)
N (0;N)

,

where Z
(1)
n (t;N) is given by the formula

Z(1)
n (t;N) =

∫

Hn

exp

[
−N tr

(
1

2
X2 +

t

4
X4

)]
dX.

Explicitly, one may evaluate F(t) to be (cf., for example, [11], or the more recent [13])

F(t) =

∫ 1

0
(1− λ) log

−1 +
√
1 + 12tλ

6tλ
dλ.

On the other hand, let us return to the formula for the partition function of the 2-matrix model
(see the first expression in equation (E.18)):

F (τ, t,H) =

∫ 1

0
(1− λ) log

f(λ; τ, t,H)

f(λ; τ, 0, 0)
dλ

=

∫ 1

0
(1− λ) log

(
1− τ2

)
f(λ; τ, t,H)

τλ
dλ,

where f(λ; τ, t,H) is defined by the implicit equation

λ = −τf(λ) + τ + 3te−Hf(λ)
τ2 − 9t2f(λ)2

f(λ) +
3teH

(
τ + 3te−Hf(λ)

)2

(τ2 − 9t2f(λ)2)2
f(λ)2 +

3t2f(λ)3

τ
. (E.20)

Define the new variable f̃(λ; τ, t,H) := (1−τ2)
τ f(λ; τ, t,H). The reason for this change of variables

is that f̃(λ; τ, t,H) → λ when t→ 0, i.e., the limit function is independent of τ . Under this
change of variables, equation (E.20) becomes

0 = λ−
(
1 + 3te−H f̃

)
f̃

1− 9t2f̃2
− 3teH

(
1 + 3te−H f̃

)2
(
1− 9t2f̃2

)2 +O
(
τ2
)
.

In the limit as τ,H → 0, one sees that

0 = λ−
(
1 + 3tf̃

)
f̃

1− 9t2f̃2
− 3t

(
1 + 3tf̃

)2
(
1− 9t2f̃2

)2 .
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This equation can be solved for f̃ :

f̃(t) =
1 + 6tλ−

√
1 + 12tλ

18t2λ
,

where we have taken the branch of the solution which tends to λ as t → 0. Inserting this
expression into the expression for the free energy of the 2-matrix model,

lim
τ,H→0

F (τ, t,H) = lim
τ,H→0

∫ 1

0
(1− λ) log

f̃(τ, t,H)

λ
dλ

=

∫ 1

0
(1− λ) log

1 + 6tλ−
√
1 + 12tλ

18t2λ2
dλ

=

∫ 1

0
(1− λ) log

(−1 +
√
1 + 12tλ

6tλ

)2

dλ

= 2

∫ 1

0
(1− λ) log

−1 +
√
1 + 12tλ

6tλ
dλ

= 2F(t).

More generally, we have the following limits:

lim
H→0

lim
τ→0

F
(
τ,
(
1− τ2

)
t,H

)
= lim

H→0

[
F
(
eHt
)
+ F

(
e−Ht

)]
= 2F(t),

lim
H→0

lim
τ→1

F
(
τ,
(
1− τ2

)
t,H

)
= lim

H→0

[
F
(
2eHt

)
+ F

(
2e−Ht

)]
= 2F(2t).

The first limit follows from our previous considerations, without setting H = 0. The replacement
of t by

(
1−τ2

)
t here is natural from the point of view of the graphical expansion of the 2-matrix

model. The second limit follows from identical calculations. These limits correspond to the low
and high temperature limits of the Ising model. As originally pointed out by Kazakov [57], the
factor of 2 appearing in the τ → 1 limit comes from the fact that, for a graph G on V vertices,
the partition function for the Ising model on that graph

(
recalling that τ = e−2β

)

lim
β→0

ZG(β, h) → 2V .

Thus, in the limit as τ → 1, each planar, 4-regular graph on V vertices should contributes the
same factor of 2V to the free energy.

E.4 Large V asymptotics of σ(τ, t,H)

Here we calculate the large V asymptotics of the implicitly defined function σ(τ, t,H). The rea-
son for these calculations is the following: in the works [14, 57], it is argued that the asymptotics
of the Taylor coefficients of F (τ, t,H) are dominated by the nearest critical point to the origin
of the equation I(σ; τ, t,H) = 0. The authors make the assertion that the Taylor coefficients
of F behave like FV ∼ const · V α[g(τ,H)]V ; it is eventually the expression g(τ,H) that they are
interested in. Indeed, calculation of g(τ,H) is equivalent to finding the radius of convergence
of F , considered as an analytic function of t. Since F is defined in terms of σ(τ, t,H), it is there-
fore plausible that this radius of convergence should coincide with the radius of convergence
of σ(τ, t,H) as a function of t. However, we were unfortunately unable to show that this was the
case, as it is not obvious that terms such as 1

(σ+1)3
, log (1−τ2)σ

−3t do not alter the radius of conver-
gence of F (the remaining terms in the expression for F are polynomial in σ, and thus have the
same radius of convergence as that of σ). We therefore instead have opted to simply investigate
the Taylor coefficients of σ(τ, t,H) as a function of t, and take the assumptions Kazakov makes
about the implication of this function as fact.
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Let us now set about calculating the Taylor coefficients of σ(τ, t,H) as a function of t. We
do so explicitly in the case when H = 0, and also provide an expansion which holds as H → 0.
Recall that σ = σ(τ, t,H) is defined by the equation

I(σ; τ, t,H) = −1

9
τ2σ

(
σ2 − 3

)
− 1

3

σ

(1 + σ)2
+

2

3

(
σ

1− σ2

)2

[coshH − 1]− t = 0.

When H = 0, the last term vanishes identically. Note that, for any fixed τ , H, the above implicit
equation is of special form: it is actually an equation defining an inverse function to t(σ). We
recall the following theorem, due to Lagrange (cf., for instance, [82, p. 149, Exercise 25]):

Theorem E.7 (Lagrange inversion formula). Suppose t = G(σ) is analytic in a neighborhood
of σ = 0, and suppose G(0) = 0, G′(0) ̸= 0. Then, an inverse function σ = σ(t) exists in a
neighborhood of t = 0, and is given by the power series

σ(t) =
∞∑

V=1

σV
tV

V !
,

where

σV = lim
σ→0

dV−1

dσV−1

(
σV

G(σ)V

)
. (E.21)

The proof of this theorem follows almost immediately from the Cauchy integral formula.
In our situation, for any fixed 0 < τ < 1, and H ∈ R, we have that

I(0; τ, t,H) = 0, Iσ(0; τ, t,H) =
1

3

(
τ2 − 1

)
̸= 0,

and so we can develop a Taylor series expansion of σ(τ, t,H) about t = 0, by taking G(σ) to be

G(σ) := I(σ; τ, 0, H) = −1

9
τ2σ

(
σ2 − 3

)
− 1

3

σ

(1 + σ)2
+

2

3

(
σ

1− σ2

)2

[coshH − 1].

By the Cauchy integral formula, along with formula (E.21), we can write

σV (τ,H) =
1

2πi

∮

C0

dζ

I(ζ; τ, 0,H)V
=

1

2πi

∮

C0

e−V log I(ζ;τ,0,H)dζ, (E.22)

where C0 is a sufficiently small positively oriented circle enclosing the origin. We are interested
in the large-V asymptotics of σV (τ,H). When H = 0, and τ ̸= 1

4 , these asymptotics can be cal-
culated explicitly using classical steepest descent analysis (cf., for example, [71]). When H = 0,
the saddle points of the integrand are

ζ = 1, −1± τ−1/2, −1± iτ−1/2.

The dominant saddle point ζ∗ is the one nearest to the origin. Thus, we see that

ζ∗(τ) =

{
1, 0 < τ < 1

4 ,

τ−1/2 − 1, 1
4 < τ < 1.

(Note that this change in the dominant saddle point is ultimately the source of the phase
transition). It follows that

σV (τ, 0) =
±
2πi

√
2π

V [− log I(ζ∗; τ, 0, 0)]ζζ

[
1

I(ζ∗; τ, 0, 0)

]V [
1 +O

(
V −1/2

)]
,
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where the sign ± is chosen appropriately in accordance with the contour of steepest descent.
This addresses the asymptotics of σV away from the critical point τ = 1

4 . In fact, we can actually
say more. We summarize the above result, as well as an extension of it to a neighborhood of
the critical point, in the following proposition:

Proposition E.8. Define tlow(τ) := − 1
12+

2
9τ

2, thigh(τ) = −2
9

√
τ(
√
τ−1)2(

√
τ+2). As V → ∞,

for any fixed 0 < τ < 1, τ ̸= 1
4 ,

σV (τ, 0) =





1√
3πV

√
8τ2 − 3

16τ2 − 1
tlow(τ)

−V [1 +O
(
V −1/2

)]
, 0 < τ < 1

4 ,

(
√
τ − 1)

2
√
3πV

√
2 +

√
τ

τ(2
√
τ − 1)

thigh(τ)
−V [1 +O

(
V −1/2

)]
, 1

4 < τ < 1.

(E.23)

If τ belongs to a sufficiently small neighborhood of τ = 1
4 , then we have the uniform in τ

asymptotic

σV (τ, 0) = [tlow(τ)thigh(τ)]
−V/2

[
a0(τ)

V 1/3
Ai(V 2/3s(τ)) +

b0(τ)

V 2/3
Ai′(V 2/3s(τ))

]

×
[
1 +O

(
V −1/3

)]
,

Where Ai(z) denotes the Airy function, s(τ) ≥ 0 is the continuous function

s(τ) =
3

4

∣∣∣∣log
[
tlow(τ)

thigh(τ)

]∣∣∣∣
2/3

, (E.24)

satisfying s
(
1
4

)
= 0, and a0(τ), b0(τ) are given by

a0(τ) =
s(τ)1/4

2

[
2√
3

√
3− 8τ2

1− 16τ2
+

√
(1−√

τ)2(2 +
√
τ)

3τ(1− 2
√
τ)

]
,

b0(τ) =
s(τ)−1/4

2

[
2√
3

√
3− 8τ2

1− 16τ2
−
√

(1−√
τ)2(2 +

√
τ)

3τ(1− 2
√
τ)

]
.

Proof. As discussed above, when τ ̸= 1
4 , all of the saddle points are simple, and classical steepest

descent analysis yields the expansion (E.23). However, when τ → 1
4 , the saddle points ζ = 1,

ζ = −1 + τ−1/2 coalesce, and the expansions in the low and high temperature regimes are no
longer valid. Indeed, upon direct inspection of the expansions (E.23), one sees that the leading
terms in both expressions diverge as τ → 1

4 . In principle, one can find an asymptotic expansion
which holds precisely at τ = 1

4 . However, we can find a more robust expansion, which holds
uniformly for τ sufficiently close to 1

4 ; this kind of asymptotic expansion was first demonstrated
in [25]. The proof relies on the construction of a family of conformal maps ζ 7→ u(ζ; τ), which
satisfy the algebraic equation

− log I(ζ; τ, 0, 0) =
1

3
u3 − s(τ)u+ C(τ). (E.25)

Here s, C are determined by the equations

− log I(1; τ, 0, 0) = −2

3
s(τ)3/2 + C(τ),

− log I
(
−1 + τ−1/2; τ, 0, 0

)
= +

2

3
s(τ)3/2 + C(τ).
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(
note that these conditions guarantee that du

dζ ̸= 0,∞
)
. One finds that

C(τ) = −1

2
log[tlow(τ)thigh(τ)],

s(τ) =

(
(−1)

1{τ> 1
4 } 3

4
log

[
tlow(τ)

thigh(τ)

])2/3

.

(
Note that tlow

thigh
> 1 for 0 < τ < 1

4 , and is smaller than 1 for 1
4 < τ < 1, and so the above

expression for S is equivalent to (E.24)
)
. Provided that τ is sufficiently close to 1

4 , C(τ), s(τ)
are positive and real-valued. Following [25], we can then rewrite the integral (E.22) as

σV (τ, 0) =
eV C(τ)

2πi

∮

C̃
eV [

1
3
u3−s(τ)u] dζ

du
du,

where C̃ is the image of the circle C under the conformal map u(ζ). Now, we can express dζ
du as

dζ

du
=
∑

ak(τ)
(
u2 − s(τ)

)k
+
∑

bk(τ)u
(
u2 − s(τ)

)k
;

the only terms we calculate explicitly are a0(τ), b0(τ), as they will be the dominant terms in the
expansion. Differentiating (E.25), and expanding using L’Hôpital’s rule, one can determine that

(
dζ

du

∣∣∣∣
u=s1/2

)2

=
4

3

3− 8τ2

1− 16τ2
s(τ)1/2,

(
dζ

du

∣∣∣∣
u=−s1/2

)2

=
(1−√

τ)2(2 +
√
τ)

3τ(1− 2
√
τ)

s(τ)1/2,

and so these derivatives are determined up to a sign, which can be determined for instance
by requiring the asymptotic expansion we are developing match with classical steepest descent
results precisely at τ = 1

4 . This determines a0(τ), b0(τ) to be

a0(τ) =
s(τ)1/4

2

[
2√
3

√
3− 8τ2

1− 16τ2
+

√
(1−√

τ)2(2 +
√
τ)

3τ(1− 2
√
τ)

]
,

b0(τ) =
s(τ)−1/4

2

[
2√
3

√
3− 8τ2

1− 16τ2
−
√

(1−√
τ)2(2 +

√
τ)

3τ(1− 2
√
τ)

]
.

These functions are indeed continuous, as one can readily compute the left/right limits as τ → 1
4 .

One finally obtains that

σV (τ, 0)=eV C(τ)

[
a0(τ)

V 1/3
Ai
(
V 2/3s(τ)

)
+
b0(τ)

V 2/3
Ai′
(
V 2/3s(τ)

)][
1 +O

(
V −1/3

)]

=[tlow(τ)thigh(τ)]
−V/2

[
a0(τ)

V 1/3
Ai
(
V 2/3s(τ)

)
+
b0(τ)

V 2/3
Ai′
(
V 2/3s(τ)

)][
1 +O

(
V −1/3

)]
,

as desired. As a consistency check, for τ ̸= 1
4 , if one further replaces Ai(V 2/3s(τ)) with its

asymptotic expansion for large V (note that s(τ) ≥ 0, by construction), one can match the
formulae (E.23). ■

Remark E.9. We can also extend the some of the above calculations by continuity to the case
of nonzero H, provided H is sufficiently small. However, in a neighborhood of the critical point
τ = 1

4 , H = 0, the above calculations do not apply, as we shall now explain.
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Provided that τ ̸= 1
4 , one can continue the dominant saddle point ζ∗ to nonzero H in

an unambiguous manner, and the dominant saddle remains simple for sufficiently small H.
For 1

4 < τ < 1, recall that the dominant saddle point was ζ∗ = −1 + τ−1/2. In this case, ζ∗ is
an analytic function of H in a neighborhood of H = 0, and admits the expansion

ζ∗(τ,H) = −1 + τ−1/2 − (1−√
τ)(1 + 2

√
τ + 2τ)

2(1− 2
√
τ)4

H2 +O
(
H4
)
.

By continuity, this is the nearest saddle point to the origin when H is sufficiently small, for any
fixed 1

4 < τ < 1. The situation is slightly more complicated when 0 < τ < 1
4 . In this case, one

sees that the saddle point at ζ∗ = 1 is actually the result of 4 simple saddle points for nonzero H.
These saddle points do not depend analytically on H in a neighborhood of H = 0, and instead
have a series expansion in powers of |H|1/2. One finds that

ζ = 1±
√
2

(1− 16τ2)1/4
|H|1/2 +O(|H|), 1± i

√
2

(1− 16τ2)1/4
|H|1/2 +O(|H|).

These saddle points are continuous in H; the one nearest to the origin for |H| > 0 is therefore

ζ∗ = 1−
√
2

(1− 16τ2)1/4
|H|1/2 +O(|H|).

When H ̸= 0, it is apparent that the saddle point at ζ = 1 split into a quadruple of saddle
points when H ̸= 0, and for 0 < τ < 1

4 . This is also the case when 1
4 < τ < 1, although the

saddle point is irrelevant for the calculations at hand. However, when τ = 1
4 , the saddle points

at ζ = 1, ζ = −1 + τ−1/2 merge; when the external field H is “turned on” at this point, one
finds that the saddle point at ζ = 1 splits into five distinct saddle points, each which has the
expansion

ζj = 1− 21/5sj |H|2/5 +O
(
|H|4/5

)
, j = 0, . . . , 4,

where s := e
2πi
5 is a 5th root of unity. If one is interested in asymptotics precisely at τ = 1

4 (as one
might be, if attempting to calculate the critical exponent δ from the Landau theory, cf. [14]),
then one recognizes ζ0 as the dominant saddle point, and can proceed to use classical steepest
descent to calculate the asymptotics of σV

(
1
4 , H

)
there. A more interesting calculation, which

is for the moment out of reach, would be to obtain uniform asymptotics in a neighborhood of
the critical point τ = 1

4 , H = 0, as we have done in the case when we ignored the parameter H.
This would require an analysis similar to that of [25], but instead for a merging of 5 branch
points simultaneously. Similarly to how the uniform asymptotics arising from the merging
of two branch points was written in terms of solutions to a second order equation (the Airy
equation), one should expect that the asymptotics arising from 5 merging branch points should
be characterized in terms of a degree 5 equation, whose solutions are integrals of the form

P (x, a, b, c; γ) :=
1

2πi

∫

γ
e

1
6
ζ6+aζ4+bζ3+cζ2−xζdζ,

where the parameters a, b, c, x are functions of τ , H, chosen so that all tend to 0 as τ → 1
4 ,

H → 0. One must construct an associated conformal map, which is by no means a simple task.
We hope to pursue this analysis in a later work.
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