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Abstract. A new method is introduced to derive general recurrence relations for off-shell
Bethe vectors in quantum integrable models with either type gln or type o2n+1 symmetries.
These recurrence relations describe how to add a single parameter z to specific subsets of
Bethe parameters, expressing the resulting Bethe vector as a linear combination of mon-
odromy matrix entries that act on Bethe vectors which do not depend on z. We refer to
these recurrence relations as rectangular because the monodromy matrix entries involved are
drawn from the upper-right rectangular part of the matrix. This construction is achieved
within the framework of the zero mode method.
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1 Introduction

We will consider generic g-invariant quantum integrable models in the framework of the alge-
braic Bethe ansatz [4]. In such models the monodromy matrix depends on a spectral parameter
and satisfies the RTT relations [33] with a g-invariant R-matrix. In the Hilbert space of physical
states, one can always construct from the local operators of the model a basis of states which
are eigenvectors of a set of commuting Hamiltonians. These states form a representation of the
finite-dimensional Lie algebra g. In the algebraic Bethe ansatz, they are constructed from the
monodromy matrix entries which depend on spectral parameters satisfying the Bethe equations.
These states are called on-shell Bethe vectors. When the spectral parameters are generic (not
forced to obey the Bethe equations), the Bethe vectors are called off-shell and their combinatorial
properties are defined solely by the RTT relation with a given R-matrix. As a consequence, one
can replace the monodromy matrix of a generic model by the fundamental T -operator of the Yan-
gian Y (g) in its matrix realization [3, 30]. The commutation relation for this T -operator T (u),
which depends on a formal spectral parameter u, coincides with the commutation relations
of monodromy matrix in a generic g-invariant integrable model and the generators of the fi-
nite dimensional symmetry may be identified with the zero modes of the matrix entries Ti,j(u)
of the Yangian fundamental T -operator. Below we will explore the Yangian fundamental T -
operator T (u) calling it the monodromy matrix of a generic g-invariant integrable model.

One of the key problems in quantum integrable models is the presentation of the Bethe
vector scalar products in a determinant form. For periodic boundary conditions, this problem
was investigated and fully solved in [37] for the integrable system associated with the simplest
Lie algebra gl2, where the structure of the Bethe vectors is quite simple.
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In the models associated to higher rank symmetries the structure of the Bethe vectors is rather
complicated. In principle, the nested Bethe ansatz ([20, 21] for gln and [32] for on) ensures that
the Bethe vectors can be expressed as a combinatorial expression of the monodromy matrix
entries acting on a vacuum vector. However, whether there is a determinant form for scalar
products of Bethe vectors in the general case remains an open question and has answers only in
the cases gl3 [1] and gl2|1 [10].

It is worth noting that there is another method for studying eigenvectors and correlation
functions in integrable systems, which is based on the so-called quantum separation of variables
(SoV) method [35, 36]. Recently, for models associated with the Lie algebra gln was proposed [8]
another construction to describe eigenvector using only one creation operatorB(u) closely related
to SoV. A little later, significant progress has been made in SoV method [28], where it was
proposed to describe vectors in terms of the actions of transfer matrices on a certain vector, which
is a fairly universal construction. Both groups develop their methods significantly [7, 29, 34] and
managed to use this result to describe some overlaps of Bethe vectors. However, the study of
correlation functions in this approach is far from being complete and, up to now, applies mostly
to gln models.

On the other hand, if one can find formulas for the action of the monodromy matrix entries on
the off-shell Bethe vectors, as well as recurrence relations for them, then one can find expressions
for the scalar products of off-shell Bethe vectors, and ultimately obtain recurrence relations for
the building blocks of these scalar products. Expressions for the scalar product and the norm
of Bethe vectors were obtained in [14, 17] for gl2 invariant models and in [31] for gl3 invariant
models. General expressions for the scalar product, the norm and the recurrence relations were
achieved in [11, 12] for models associated to gl(m|n). Here by recurrence relations for the off-
shell Bethe vectors we mean the possibility to express a Bethe vector with an extended set of
Bethe parameters (for example, with an extension by a parameter z) as a linear combination
of the action of monodromy matrix entries Ti,j(z) with i < j acting on off-shell Bethe vectors
which do not depend on z.

The action formulas of the monodromy entries on the off-shell Bethe vectors in gl(m|n)- and
o2n+1-invariant integrable models were given in [13] and [23], respectively. The existence of
recurrence relations is less investigated. Some examples of such relations can be found in the
aforementioned papers. One of the goals of this paper is to fill this gap and produce all possible
recurrence relations for the Bethe vectors in the models with gln and o2n+1 symmetries.

In the present paper, we show that in order to solve this problem, one has to combine
a single (simple) action of the monodromy matrix entry with the action of the zero modes of
the monodromy matrix, the latter being identified with the simple root generators of the Lie
algebra g. We first perform the calculation of the recurrence relations using this method for the
Bethe vectors in gln-invariant models and then extend this approach to the Bethe vectors in
o2n+1-invariant models. The obtained recurrence relations will be then tested in several limiting
cases to observe the reductions over rank of g and embeddings of Y (glℓ)⊗ Y (gln−ℓ) into Y (gln)
and of Y (o2ℓ+1)⊗ Y (gln−ℓ) into Y (o2n+1).

This paper is motivated by two key objectives. First, we would like to generalize the nested
Bethe ansatz to the cases when not only extreme nodes of the Dynkin diagram are singularized,
but also when the singularized node is inside the Dynkin diagram. In the case of the gln algebra,
some progress in this direction was made in the recent papers [18, 19] in the framework of the
trace formula presentation of off-shell Bethe vectors. To the best of our knowledge, for other
series, the nested Bethe ansatz method was developed only in the cases when the singularized
node is an extreme node of gln-type. In our approach, the recurrence relations for the off-
shell Bethe vectors in o2n+1-invariant integrable models are generalization of the nested Bethe
ansatz for arbitrary singularized node in the Dynkin diagram of Lie algebra o2n+1. The second
motivation is to develop methods to investigate the recurrence relations and analytical properties
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of the highest coefficients in the Bethe vector scalar product in g-invariant integrable models. An
application of our approach to the properties of highest coefficients in o2n+1-invariant integrable
models can be found in the paper [25].

Theorems 3.1 and 4.1 are the main results of the paper. It is surprising that these rectangular
relations were not known previously, although some examples of these recurrence relations for
the Bethe vectors in gln-invariant integrable models were obtained earlier in [6, 11].

The plan of the paper is as follows. In Section 2, we recall some basic algebraic notions on
Yangians, which are at the core of the models under consideration, as well as some definitions
on Bethe vectors. Section 3 deals with the rectangular recurrence relations for gln models. Here
we verify also the consistency of the recurrence relations with the embedding Y (glℓ)⊗ Y (gln−ℓ)
into Y (gln) and compare our approach with the recent papers [18, 19]. The case of o2n+1 is
studied in Section 4. The main result is contained in Section 4.1, where rectangular recurrence
relations for o2n+1 models are presented. Some particular cases and examples are displayed
in Section 4.2. We also show that the recurrence relations are consistent with the embedding
of Y (gln) or Y (o2a+1) ⊗ Y (gln−a) in Y (o2n+1): the Bethe vectors exhibit a nice factorisation
property over these subalgebras (see Sections 4.3 and 4.4). We conclude in Section 5, and two
appendices are devoted to the technical proofs.

2 Preliminaries

2.1 Algebraic context

Let g be either the classical Lie algebra gln or the orthogonal algebra o2n+1, where n = 2, 3, . . . .
We will use the set of positive integers Igln = {1, . . . , n} to index elements of the operators
in End(Cn) and the set of integers Io2n+1 = {−n,−n+1, . . . ,−1, 0, 1, 2, . . . , n} to index elements
of the operators in End

(
C2n+1

)
. We will use the notation Ig to describe the two sets of indices

simultaneously. Let N = n and N = 2n+ 1 for the algebras gln and o2n+1 respectively.

RTT presentation of the Yangians Y (gln) and Y (o2n+1). Let Rg(u, v) be the g-
invariant R-matrix [38, 39]

Rg(u, v) = I⊗ I+
cP

u− v
− cQ

u− v + cκn
, (2.1)

where I =
∑

i∈Ig ei,i is the identity operator acting in the space CN and ei,j ∈ End
(
CN
)

are N ×N matrices with the only nonzero entry equal to 1 at the intersection of the i-th row
and j-th column. The operators P and Q act in CN ⊗ CN . They read

P =
∑
i,j∈Ig

ei,j ⊗ ej,i, Q =
∑
i,j∈Ig

e−i,−j ⊗ ei,j ,

and1

κn =

{
∞ for g = gln,

n− 1/2 for g = o2n+1.

In the o2n+1-case, for any matrix M ∈ End
(
C2n+1

)
, we denote by M t the transposition with

respect to the secondary diagonal
(
M t
)
i,j

=M−j,−i. In particular, Q = Pt1 = Pt2 .

1The value of κn = ∞ for the algebra gln simply means that in this case the g-invariant R-matrix does not
contain the term proportional to operator Q and so coincides with the Yang R-matrix [38]. The parameter
κn = n− 1/2 is relevant only for the algebra g = o2n+1.
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The generic g-invariant integrable model is described by the monodromy matrix T (u) which
depends on the spectral parameter u and satisfies the commutation relation

Rg(u, v) (T (u)⊗ I) (I⊗ T (v)) = (I⊗ T (v)) (T (u)⊗ I)Rg(u, v), (2.2)

with the g-invariant R-matrix (2.1).

Equation (2.2) yields the commutation relations of the monodromy matrix entries

[Ti,j(u), Tk,l(v)] =
c

u− v
(Tk,j(v)Ti,l(u)− Tk,j(u)Ti,l(v))

+
c

u− v + cκn

n∑
p=−n

(δk,−iTp,j(u)T−p,l(v)− δl,−jTk,−p(v)Ti,p(u)). (2.3)

The parameter c in (2.1) and (2.3) is a Yangian deformation parameter. In the limit c→ 0, the
Yangian goes to the Borel subalgebra of the corresponding loop algebra. When non-zero, this
parameter can be always changed to the value c = 1 by rescaling formal spectral parameters u
and v but for our convenience we prefer to keep it arbitrary. Note that the second line in (2.3)
occurs only in the case of o2n+1 models, in accordance with the footnote 1. We will assume the
following dependence of the monodromy matrix on the spectral parameter

Ti,j(u) = χiδij +
∑
m≥0

Ti,j [m](u/c)−m−1, (2.4)

where the parameters χi, i ∈ Ig, are twisting parameters. For g = glN , these parameters are
all independent, while for g = o2n+1 they satisfy the relation χiχ−i = 1 and χ0 = 1. For both
algebras, the possibility to start the series expansion (2.4) with χiδij instead of δij corresponds
to the usual twist T (z) → DT (z) where D is the diagonal matrix with Dii = χi. These twisting
maps are isomorphisms between two RTT-algebras, since the R-matrix commutes with D ⊗D
(with the restriction Dt = D in the o2n+1 case).

Central element for g = o2n+1. Remark that for g = o2n+1, the pole at u = v − cκn in
the R-matrix (2.1) and in the commutation relation (2.2) implies that the monodromy matrix
should satisfy following relations [15] T (z)t · T (z + cκn) = T (z + cκn) · T (z)t = C(z) = I,
where C(z) is a central operator in the algebra defined by the relations (2.2). Let π(z) be
a formal series π(z) = 1+

∑
m≥0 πm(c/z)−m−1 which solves the equation C(z) = π(z)π(z+ cκn).

This equation can be solved inductively expressing the coefficient of the formal series π(z)
through the coefficients of the central element C(z). Then one can rescale the monodromy
matrix T (z) → T ′(z) = π(z)−1T (z) in such a way that the rescaled monodromy matrix satisfies
the equation

T ′(z)t · T ′(z + cκn) = T ′(z + cκn) · T ′(z)t = I. (2.5)

Zero modes. The zero modes Ti,j := Ti,j [0] (see (2.4)) will play an important role in our
approach. Considering expansion of Ti,j(u) and the rational functions in (2.3) as series with
respect to 1/u, the coefficient of u−1 in (2.3) yields

[Ti,j , Tk,l(v)] = χiδi,lTk,j(v)− χjδk,jTi,l(v) (2.6)

for g = gln and

[Ti,j , Tk,l(v)] = χi(δi,lTk,j(v)− δl,−jTk,−i(v))− χj(δk,jTi,l(v)− δk,−iT−j,l(v)) (2.7)

for g = o2n+1.
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More generally, in each integrable models, the monodromy matrix zero mode operators may
be always defined as the operators built from the monodromy matrix entries which satisfy the
commutation relations of the finite-dimensional algebra g.

Embeddings. We describe different embeddings in the Yangians Y (gln) and Y (o2n+1) that
will be reflected in a factorisation (also called splitting) property of the Bethe vectors, see
Sections 3.3 and 4.4 below.

Embedding Y (gla) ⊗ Y (gln−a) ↪→ Y (gln). From the commutation relations (2.3), it is
clear that in Y (gln) the elements Ti,j(z), 1 ≤ i, j ≤ a generate a Yangian subalgebra Y (gla)
in Y (gln), while the elements Ta+i,a+j(z), 1 ≤ i, j ≤ n − a generate the Yangian subal-
gebra Y (gln−a). However, these two subalgebras do not commute. To get an embedding
of Y (gla)⊗ Y (gln−a) in Y (gln), one needs to consider quantum minors, see relation (1.84),
in [30, Corollaries 1.7.2 and 1.11.4].

Embeddings of Y(gln) ↪→Y (o2n+1). There are several ways to embed Y (gln) in Y (o2n+1).
We describe here two of them that have some relevance for the study of Bethe vectors. Let us
denote the Y (gln) monodromy matrix embedded in Y (o2n+1) as T(z).

� From the commutation relations (2.3), it is clear that in Y (o2n+1) the elements

Ti,j(z) := Ti,j(z), 1 ≤ i, j ≤ n (2.8)

generate the Yangian Y (gln), since they obey the commutation relations (2.3) without the
second line (all the terms which include the Kronecker symbol δ vanish).

� Another embedding can be done, considering the elements Ti,j(z), −n ≤ i, j ≤ −1 and
defining

T̂i,j(z) := Ti−n−1,j−n−1(z), 1 ≤ i, j ≤ n. (2.9)

It is easy to see that T̂i,j(z) also obey the commutation relations (2.3) without the second

line. The twisting parameters for the monodromy T̂(z) in this case are (χn+1−i)
−1.

Embedding Y (o2a+1) ⊗ Y (gln−a) ↪→ Y (o2n+1). This type of embedding is more intri-
cate. It uses the concept of quasi-determinants [5] T̂i,j(z) of the monodromy matrix, and we refer
to, e.g., [30] for more details about quasi-determinants in the Yangian case. Indeed, one can show
that T̂i,j(z), 1 ≤ i, j ≤ a generate a Yangian subalgebra Y (o2a+1), while Tk+a,l+a(z), 1 ≤ k, l ≤
n− a generate a Yangian subalgebra Y (gln−a). Moreover, we have

[
T̂i,j(z), Tk+a,l+a(z)

]
= 0 for

1 ≤ i, j ≤ a and 1 ≤ k, l ≤ n−a. A detailed presentation of this approach is beyond the scope of
the present article, we refer to [15, Theorem 3.7 and Corollary 3.10] for a detailed presentation
of the construction. It is remarkable that this type of embedding is reflected in a simple way on
the structure of Bethe vectors, see Section 4.4 below.

2.2 Bethe vectors

In the framework of algebraic Bethe ansatz, the states in the Hilbert space of the physical model
are defined by the vectors |0⟩ and ⟨0| such that

Ti,j(z)|0⟩ = 0, i > j, Ti,i(z)|0⟩ = λi(z)|0⟩, i ∈ Ig (2.10)

and

⟨0|Ti,j(z) = 0, i < j, ⟨0|Ti,i(z) = λi(z)⟨0|, i ∈ Ig. (2.11)

In (2.10), the monodromy matrix elements are acting to the right, while in (2.11) they are acting
to the left. If they exist, such vectors are called vacuum vectors.
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The functions λi(z) are characterizing the physical model under consideration. Since we are
considering generic model, we will consider these functions as free functional parameters. For
gln-invariant integrable models, the functions λi(z) are all independent, while for o2n+1-invariant
models and due to (2.5) they satisfy the relations [22]

λ−j(z) =
1

λj(zj)

n∏
s=j+1

λs(zs−1)

λs(zs)
, j = 0, 1, . . . , n, (2.12)

where we introduced the shifted spectral parameter

zs = z − c

(
s− 1

2

)
, s = 0, 1, . . . , n. (2.13)

Due to our choice (2.4) of dependence of monodromy matrix entries on the formal spectral
parameter, the free functional parameters λi(z) are formal series

λi(z) = χi +
∑
ℓ≥0

λi[ℓ](z/c)
−ℓ−1

with respect to the formal parameter z.

The Bethe vectors in the integrable model depends on a collection of sets

t̄ =

{{
t̄1, . . . , t̄n−1

}
for g = gln,{

t̄0, t̄1, . . . , t̄n−1
}

for g = o2n+1.

Here, the set t̄s = {ts1, . . . , tsrs} denotes a collection of rs Bethe parameters. The non-negative
integer rs is the cardinality |t̄s| of the set t̄s. The superscripts on the (sets of) Bethe parameters
denotes their color. The colors are in correspondence with the simple roots of the algebra g.
This can be formalized through the operators hi defined by

χihi = Ti,i − λi[0] (2.14)

such that the vacuum vectors have zero eigenvalue hi|0⟩ = 0, ⟨0|hi = 0. According to (2.6)
and (2.7), the monodromy matrix entries Tk,l(z) are eigenvector for the adjoint action of the
operators hi [hi, Tk,l(z)] = (δi,l − δi,k)Tk,l(z) for glN -invariant monodromies and

[hi, Tk,l(z)] = (δi,l − δi,k + δi,−k − δi,−l)Tk,l(z)

for o2n+1-invariant monodromies. Using the operators hi (2.14), one also defines the operators

ts =
n∑

i=s+1

hi, (2.15)

where s = 1, . . . , n− 1 for glN -invariant monodromies and s = 0, 1, . . . , n− 1 for o2n+1-invariant
monodromies.

The Bethe vectors themselves are certain polynomials of the non-commutative monodromy
entries Ti,j(u) for i < j depending on various Bethe parameters acting on the right vacuum
vector |0⟩

B
(
t̄
)
= P

(
Ti<j

(
t̄
))
|0⟩ = B

(
t̄
)
|0⟩, (2.16)

where the polynomial B
(
t̄
)
= P

(
Ti<j

(
t̄
))

is called a pre-Bethe vector.
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Analogously, left or dual Bethe vectors are polynomials of monodromy entries Ti,j(u) for i > j
acting to the left vacuum vector |0⟩

C
(
t̄
)
= ⟨0|P ′(Ti>j

(
t̄
))

= ⟨0|C
(
t̄
)
. (2.17)

The polynomials P and P ′ are related by the transposition antihomomorphism (see Remark 2.1).
The ordering of the non-commutative entries Ti,j(t

s
a) in the polynomials P and P ′ and the

structure of these polynomials can be fixed in the framework of the nested Bethe ansatz [20, 21]
or by the method of projections [9, 16]. When the Bethe parameters are generic, we call such
Bethe vectors (2.16) and (2.17) off-shell Bethe vectors.

The off-shell Bethe vectors B
(
t̄
)
and C

(
t̄
)
are eigenvectors of the operators ts (2.15)

ts · B
(
t̄
)
= rsB

(
t̄
)
, C

(
t̄
)
· ts = rsC

(
t̄
)
, i = 1, . . . , n,

with s = 1, . . . , n−1 for gln and s = 0, 1, . . . , n−1 for o2n+1. This property can be proved using
the recurrence relations for the Bethe vectors and the action of the monodromy matrix entries
Ti,i(z) on Bethe vectors (see proof of Proposition 3.1 in the case of o2n+1 in [25]).

Remark 2.1. In what follows, we will consider only the Bethe vectors B
(
t̄
)
. All the relations

for the dual Bethe vectors C
(
t̄
)
can be obtained from the corresponding relations for B

(
t̄
)
using

the transposition antihomomorphism. When we consider different embeddings, we will use the
notation Bgl

(
t̄
)
and Bo

(
t̄
)
to distinguish the off-shell Bethe vectors in the models with different

symmetries. But most often we will the use notation B
(
t̄
)
since it will be clear from the context

what type of Bethe vector we are exploring.

Remark 2.2. The commutation relations (2.3) between the monodromy matrix entries do not
depend on the parameters χi explicitly, nor does the definition of the vacuum state (2.16).
Since the Bethe vectors are polynomials in the entries of the monodromy matrix, they do not
depend explicitly on the parameters χi either. It is only when using the expansion (2.4) that the
dependence in the χi parameters becomes explicit, as for instance in the relations (2.6) or (2.7)
which involve the zero mode action. Therefore, any relation involving only the Bethe vectors,
the entries Tij(z) and/or the eigenvalues λi(z) should not depend on the χ’s. In other words, if
the χi parameters appear explicitly in such relation, each coefficient of the parameters χi should
be set to zero independently. We will use this property in Appendix B.

On-shell Bethe vectors. Due to the RTT commutation relations (2.2), the trace of the
monodromy matrix (the transfer matrix)

T (z) =
∑
i∈Ig

Ti,i(z) (2.18)

commutes T (z)T (z′) = T (z′)T (z) for two different formal spectral parameters z and z′. Upon
expansion in z, the transfer matrix (2.18) generates a family of commuting operators. The Bethe
vectors become eigenvectors of the transfer matrix (also known as on-shell Bethe vectors) if the
Bethe parameters satisfy so called Bethe equations (see below (2.21)). To describe the Bethe
equations in the g-invariant integrable models, we introduce the rational functions

f(u, v) = 1 + g(u, v) = h(u, v)g(u, v) =
u− v + c

u− v
, f(u, v) =

u− v + c/2

u− v
.

We also define the functions

αs(z) =
λs(z)

λs+1(z)
, s = 0, . . . , n− 1.
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We will use the following convention for the products of scalar functions depending on sets
of parameters, for example,

λs(t̄
s) =

∏
tsa∈t̄s

λs(t
s
a), f

(
t̄s, t̄s

′)
=
∏
tsa∈t̄s

∏
ts

′
b ∈t̄s′

f
(
tsa, t

s′
b

)
, etc. (2.19)

with f
(
∅, t̄

)
= f

(
t̄,∅

)
= 1.

The recurrence relations for the off-shell Bethe vectors will be written as sums over par-
titions of the sets of Bethe parameters. A partition

{
t̄sI , t̄

s
II, t̄

s
III

}
⊢ t̄s corresponds to a de-

composition into (possibly empty) disjoint subsets t̄sI , t̄
s
II, t̄

s
III such that t̄s = t̄sI ∪ t̄sII ∪ t̄sIII and

t̄sI ∩ t̄sII = t̄sI ∩ t̄sIII = t̄sII ∩ t̄sIII = ∅. The cardinalities of the subsets satisfy the equality
∣∣t̄s∣∣ =∣∣t̄sI ∣∣ + ∣∣t̄sII∣∣ + ∣∣t̄sIII∣∣, where some of the cardinalities

∣∣t̄sI ∣∣, ∣∣t̄sII∣∣, ∣∣t̄sIII∣∣ can be zero. The partition{
t̄sI , t̄

s
II

}
⊢ t̄s is defined analogously.

The on-shell Bethe vectors are eigenvectors of the transfer matrix

T (z) · B
(
t̄
)
= τ

(
z; t̄
)
B
(
t̄
)

(2.20)

if each set t̄s of Bethe parameters satisfy the Bethe equations [21, 32]

αs

(
t̄sI
)
=

λs
(
t̄sI
)

λs+1

(
t̄sI
) =

fs
(
t̄sI , t̄

s
II

)
fs
(
t̄sII, t̄

s
I

) f(t̄s+1, t̄sI
)

f
(
t̄sI , t̄

s−1
) with

{
s = 1, . . . , n− 1 for gln,

s = 0, 1, . . . , n− 1 for o2n+1,
(2.21)

for any disjoint partition
{
t̄sI , t̄

s
II

}
⊢ t̄s and with the conditions t̄0 = t̄n = ∅ for gln and t̄−1 =

t̄n = ∅ for o2n+1. In (2.21), we have used the convention (2.19) for products of functions and
the functions fs(u, v) are defined as

fs(u, v) =

{
f(u, v), s = 0,

f(u, v), s = 1, . . . , n− 1.

For the gln-invariant models, the eigenvalue τ
(
z; t̄
)
in (2.20) is equal to [21]

τ
(
z; t̄
)
=

n∑
s=1

λs(z)f
(
t̄s, z

)
f
(
z, t̄s−1

)
.

In the case of o2n+1-invariant models, this eigenvalue is [23, 32]

τ
(
z; t̄
)
= λ0(z)f

(
t̄0, z0

)
f
(
z, t̄0

)
+

n∑
s=1

(
λs(z)f

(
t̄s, z

)
f
(
z, t̄s−1

)
+ λ−s(z)f

(
t̄s−1, zs−1

)
f
(
zs, t̄

s
))
,

where we have used the notations (2.13) and λ−s(z) satisfy the relations (2.12).

3 Bethe vectors in gln-invariant models

Denote by
{
t̄s
}j
i
:=
{
t̄i, t̄i+1, . . . , t̄j

}
a partial collection of sets t̄s of Bethe parameters for i ≤

s ≤ j. For example, t̄ =
{
t̄s
}n−1

1
for gln Bethe vectors. We will always assume that the partial

collection of sets
{
t̄s
}j
i
is empty if j < i.

For 1 ≤ ℓ < n− 1 and 1 < k ≤ n, we introduce the functions

ψℓ

(
z; t̄
)
= g
(
z, t̄ℓ−1

)
h
(
t̄ℓ, z

)
, ϕk

(
z; t̄
)
= h

(
z, t̄k−1

)
g
(
t̄k, z

)
.

Remark that ψ1

(
z; t̄
)
= h

(
t̄1, z

)
and ϕn

(
z; t̄
)
= h

(
z, t̄n−1

)
because g

(
z, t̄0

)
= g

(
t̄n, z

)
= 1 since

t̄0 = t̄n = ∅.
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3.1 Action formula for T1,n(z) and Tℓ+1,ℓ

Denote by ūs =
{
ts1, . . . , t

s
rs , z

}
an extended set of the Bethe parameters of the color s. For

shortness, we will write ūs =
{
t̄s, z

}
. The off-shell Bethe vectors B

(
t̄
)
in gln-invariant models

are normalized in such a way that the action of the monodromy entry T1,n(z) onto off-shell
Bethe vector B

(
t̄
)
has the simple form2

T1,n(z) · B
(
t̄
)
= µn1

(
z; t̄
)
B(ū), (3.1)

where ū =
{
ū1, ū2, . . . , ūn−1

}
. The normalization factor µkℓ

(
z; t̄
)
is defined as follows for any

1 ≤ ℓ < k ≤ n

µkℓ
(
z; t̄
)
= λk(z)ψℓ

(
z; t̄
)
ϕk
(
z; t̄
)
= λk(z)g

(
z, t̄ℓ−1

)
h
(
t̄ℓ, z

)
h
(
z, t̄k−1

)
g
(
t̄k, z

)
. (3.2)

We denote by the symbol Zk
ℓ the operation of adding a parameter z to the sets t̄ℓ, . . . , t̄k−1

of Bethe parameters in the off-shell Bethe vectors B
(
t̄
)

Zk
ℓ · B

(
t̄
)
= B

({
t̄s
}ℓ−1

1
,
{
t̄s, z

}k−1

ℓ
,
{
t̄s
}n−1

k

)
. (3.3)

For example, using this notation the action (3.1) can be written as follows:

Zn
1 · B

(
t̄
)
=

1

µn1
(
z; t̄
)T1,n(z) · B(t̄). (3.4)

We will use relation (3.1) in the form (3.4) as a base relation for the inductive proof of Theo-
rem 3.1.

To find the rectangular recurrence relations for the off-shell Bethe vectors B
(
t̄
)
, we will use

the commutation relations (2.6) in the particular case

[Tℓ+1,ℓ, Ti,j(z)] = χℓ+1δℓ+1,jTi,ℓ(z)− χℓδℓ,iTℓ+1,j(z) (3.5)

and the action of the zero mode operators Tℓ+1,ℓ onto off-shell Bethe vectors. These actions as
well as the action (3.1) can be calculated in the framework of the projection method. For more
details, one can look at the [23, Section 4.1], where the action of the zero modes on the off-shell
Bethe vectors in o2n+1-invariant integrable model was calculated. The calculation of the zero
modes action for the gln-invariant integrable model is similar, starting from the results stated
in [9]. We will write the action of the zero modes in the form

Tℓ+1,ℓ · B
(
t̄
)
=
∑
part

(
χℓ+1αℓ

(
t̄ℓI
)
ΩL
(
t̄ℓII, t̄

ℓ
I |t̄ℓ−1, t̄ℓ+1

)
− χℓΩ

R
(
t̄ℓI , t̄

ℓ
II|t̄ℓ−1, t̄ℓ+1

))
B
({
t̄s
}ℓ−1

1
, t̄ℓII,

{
t̄s
}n−1

ℓ+1

)
, (3.6)

where the sum in (3.6) goes over partitions
{
t̄ℓI , t̄

ℓ
II

}
⊢ t̄ℓ such that

∣∣t̄ℓI ∣∣ = 1. The functions ΩL

and ΩR in (3.6) are defined as follows:

ΩL
(
t̄ℓII, t̄

ℓ
I |t̄ℓ−1, t̄ℓ+1

)
= γ

(
t̄ℓII, t̄

ℓ
I

)h(t̄ℓI , t̄ℓ−1
)

g
(
t̄ℓ+1, t̄ℓI

) ,
ΩR
(
t̄ℓI , t̄

ℓ
II|t̄ℓ−1, t̄ℓ+1

)
= γ

(
t̄ℓI , t̄

ℓ
II

)h(t̄ℓ+1, t̄ℓI
)

g
(
t̄ℓI , t̄

ℓ−1
) , (3.7)

where the function γ(u, v) is

γ(u, v) =
f(u, v)

h(u, v)h(v, u)
=
g(u, v)

h(v, u)
.

2Note that normalization of the off-shell Bethe vectors used in (3.1) differs from the normalization used in the
paper [13], but it is more suitable for the propose of this paper.
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3.2 Rectangular recurrence relations for gln

For m ∈ Z, we define the step function Θ(m)

Θ(m) =

{
1, m ≥ 0,

0, m < 0.

Theorem 3.1 below will be proved in Appendix A by induction starting from (3.4). Theo-
rem 3.1 allows to express off-shell Bethe vectors through the action of the monodromy entries
on Bethe vectors with a smaller number of Bethe parameters. This result is new although some
examples of this type of recurrence relations were know earlier (see Corollary 3.2).

Theorem 3.1. For any pair of positive integers 1 ≤ ℓ < k ≤ n, the off-shell Bethe vector
Zk
ℓ · B

(
t̄
)
satisfies the rectangular recurrence relation

Zk
ℓ · B

(
t̄
)
= B

({
t̄s
}ℓ−1

1
,
{
ūs
}k−1

ℓ
,
{
t̄s
}n−1

k

)
=

1

µkℓ
(
z; t̄
) ℓ∑

i=1

n∑
j=k

∑
part

Ξℓ,k
i,j

(
z; t̄I, t̄II, t̄III

)
Ti,j(z) · B

(
t̄II
)
, (3.8)

where the functions Ξℓ,k
i,j

(
z; t̄I, t̄II, t̄III

)
Ξℓ,k
i,j

(
z; t̄I, t̄II, t̄III

)
= g
(
z, t̄ℓ−1

I

)
g
(
t̄kIII, z

)
×

ℓ−1∏
s=i

ΩR
(
t̄sI , t̄

s
II|t̄s−1

II , t̄s+1
II

) j−1∏
s=k

αs

(
t̄sIII
)
ΩL
(
t̄sII, t̄

s
III|t̄s−1

II , t̄s+1
II

)
(3.9)

depend on the partitions and the sum in (3.8) goes over partitions
{
t̄sI , t̄

s
II, t̄

s
III

}
⊢ t̄s with cardi-

nalities

∣∣t̄sI ∣∣ =
{
Θ(s− i), s < ℓ,

0, s ≥ ℓ,

∣∣t̄sIII∣∣ =
{
0, s ≤ k − 1,

Θ(j − s− 1), s > k − 1.
(3.10)

The sets t̄ℓ, . . . , t̄k−1 are not partitioned and in (3.8) t̄ℓII = t̄ℓ and t̄k−1
II = t̄k−1.

If the set t̄s = ∅ and according to (3.10) one may have
∣∣t̄sI ∣∣ = 1 for some i or

∣∣t̄sIII∣∣ = 1 for
some j, then the terms in the right-hand side of (3.8) for such values of the indices i and j have
to be discarded.

The cardinalities of the subsets t̄sI and t̄
s
III given by (3.10) for s = 1, . . . , n−1 can be visualized

in the following table:

s 1 · · · i− 1 i · · · ℓ− 1 ℓ · · · k − 1 k · · · j − 1 j · · · n− 1∣∣t̄sI ∣∣ 0 · · · 0 1 · · · 1 0 · · · 0 0 · · · 0 0 · · · 0∣∣t̄sIII∣∣ 0 · · · 0 0 · · · 0 0 · · · 0 1 · · · 1 0 · · · 0

Remark that since ℓ < k, the cardinalities in (3.10) show that for any color s, either t̄sI or t̄sIII
is empty. In other words, we always have partitions into a maximum of two subsets,

{
t̄sI , t̄

s
II

}
⊢ t̄s

or
{
t̄sII, t̄

s
III

}
⊢ t̄s with cardinalities

∣∣t̄sI ∣∣ ≤ 1 and
∣∣t̄sIII∣∣ ≤ 1.

We call the recurrence relation (3.8) a rectangular recurrence relation because it contains the
monodromy matrix entries Ti,j(z) with 1 ≤ i ≤ l and k ≤ j ≤ n. This defines a rectangular
submatrix in monodromy matrix with vertices T1,n(z), Tl,n(z), Tl,k and T1,k(z). It lies above the
diagonal of the monodromy matrix because l < k.
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Corollary 3.2. Considering the particular case k = ℓ + 1 in the recurrence relation (3.8), we
get

B
({
t̄s
}ℓ−1

1
,
{
t̄ℓ, z

}
,
{
t̄s
}n−1

ℓ+1

)
=

ℓ∑
i=1

n∑
j=ℓ+1

∑
part

Ti,j(z) · B
({
t̄s
}i−1

1
,
{
t̄sII
}ℓ−1

i
, t̄ℓ,

{
t̄sII
}j−1

ℓ+1
,
{
t̄s
}n−1

j

)
λℓ+1(z)g

(
z, t̄ℓ−1

II

)
h
(
z, t̄ℓ

)
h
(
t̄ℓ, z

)
g
(
t̄ℓ+1
II , z

)
×

ℓ−1∏
s=i

γ
(
t̄sI , t̄

s
II

)h(t̄s+1
II , t̄sI

)
g
(
t̄sI , t̄

s−1
II

) j−1∏
s=ℓ+1

αs

(
t̄sIII
)
γ
(
t̄sII, t̄

s
III

)h(t̄sIII, t̄s−1
II

)
g
(
t̄s+1
II , t̄sIII

) .
Here the sum over partition is the same as in Theorem 3.1.

Such type of recurrence relations for arbitrary ℓ were written for the first time in [24] for the
case of integrable models associated to Uq(gln). In the case of gln-invariant integrable models,
these recurrence relations for the cases ℓ = 1, k = 2 and ℓ = n− 1, k = n were presented in [11].
Analogous recurrence relations for the cases ℓ = 2, k = 3 and ℓ = n− 2, k = n− 1 can be found
in [6]. Examples of this recurrence relation can also be found in [2] for the case of gl3.

3.3 Embedding Y (gla) ⊗ Y (gln−a) ↪→ Y (gln)

Suppose the Bethe vector does not involve any spectral parameter of some given color 1 ≤ a ≤
n− 1. In this case, the reduced recurrence relations will imply the following proposition.

Proposition 3.3. The off-shell Bethe vectors Bgl

({
t̄s
}a−1

1
,∅,

{
t̄s
}n−1

a+1

)
has a representation

as the product of gla pre-Bethe vectors Bgl

({
t̄s
}a−1

1

)
∈ Y (gla) and gln−a pre-Bethe vectors

Bgl

({
t̄s
}n−1

a+1

)
∈ Y (gln−a) acting on the vacuum vector |0⟩

Bgl

({
t̄s
}a−1

1
,∅,

{
t̄s
}n−1

a+1

)
= Bgl

({
t̄s
}a−1

1

)
· Bgl

({
t̄s
}n−1

a+1

)
|0⟩

= Bgl

({
t̄s
}n−1

a+1

)
· Bgl

({
t̄s
}a−1

1

)
|0⟩. (3.11)

Proof. We will prove only the first equality in (3.11). The second equality can be proved
analogously. Let us consider the recurrence relations (3.8) for two different ranges of the indices ℓ
and k: 1 ≤ ℓ < k ≤ a and a + 1 ≤ ℓ < k ≤ n. These ranges for k and ℓ ensure that the set t̄a

remains empty. Since Bgl(∅) = |0⟩ (i.e., Bgl(∅) = 1), the recurrence relations will prove the
statement of (3.11) by induction on the cardinalities.

� 1 ≤ ℓ < k ≤ a. The cardinality of the subset t̄aIII given by (3.10) is equal to Θ(j−a−1). Since
this subset is empty, this restricts the summation over j to k ≤ j ≤ a. This means that
the recurrence relation for Zk

ℓ · Bgl

(
t̄
)
|t̄a=∅ for 1 ≤ ℓ < k ≤ a implies only the monodromy

entries Ti,j(z) for 1 ≤ i ≤ ℓ and k ≤ j ≤ a. The recurrence relation Za
1 · Bgl

(
t̄
)
|t̄a=∅ will

have only one term (there is no summation over partitions) corresponding to the action of
monodromy entry T1,a(z) on the off-shell Bethe vector. Then the action of the zero mode
operators Tℓ+1,ℓ for ℓ = 1, . . . , a− 1 onto Bethe vector (3.11)

Tℓ+1,ℓ · Bgl

({
t̄s
}a−1

1
,∅,

{
t̄s
}n−1

a+1

)
=
∑
part

(
χℓ+1αℓ

(
t̄ℓI
)
ΩL
(
t̄ℓII, t̄

ℓ
I |t̄ℓ−1, t̄ℓ+1

)
− χℓΩ

R
(
t̄ℓI , t̄

ℓ
II|t̄ℓ−1, t̄ℓ+1

))
Bgl

({
t̄s
}ℓ−1

1
, t̄ℓII,

{
t̄s
}a−1

ℓ+1
,∅,

{
t̄s
}n−1

a+1

)
does not affect the sets of Bethe parameters

{
t̄s
}n−1

a+1
and so coincides with the action of the

zero mode operators onto the Bethe vectors in gla-invariant model. This shows that the
recurrence relations for Zk

ℓ ·Bgl

(
t̄
)
|t̄a=∅ for 1 ≤ ℓ < k ≤ a coincides with the gla recurrence

relation for the vector Bgl

({
t̄
}a−1

1

)
.
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� a+ 1 ≤ ℓ < k ≤ n. In this case, the cardinality of the empty subset t̄aI = ∅, given by the
equalities (3.10), yields the restriction for the index i ≥ a+1. The summation over i and j
in the right-hand side of the recurrence relation for Zk

ℓ ·Bgl

(
t̄
)
|t̄a=∅ will be restricted to the

range a+1 ≤ i ≤ ℓ < k ≤ j ≤ n. The Bethe vector Zn
a+1 ·Bgl

(
t̄
)
will be proportional to the

action of the monodromy matrix entry Ta+1,n(z) · Bgl

(
t̄
)
(there is no sum over partitions

in this action) and the action of the zero mode operators Tℓ+1,ℓ for ℓ = a+ 1, . . . , n− 1
onto the Bethe vector (3.11) coincides with gln−a-type actions (3.6). The recurrence re-
lation (3.8) in this case will not affect the sets of Bethe parameters

{
t̄s
}a−1

1
and will

coincide with the gln−a-type recurrence relation for the Bethe vector Zk
ℓ · Bgl

({
t̄s
}n−1

a+1

)
,

see (3.8). ■

Remark 3.4. Proposition 3.3 is a direct consequence of the projection method, when the off-
shell Bethe vectors are expressed in terms of the Cartan–Weyl generators of the quantum affine
algebra Uq(ĝln) [16] or Yangian double DY (gln) [9].

Splitting property of the Bethe vectors. Let us define the operation Za+1
a

(
ta1
)
as the

operation which adds the parameter ta1 of the color a to the set t̄ =
{{
t̄s
}a−1

1
,∅,

{
t̄s
}n−1

a+1

}
of

the Bethe vector Bgl

({
t̄s
}a−1

1
,∅,

{
t̄s
}n−1

a+1

)
according to definition (3.3). A direct consequence of

Proposition 3.3 and the rectangular recurrence relations (3.8) is the presentation of the Bethe
vector Bgl

({
t̄s
}a−1

1
, ta1,

{
t̄s
}n−1

a+1

)
in the form

Bgl

({
t̄s
}a−1

1
, {ta1},

{
t̄s
}n−1

a+1

)
= Za+1

a

(
ta1
)(
Bgl

({
t̄s
}a−1

1

)
· Bgl

({
t̄s
}n−1

a+1

))
|0⟩

=
1

µa+1
a

(
ta1; t̄

) a∑
i=1

n∑
j=a+1

∑
part

Ξℓ,k
i,j

(
ta1; t̄I, t̄II, t̄III

)
Ti,j
(
ta1
)

×
(
Bgl

({
t̄sII
}a−1

1

)
· Bgl

({
t̄sII
}n−1

a+1

))
|0⟩. (3.12)

Iterating the relation (3.12) one gets the following presentation for the off-shell Bethe vector in
the generic gln-invariant integrable model:

Bgl

(
t̄
)
= Za+1

a (ta1) · Za+1
a (ta2) · · · Za+1

a (tara)
(
Bgl

({
t̄s
}a−1

1

)
· Bgl

({
t̄s
}n−1

a+1

))
|0⟩. (3.13)

The relation (3.13) was called in the papers [18, 19] the splitting property of the off-shell Bethe
vectors, see, e.g., [19, Proposition 3.1]. One can also compare the relation (3.11) with the [19,
equation (3.9)]. These formulas were proved in these papers by a different approach using the
evaluation homomorphism for the Yangian Y (gln) and the trace formula for the off-shell Bethe
vectors.

Example 3.5. Let us consider an example of the recurrence relation (3.12) in the case n = 4
and a = 2. This relation describes the off-shell Bethe vector Bgl

(
t̄1, t2, t̄3

)
in the form of the

actions of the monodromy entries Ti,j
(
t2
)
with i = 1, 2 and j = 3, 4 to the Bethe vector

Bgl

(
t̄1II,∅, t̄3II

)
. Let us stress that t2 denotes a single Bethe parameter, not a set. Using defi-

nitions (3.2) and (3.9), we can write the Bethe vector Bgl

(
t̄1, t2, t̄3

)
as follows:

Bgl

(
t̄1, t2, t̄3

)
=

2∑
i=1

4∑
j=3

∑
part

α3

(
t̄3III
)

λ3
(
t2
) g

(
t̄1I , t̄

1
II

)
g
(
t2, t̄1II

)
h
(
t̄1II, t̄

1
I

) g
(
t̄3II, t̄

3
III

)
g
(
t̄3II, t

2
)
h
(
t̄3III, t̄

3
II

)Ti,j(t2)Bgl

(
t̄1II,∅, t̄3II

)
,

where sum goes over partitions
{
t̄1I , t̄

1
II

}
⊢ t̄1 with cardinality

∣∣t̄1I ∣∣ = δi,1 and
{
t̄3II, t̄

3
III

}
⊢ t̄3 with

cardinality
∣∣t̄3III∣∣ = δj,4. In the case when the sets t̄1 and t̄3 both have cardinality 1, the Bethe

vector Bgl

(
t1, t2, t3

)
can be obtained from this recurrence relation and is equal to

Bgl

(
t1, t2, t3

)
=

1

λ2
(
t1
)
λ3
(
t2
)
λ4
(
t3
)
g
(
t2, t1

)
g
(
t3, t2

)
×
(
T2,3

(
t2
)
T1,2

(
t1
)
T3,4

(
t3
)
+ g
(
t2, t1

)
T1,3

(
t2
)
T3,4

(
t3
)
T2,2

(
t1
)
+ g
(
t3, t2

)
× T2,4

(
t2
)
T1,2

(
t1
)
T3,3

(
t3
)
+ g
(
t2, t1

)
g
(
t3, t2

)
T1,4

(
t2
)
T3,2

(
t3
)
T1,1

(
t1
))
|0⟩.
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Taking into account (2.3), this Bethe vector coincides with the example given at the end of
Section 3 in [18] up to normalization and the terms which are annihilated on the vacuum
vector |0⟩.

4 Bethe vectors in o2n+1-invariant models

The off-shell Bethe vectors in o2n+1-invariant models depend on the sets of Bethe parame-
ters t̄ =

(
t̄0, t̄1, . . . , t̄n−1

)
with cardinalities

∣∣t̄s∣∣ = rs for s = 0, 1, . . . , n− 1.
We normalize the o2n+1-invariant off-shell Bethe vectors in such a way that the action of the

monodromy matrix element T−n,n(z) onto B
(
t̄
)
is given by the equality

T−n,n(z) · B
(
t̄
)
= µn−n

(
z; t̄
)
B(w̄), (4.1)

where w̄ =
(
w̄0, w̄1, . . . , w̄n−1

)
is a collection of extended sets of Bethe parameters such that

w̄s =
{
t̄s, z, zs

}
, zs = z − c(s− 1/2) (4.2)

and the normalization factor µn−n

(
z; t̄
)
is given by the expression

µn−n

(
z; t̄
)
= −κnλn(z)

g
(
z1, t̄

0
)

h
(
z, t̄0

) h
(
z, t̄n−1

)
g
(
zn, t̄n−1

) . (4.3)

Besides the sets w̄s of cardinalities rs+2 which are defined in (4.2), we will also use the sets ūs

and v̄s of cardinalities rs + 1 given by ūs =
{
t̄s, z

}
, v̄s =

{
t̄s, zs

}
, w̄s =

{
ūs, zs

}
=
{
v̄s, z

}
. For

−n ≤ ℓ < k ≤ n, let Zk
ℓ be an operator which extend the sets of Bethe parameters depending

on the values of ℓ and k according to the rules

Zk
ℓ · B

(
t̄
)
=



B
({
t̄s
}ℓ−1

0
,
{
ūs
}k−1

ℓ
,
{
t̄s
}n−1

k

)
, 0 ≤ ℓ < k ≤ n,

B
({
t̄s
}−k−1

0
,
{
v̄s
}−ℓ−1

−k
,
{
t̄s
}n−1

−ℓ

)
, 0 ≤ −k < −ℓ ≤ n,

B
({
w̄s
}−ℓ−1

0
,
{
ūs
}k−1

−ℓ
,
{
t̄s
}n−1

k

)
, 0 ≤ −ℓ ≤ k ≤ n,

B
({
w̄s
}k−1

0
,
{
v̄s
}−ℓ−1

k
,
{
t̄s
}n−1

−ℓ

)
, 0 ≤ k ≤ −ℓ ≤ n.

The action (4.1) of the monodromy matrix entry T−n,n(z) can be presented as the action of the
operator Zn

−n onto off-shell Bethe vector

Zn
−n · B

(
t̄
)
=

1

µn−n

(
z; t̄
) T−n,n(z) · B

(
t̄
)
. (4.4)

The commutation relations (2.7) between the zero mode operators Tℓ+1,ℓ and the monodromy
matrix elements take the form for 0 ≤ ℓ ≤ n− 1

[Tℓ+1,ℓ, Ti,j(z)] = χℓ+1(δℓ,j−1 − δℓ,−j)Ti,j−1(z)− χℓ(δℓ,i − δℓ,−i−1)Ti+1,j(z). (4.5)

The action of the monodromy entry T−n,n(z) (4.1) as well as the action of the zero mode
operators Tℓ+1,ℓ onto off-shell Bethe vectors can be calculated in the framework of the projection
method (see details in [23, Section 4.1]). The action of the zero mode operators is

Tℓ+1,ℓ · B
(
t̄
)
=
∑
part

(
χℓ+1αℓ

(
t̄ℓI
)
ΩL
ℓ

(
t̄ℓII, t̄

ℓ
I |t̄ℓ−1, t̄ℓ+1

)
− χℓΩ

R
ℓ

(
t̄ℓI , t̄

ℓ
II|t̄ℓ−1, t̄ℓ+1

))
B
({
t̄s
}ℓ−1

1
, t̄ℓII,

{
t̄s
}n−1

ℓ+1

)
, (4.6)
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where the sum is over partitions with cardinalities
∣∣t̄ℓI ∣∣ = 1. In (4.6), the rational functions ΩL

ℓ

and ΩR
ℓ have expressions similar to (3.7)

ΩL
ℓ

(
t̄ℓII, t̄

ℓ
I |t̄ℓ−1, t̄ℓ+1

)
= γℓ

(
t̄ℓII, t̄

ℓ
I

)h(t̄ℓI , t̄ℓ−1
)

g
(
t̄ℓ+1, t̄ℓI

) ,
ΩR
ℓ

(
t̄ℓI , t̄

ℓ
II|t̄ℓ−1, t̄ℓ+1

)
= γℓ

(
t̄ℓI , t̄

ℓ
II

)h(t̄ℓ+1, t̄ℓI
)

g
(
t̄ℓI , t̄

ℓ−1
) , (4.7)

where

γℓ(u, v) =


f(u, v) =

u− v + c/2

u− v
, ℓ = 0,

γ(u, v) =
g(u, v)

h(v, u)
=

c2

(u− v)(v − u+ c)
, ℓ = 1, . . . , n− 1.

4.1 Rectangular recurrence relations for o2n+1

The main result of the paper is formulated in Theorem 4.1 below. The proof of this theorem
is similar to the proof of Theorem 3.1 given in Appendix A. In Appendix B, we will sketch its
proof.

For the formulation of the statement of the theorem, we need following notations:

� the sign factor σm

σm = 2Θ(m− 1)− 1 =

{
1, m > 0,

−1, m ≤ 0,

which satisfy the property σm+1 = −σ−m,

� the functions ψℓ

(
z; t̄
)
, ϕk

(
z; t̄
)
, µkℓ

(
z; t̄
)

ψℓ

(
z; t̄
)
=


g
(
z, t̄ℓ−1

)
h
(
t̄ℓ, z

)
, 0 < ℓ < n,

g
(
z0, t̄

0
)
, ℓ = 0,

g(t̄−ℓ, z−ℓ)

g(z−ℓ, t̄−ℓ−1)
, −n ≤ ℓ < 0,

(4.8)

ϕk
(
z; t̄
)
=


h
(
z, t̄k−1

)
g
(
t̄k, z

)
, 0 < k ≤ n,

g(z, t̄0), k = 0,

g(z−k−1, t̄
−k−1)

g(t̄−k, z−k−1)
, −n < k < 0,

(4.9)

µkℓ
(
z; t̄
)
= σ−ℓ−k(κk)

δk,−ℓλk(z)ψℓ

(
z; t̄
)
ϕk
(
z; t̄
)(g(z1, t̄0)

h
(
z, t̄0

) )δℓ<0,k>0

,

where κk = k−1/2 and δcondition is equal to 1 if ”condition” is satisfied and to 0 otherwise.

� the partitions

∣∣t̄sI ∣∣ =
{
Θ(ℓ)

(
Θ(s− i) + Θ(−i− s− 1)

)
, s < |ℓ|,

Θ(−i− s− 1), s ≥ |ℓ|,
(4.10)

∣∣t̄sIII∣∣ =
{
Θ(−k)(Θ(j + s) + Θ(j − s− 1)), s < |k|,
Θ(j − s− 1), s ≥ |k|,

(4.11)∣∣t̄sII∣∣ = |t̄s| −
∣∣t̄sI ∣∣− ∣∣t̄sIII∣∣, (4.12)
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� the functions ΓL
a,b

(
t̄II, t̄I

)
and ΓR

a,b

(
t̄I, t̄II

)
for a, b = 0, 1, . . . , n which depend on the partitions

ΓL
a,b

(
t̄II, t̄I

)
=

b−1∏
s=a

αs

(
t̄sI
)
ΩL
s

(
t̄sII, t̄

s
I |t̄s−1

II , t̄s+1
II

)
,

ΓR
a,b

(
t̄I, t̄II

)
=

b−1∏
s=a

ΩR
s

(
t̄sI , t̄

s
II|t̄s−1

II , t̄s+1
II

)
,

and the functions Ξℓ,k
i,j

(
z; t̄I, t̄II, t̄III

)
Ξℓ,k
i,j

(
z; t̄I, t̄II, t̄III

)
= ψℓ

(
z, t̄I

)
ϕk
(
z, t̄III

)
ΓR
0,n

(
t̄I, t̄II,III

)
ΓL
0,n

(
t̄II, t̄III

)
= ψℓ

(
z, t̄I

)
ϕk
(
z, t̄III

)
ΓR
0,n

(
t̄I, t̄II

)
ΓL
0,n

(
t̄I,II, t̄III

)
, (4.13)

where the equality between the first and second lines in (4.13) directly follows from the
definitions (4.7), with the notation t̄I,II =

{
t̄I, t̄II

}
, and t̄II,III =

{
t̄II, t̄III

}
. The right hand

side of (4.13) depends on i and j through the cardinalities of the subsets t̄I, t̄II, t̄III, see
equations (4.10) and (4.11). Note that ΓL

a,b

(
t̄II, t̄I

)
= ΓR

a,b

(
t̄I, t̄II

)
= 1 for a ≥ b.

Theorem 4.1. For any ℓ, k such that −n ≤ ℓ < k ≤ n, the off-shell Bethe vector Zk
ℓ · B

(
t̄
)

satisfies the rectangular recurrence relation

Zk
ℓ · B

(
t̄
)
=

1

µkℓ
(
z; t̄
) ℓ∑

i=−n

n∑
j=k

∑
part

Ξℓ,k
i,j

(
z; t̄I, t̄II, t̄III

)
(σ−i)

δℓ≥0(σj)
δk≤0Ti,j(z) · B

(
t̄II
)
, (4.14)

where the sum is over partitions
{
t̄sI , t̄

s
II, t̄

s
III

}
⊢ t̄s with cardinalities depending on the indices

−n ≤ i ≤ ℓ < k ≤ j ≤ n and given by the equalities (4.10), (4.11) and (4.12).
If the cardinality of the set t̄s is small and according to (4.10) and (4.11), one may have∣∣t̄sI ∣∣ + ∣∣t̄sIII∣∣ > |t̄s| for some i and j. Then the terms in the right-hand side of (4.14) for such

values of the indices i and j have to be discarded.

Let us stress that, in opposition to the gln case, for o2n+1-invariant models, depending on
the color s, the subsets t̄sI and t̄sIII satisfy

∣∣t̄sI ∣∣ + ∣∣t̄sIII∣∣ ≤ 2. Theorem 4.1 can be proved using an
inductive approach similar to the one used to prove Theorem 3.1 in Appendix A. Sketch of the
proof is given in Appendix B. This result is new, except for two partial cases presented in [23]
when ℓ = n− 1.

4.2 Special cases of recurrence relations

We provide subcases of the recurrence relations (4.14) that are relevant for the study of integrable
models.

Elementary recurrence relations. For explicit calculations, the most interesting (and
simplest) cases of the recurrence relations (4.14) are the 2n cases when k = ℓ + 1 and ℓ =
−n, . . . , n−1. These 2n cases are gathered in four classes of expressions, depending on the value
of the index ℓ.

� When 0 < ℓ < n, the recurrence relation reads

Zℓ+1
ℓ · B

(
t̄
)
= B

(
t̄0, . . . , t̄ℓ−1,

{
t̄ℓ, z

}
, t̄ℓ+1, . . . , t̄n−1

)
=

ℓ∑
i=−n

n∑
j=ℓ+1

∑
part

g
(
z, t̄ℓ−1

I

)
h
(
t̄ℓI , z

)
g
(
t̄ℓ+1
III , z

)
λℓ+1(z)g

(
z, t̄ℓ−1

)
h
(
t̄ℓ, z

)
h
(
z, t̄ℓ

)
g
(
t̄ℓ+1, z

)
× ΓR

[i],ℓi

(
t̄I, t̄II

)
ΓL
ℓ+1,j

(
t̄I,II, t̄III

)
σi+1Ti,j(z) · B

(
t̄II
)
,
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where ℓi = max(ℓ, |i|), [i] = 1
2(i+ |i|), and the cardinalities of the subsets

∣∣t̄sI ∣∣ =
{
Θ(s− i) + Θ(−i− s− 1), s < ℓ,

Θ(−i− s− 1), s ≥ ℓ,

∣∣t̄sIII∣∣ =
{
0, s < ℓ+ 1,

Θ(j − s− 1), s ≥ ℓ+ 1.

Remark that for ℓ = n− 1 this recurrence relation reduces to

B
({
t̄s
}n−2

0
,
{
t̄n−1, z

})
=

1

λn(z)h
(
z, t̄n−1

) n−1∑
i=−n

∑
part

σi+1Ti,n(z) · B
(
t̄II
)

g
(
z, t̄n−2

II

)
h
(
t̄n−1
II , z

)
×

n−1∏
s=0

γs
(
t̄sI , t̄

s
II

) n−1∏
s=1

h
(
t̄sII, t̄

s−1
I

)
g
(
t̄sI , t̄

s−1
II

) ,
which coincides with the recurrence relation (3.16) from the paper [23].

� The cases of −n ≤ ℓ < −1 corresponds to so called shifted recurrence relation for the
off-shell Bethe vectors. To describe these cases, we set ℓ = −l − 1 with 0 < l < n.
They correspond to an extension of the set of Bethe parameters t̄l by the shifted parame-
ter zl = z − c(l − 1/2)

Z−l
−l−1 · B

(
t̄
)
= B

(
t̄0, . . . , t̄l−1,

{
t̄l, zl

}
, t̄l+1, . . . , t̄n−1

)
=

−l−1∑
i=−n

n∑
j=−l

∑
part

(−1)δj≥l+1g
(
t̄l+1
I , zl+1

)
h
(
zl, t̄

l
III

)
g
(
zl−1, t̄

l−1
III

)
λ−l(z)g

(
t̄l+1, zl+1

)
h
(
t̄l, zl

)
h
(
zl, t̄l

)
g
(
zl−1, t̄l−1

)
× ΓR

l+1,−i

(
t̄I, t̄II,III

)
ΓL
[−j],lj

(
t̄II, t̄III

)
σjTi,j(z) · B

(
t̄II
)
, (4.15)

where lj = max(l, |j|), [j] = 1
2(j + |j|) as above, and the cardinalities of the subsets in the

sum over partitions are

∣∣t̄sI ∣∣ =
{
0, s < l + 1,

Θ(−i− s− 1), s ≥ l + 1,∣∣t̄sIII∣∣ =
{
Θ(s+ j) + Θ(j − s− 1), s < l,

Θ(j − s− 1), s ≥ l.
(4.16)

The sign factor (−1)δj≥l+1 in the second line of (4.15) is due to the identity g
(
t̄lIII, zl−1

)−1
=

−h
(
zl, t̄

l
III

)
, valid when the cardinality of the subset t̄lIII is equal to one. According to (4.16),

this happens when j ≥ l + 1.

For l = n− 1, the recurrence relation (4.15) can be rewritten in the form

B
({
t̄s
}n−2

0
,
{
t̄n−1, zn−1

})
=

1

λ−n+1(z)h
(
t̄n−1, zn−1

) n∑
j=−n+1

∑
part

(−1)δj,n

h
(
zn−1, t̄

n−1
II

) σjT−n,j(z) · B
(
t̄II
)

g
(
zn−2, t̄

n−2
II

)
×

n−1∏
s=0

αs

(
t̄sIII
)
γs
(
t̄sII, t̄

s
III

) n−1∏
s=1

h
(
t̄sIII, t̄

s−1
II

)
g
(
t̄sII, t̄

s−1
III

)
and coincides exactly with the recurrence relation (3.19) from the paper [23]. The sign
factor (−1)δj≥l+1 turns in this case to the sign factor (−1)δj,n .
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� When ℓ = 0, the recurrence relation takes the form

Z1
0 · B

(
t̄
)
= B

({
t̄0, z

}
, t̄1, . . . , t̄n−1

)
=

0∑
i=−n

n∑
j=1

∑
part

g
(
z0, t̄

0
I

)
g
(
t̄1III, z

)
σi+1Ti,j(z) · B

(
t̄II
)

λ1(z)g
(
z0, t̄0

)
h
(
z, t̄0

)
g
(
t̄1, z

)
×

−i−1∏
s=0

γs
(
t̄sI , t̄

s
II

)h(t̄s+1
II , t̄sI

)
g
(
t̄sI , t̄

s−1
II

) j−1∏
s=1

αs

(
t̄sIII
)
γs
(
t̄sI,II, t̄

s
III

)h(t̄sIII, t̄s−1
I,II

)
g
(
t̄s+1
I,II , t̄sIII

) , (4.17)

where cardinalities of the subsets in the sum over partitions are∣∣t̄sI ∣∣ = Θ(−i− s− 1) ∀s,
∣∣t̄sIII∣∣ =

{
0, s = 0,

Θ(j − s− 1), s ≥ 1.

� When ℓ = −1, one gets the recurrence relation

Z0
−1 · B

(
t̄
)
= B

({
t̄0, z0

}
, t̄1, . . . , t̄n−1

)
=

−1∑
i=−n

n∑
j=0

∑
part

g
(
t̄1I , z1

)
g
(
z, t̄0III

)
σjTi,j(z) · B

(
t̄II
)

λ0(z)g
(
t̄1, z1

)
g
(
z1, t̄0

)−1
g
(
z, t̄0

)
×

−i−1∏
s=1

γs
(
t̄sI , t̄

s
II,III

)h(t̄s+1
II,III , t̄

s
I

)
g
(
t̄sI , t̄

s−1
II,III

) j−1∏
s=0

αs

(
t̄sIII
)
γs
(
t̄sII, t̄

s
III

)h(t̄sIII, t̄s−1
II

)
g
(
t̄s+1
II , t̄sIII

) , (4.18)

where cardinalities of the subsets in the sum over partitions are∣∣t̄sI ∣∣ =
{
0, s = 0,

Θ(−i− s− 1), s ≥ 1,

∣∣t̄sIII∣∣ = Θ(j − s− 1) ∀s ≥ 1.

Case of o3-invariant models. The above recurrence relations were calculated for the
algebras o2n+1 with n > 1. However, one can verify that they are also valid for the orthogonal
algebra o3 when n = 1. This case was investigated in details in the paper [26]. In this case,
there are only three cases of rectangular recurrence relations for the Bethe vectors: Z1

−1 ·B
(
t̄0
)
,

Z1
0 · B

(
t̄0
)
and Z0

−1 · B
(
t̄0
)
, that we detail below.

For the Bethe vector Z1
−1 ·B

(
t̄0
)
, there is no summation over partitions and according to (4.1)

and (4.3) it is equal to

Z1
−1 · B

(
t̄0
)
= B

({
t̄0, z, z0

})
= − 2

λ1(z)
T−1,1(z) · B

(
t̄0
)
. (4.19)

For the Bethe vector Z1
0 · B

(
t̄0
)
, the recurrence relation (4.17) becomes

Z1
0 · B

(
t̄0
)
= B

({
t̄0, z

})
=

1

λ1(z)f
(
z0, t̄0

)(T0,1(z) · B(t̄0)−∑
part

g
(
z0, t̄

0
I

)
f
(
t̄0I , t̄

0
II

)
T−1,1(z) · B

(
t̄0II
))

, (4.20)

while for the Bethe vector Z0
−1 · B

(
t̄0
)
the recurrence relation (4.18) becomes

Z0
−1 · B

(
t̄0
)
= B

({
t̄0, z0

})
=

1

λ0(z)f
(
t̄0, z

)
×

(
−T−1,0(z) · B

(
t̄0
)
+
∑
part

g
(
z, t̄0III

)
α0

(
t̄0III
)
f
(
t̄0II, t̄

0
III

)
T−1,1(z) · B

(
t̄0II
))
. (4.21)

In (4.20) and (4.21), we have
∣∣t̄0I ∣∣ = |t̄0III| = 1. Formulas (4.19), (4.20) and (4.21) coincide with [26,

formulas (4.15), (4,19) and (4.20)]. This proves that Theorem 4.1 is also valid for o3-invariant
integrable models.
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4.3 Reduction to gln

Still in the framework of the o2n+1-type monodromy matrix, we consider the particular case
of Bethe vectors with t̄0 = ∅. In that case, since the color 0 is absent, one should recover
the construction done for the gln-type monodromy matrix. In this subsection, we prove it
by showing that the recurrence relations (4.14), coming from the o2n+1 set-up, provide the
recurrence relations (3.8), obtained in the gln case. Obviously, to stay within the gln part,
we need to keep t̄0 = ∅. Thus, we only consider the recurrence relations (4.14) with either
−n ≤ ℓ < k < 0 or 0 < ℓ < k ≤ n.

The case 0 < ℓ < k ≤ n and t̄0 = ∅. According to the first line in (4.10), it signifies
that

∣∣t̄0I ∣∣ = 0 = Θ(−i) + Θ(−i− 1) which is possible only for i > 0. Since for these values of the
index i the step function Θ(−i−s−1) vanishes for any s, the cardinalities of the partitions (4.10)
and (4.11) become the cardinalities (3.10). Moreover, for i > 0, the sign δ−ℓ−k compensate the

sign factor σ−i = −1 and [i] = i and ℓi = ℓ, so that the function Ξℓ,k
i,j

(
z; t̄I, t̄II, t̄III

)
in (4.13)

becomes the function (3.9). The recurrence relation (4.14) takes the form

B
(
∅,
{
t̄s
}ℓ−1

1
,
{
t̄s, z

}k−1

ℓ
,
{
t̄s
}n−1

k

)
=

ℓ∑
i=1

n∑
j=k

∑
part

Ti,j(z) · B
(
∅,
{
t̄s
}i−1

1
,
{
t̄sII
}ℓ−1

i
,
{
t̄s
}k−1

ℓ
,
{
t̄sII
}j−1

k
,
{
t̄s
}n−1

j

)
λk(z)g

(
z, t̄ℓ−1

II

)
h
(
t̄ℓ, z

)
h
(
z, t̄k−1

)
g
(
t̄kII, z

)
×

ℓ−1∏
s=i

ΩR
(
t̄sI , t̄

s
II|t̄s−1

II , t̄s+1
II

) j−1∏
s=k

αs

(
t̄sI
)
ΩL
(
t̄sII, t̄

s
I |t̄s−1

II , t̄s+1
II

)
, (4.22)

where the cardinalities of the subsets in the sum over partitions are given by (3.10) and Ti,j(z) :=
Ti,j(z) for 1 ≤ i, j ≤ n as it was described for the first type of embedding of Y (gln) in Y (o2n+1),
see (2.8). So we recover the gln-type recurrence relations (3.8).

The case −n ≤ ℓ < k < 0 and t̄0 = ∅. This case is more subtle because it is related to
the off-shell Bethe vector B̂

(
t̄
)
, connected to B

(
t̄
)
in the sense of the paper [27]. If the off-shell

Bethe vector B
(
t̄
)
is built from the entries Ti,j(z) = Ti,j(z) for 1 ≤ i < j ≤ n of gln-type

according to the embedding (2.8), the off-shell Bethe vector B̂
(
t̄
)
is built from the gln-type matrix

entries T̂i,j(z) described by the embedding (2.9).
Let us consider the recurrence relations (4.14) at −n ≤ ℓ < k < 0 and empty set t̄0 = ∅ in more

details. If t̄0 = ∅, then according to the first line in (4.11)
∣∣t̄0III∣∣ = 0 = Θ(j) + Θ(j − 1) which is possible

only for strictly negative values of the index j. So the recurrence relation (4.14) becomes

Zk
ℓ · B

(
t̄
)∣∣

t̄0=∅ = B
(
∅,
{
t̄s
}−k−1

1
,
{
t̄s, zs

}−ℓ−1

−k
,
{
t̄s
}n−1

−ℓ

)
= −µk

ℓ

(
z; t̄
)−1

ℓ∑
i=−n

−1∑
j=k

∑
part

Ξℓ,k
i,j

(
z; t̄I, t̄II, t̄III

)
Ti,j(z) · B

(
∅,
{
t̄sII
}n−1

1

)
, (4.23)

where µk
ℓ

(
z; t̄
)
= λk(z)ψℓ

(
z; t̄
)
ϕk
(
z; t̄
)
and

Ξℓ,k
i,j

(
z; t̄I, t̄II, t̄III

)
= ψℓ

(
z; t̄I

)
ϕk
(
z; t̄III

)
×

−i−1∏
s=−ℓ

ΩR
(
t̄sI , t̄

s
II|t̄s−1

II , t̄s+1
II

)−k−1∏
s=−j

αs

(
t̄sIII
)
ΩL
(
t̄II, t̄III|t̄s−1

III , t̄s+1
II

)
(4.24)

since t̄sIII = ∅ for −ℓ ≤ s ≤ −i− 1. In (4.24), we dropped the index s of the functions ΩL
s and ΩR

s because
for positive s these functions does not depend on s and coincide with the functions (3.7).

The functions ψℓ

(
z; t̄
)
and ϕk

(
z; t̄
)
are

ψℓ

(
z; t̄
)
=

g
(
t̄−ℓ, z−ℓ

)
g
(
z−ℓ, t̄−ℓ−1

) , ϕk
(
z; t̄
)
=
g
(
z−k−1, t̄

−k−1
)

g
(
t̄−k, z−k−1

)
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and the cardinalities of the partitions in (4.23) are

∣∣t̄sI ∣∣ =
{
0, s < −ℓ,
Θ(−i− s− 1), s ≥ −ℓ,

∣∣t̄sIII∣∣ =
{
Θ(j + s), s < −k,
0, s ≥ −k.

(4.25)

Note again that there are no summations in the right-hand side of (4.23) in case when ℓ = −n and
k = −1.

Let us perform the following transformation of the recurrence relation (4.23). First we replace the
strictly negative indices −n ≤ ℓ < k < 0 by the strictly positive indices 0 < ℓ′ < k′ ≤ n defined
as ℓ′ = n+ 1 + ℓ, 1 ≤ ℓ′ ≤ n−1, k′ = n+1+k, 2 ≤ k′ ≤ n. Analogously, we replace the summation over
strictly negative indices −n ≤ i ≤ ℓ and k ≤ j ≤ −1 in (4.23) by the summation over strictly positive
indices i′ and j′ such that i′ = i + n + 1, 1 ≤ i′ ≤ ℓ′, j′ = j + n + 1, k′ ≤ j′ ≤ n. Moreover, instead of
the sets of Bethe parameters t̄s we consider the shifted sets of Bethe parameters

τ̄s = t̄n−s − cs =
{
tn−s
1 − cs, . . . , tn−s

rn−s
− cs

}
, s = 1, . . . , n− 1. (4.26)

These sets will be partitioned in the sum of the partitions {τ̄ sI , τ̄sII , τ̄sIII} ⊢ τ̄s with cardinalities according
to (4.25) equal to

|τ̄sI | =

{
Θ(s− i′), s < ℓ′,

0, s ≥ ℓ′,
|τ̄sIII| =

{
0, s < k′,

Θ(j′ − s− 1), s ≥ k′.

For 2 ≤ k′ ≤ n, we introduce the functions λ̂k′(u) and α̂k′(u) by the equations

λ̂k′(u) =
1

λn+1−k′(u+ c(k′ − 1))

k′−1∏
s=1

λn+1−s(u+ cs)

λn+1−s(u+ c(s− 1))
,

α̂k′(u) =
λ̂k′(u)

λ̂k′+1(u)
=

λn−k′(u+ ck′)

λn+1−k′(u+ ck′)
= αn−k′(u+ ck′).

Then according to the relation (2.12) which connects the values of the functions λk(u) for negative and
positive values of the index k and definition (4.26) one gets

λk(z) = λ̂k′(zn) and α̂s(τ̄
s) = αn−s

(
t̄n−s

)
. (4.27)

Using all these definitions, one can calculate

1

ψℓ

(
z; t̄II

) −i−1∏
s=−ℓ

ΩR
(
t̄sI , t̄

s
II|t̄s−1

II , t̄s+1
II

)
=

(−1)|τ̄
i′−1|−|τ̄ i′

II |

g
(
zn, τ̄

ℓ′−1
II

)
h
(
τ̄ ℓ′ , zn

) ℓ′−1∏
s=i′

ΩR
(
τ̄ sI , τ̄

s
II |τ̄s−1

II , τ̄s+1
II

)
,

1

ϕk
(
z; t̄II

) −k−1∏
s=−j

αs

(
t̄sIII
)
ΩL
(
t̄sI , t̄

s
II|t̄s−1

II , t̄s+1
II

)
=

(−1)|τ̄
j′−1
II |−|τ̄j′ |

h
(
zn, τ̄k

′−1
)
g
(
τ̄k′
II , zn

) j′−1∏
s=k′

α̂s

(
τ̄sIII
)
ΩL
(
τ̄ sII , τ̄

s
III|τ̄s−1

II , τ̄s+1
II

)
,

and the recurrence relations (4.23) for the indices ℓ and k such that −n ≤ ℓ < k < 0 becomes

B′(∅,{t̄s}−k−1

1
,
{
t̄s, zs

}−ℓ−1

−k
,
{
t̄s
}n−1

−ℓ

)
=

ℓ′∑
i′=1

n∑
j′=k′

∑
part

Ti,j(z) · B′(∅,{t̄s}−j−1

1
,
{
t̄sII
}−k−1

−j
,
{
t̄s
}−ℓ−1

−k
,
{
t̄sII
}−i−1

−ℓ
,
{
t̄s
}n−1

−i

)
λ̂k′(zn)g

(
zn, τ̄

ℓ′−1
II

)
h
(
τ̄ ℓ′ , zn

)
h
(
zn, τ̄k

′−1
)
g
(
τ̄k′
II , zn

)
×

ℓ′−1∏
s=i′

ΩR
(
τ̄sI , τ̄

s
II |τ̄s−1

II , τ̄s+1
II

) j′−1∏
s=k′

α̂s

(
τ̄ sIII
)
ΩL
(
τ̄sII , τ̄

s
III|τ̄s−1

II , τ̄s+1
II

)
, (4.28)

where B′(t̄) = (−1)
∑n−2

s=1 |t̄s||t̄s+1|+
∑n−1

s=1 |t̄s|B
(
t̄
)
.
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Let us define the monodromy matrix entries T̂i′,j′(z) for all i
′, j′ = 1, . . . , n defined by embedding (2.9)

together with a shift of the spectral parameter as

T̂i′,j′(zn) = Ti,j(z) with

{
i = i′ − n− 1,

j = j′ − n− 1.
(4.29)

The corresponding eigenvalues of T̂k′k′(zn) on the vacuum vector |0⟩ coincide with λ̂k′(zn) from (4.27).
Note that the coefficients in the recursion relation (4.28) have exactly the same form as (4.22), if one

replaces zn → z, τ̄s → t̄s, λ̂k′(zn) → λk′(z), T̂i′,j′(zn) → Ti′,j′(z).

Thus, the Bethe vector B
(
t̄
)
relates to Bethe vectors B̂

(
t̄
)
constructed from the monodromy ma-

trix T̂(z) (4.29) by relation

B̂
(
∅,
{
t̄n−s − cs− cκn

}n−1

1

)
= (−1)

∑n−2
s=1 |t̄s||t̄s+1|+

∑n−1
s=1 |t̄s|B

(
∅,
{
t̄s
}n−1

1

)
.

Such relation was studied in the paper [27], where it was shown that the vector Bethe B̂
(
t̄
)
is

constructed from an inverted and transposed gln-type monodromy matrix, i.e., T̂(zn) =
(
T(z)−1

)t
.

4.4 Embedding Y (o2a+1) ⊗ Y (gln−a) ↪→ Y (o2n+1)

In this subsection, we study the recurrence relations (4.14) in the case when the set t̄a = ∅ for some
a > 0.

Proposition 4.2. The off-shell Bethe vectors Bo

({
t̄s
}a−1

0
,∅,

{
t̄s
}n−1

a+1

)
factorizes into the product of

o2a+1-type pre-Bethe vector Bo

({
t̄s
}a−1

0

)
and gln−a-type pre-Bethe vectors Bgl

({
t̄s
}n−1

a+1

)
Bo

({
t̄s
}a−1

0
,∅,

{
t̄s
}n−1

a+1

)
= Bo

({
t̄s
}a−1

0

)
· Bgl

({
t̄s
}n−1

a+1

)
|0⟩. (4.30)

Proof. The proof of this proposition is analogous to the proof of Proposition 3.3. We consider the
recurrence relations (4.14) for three different ranges of the indices ℓ and k: −a ≤ ℓ < k ≤ a, a+ 1 ≤ ℓ <
k ≤ n and −n ≤ ℓ < k ≤ −a− 1. These ranges for k and ℓ ensure that the set t̄a remains empty. Since
Bo(∅) = Bgl(∅) = 1, the recurrence relations will prove the statement of the proposition by induction on
the cardinalities.

� −a ≤ ℓ < k ≤ a. According to (4.10), the cardinality of the empty subset t̄aI is given by the step
function Θ(−i − a − 1), which must vanish. It immediately results that the summation in the
recurrence relation (4.14) is restricted to the range −a ≤ i ≤ ℓ. Analogously, the cardinality of the
empty subset t̄aIII given by (4.11) is equal to Θ(j−a−1) which restricts the range in the summation
over j to k ≤ j ≤ a. This means that the recurrence relation for Zk

ℓ · B
(
t̄
)
|t̄a=∅ implies only the

monodromy entries Ti,j(z) for −a ≤ i ≤ ℓ and k ≤ j ≤ a. The recurrence relation Za
−a · B

(
t̄
)
|t̄a=∅

will have only one term corresponding to the action of monodromy entry T−a,a(z) on the off-shell
Bethe vector.

Moreover, the action of the zero mode operators Tℓ+1,ℓ for ℓ = 0, 1, . . . , a − 1 onto the Bethe
vector (4.30)

Tℓ+1,ℓ · Bo

({
t̄s
}a−1

0
,∅,

{
t̄s
}n−1

a+1

)
=
∑
part

(
χℓ+1αℓ

(
t̄ℓI
)
ΩL

ℓ

(
t̄ℓII, t̄

ℓ
I |t̄ℓ−1, t̄ℓ+1

)
− χℓΩ

R
ℓ

(
t̄ℓI , t̄

ℓ
II|t̄ℓ−1, t̄ℓ+1

))
× Bo

({
t̄s
}ℓ−1

0
, t̄ℓII,

{
t̄s
}a−1

ℓ+1
,∅,

{
t̄s
}n−1

a+1

)
does not affect the sets of Bethe parameters

{
t̄s
}n−1

a+1
and so coincides with the action of the zero

mode operators onto the Bethe vectors in o2a+1-invariant model. This shows that the recurrence
relations for Zk

ℓ ·B
(
t̄
)
|t̄a=∅ for −a ≤ ℓ < k ≤ a coincides with the o2a+1 recurrence relation for the

vector Bo

({
t̄
}a−1

0

)
.

� a + 1 ≤ ℓ < k ≤ n. In this case, the cardinalities of the empty subsets t̄aI = t̄aIII = ∅ given by the
equalities (4.10) and (4.11) yield a restriction only for the index i ≥ a + 1. The summation over
i and j in the right-hand side of the recurrence relation for Zk

ℓ · B
(
t̄
)
|t̄a=∅ in this case will be re-

stricted to the range a+1 ≤ i ≤ ℓ < k ≤ j ≤ n. The Bethe vector Zn
a+1 ·B

(
t̄
)
will be proportional to
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the action of the monodromy matrix entry Ta+1,n(z) · B
(
t̄
)
and the action of the zero mode opera-

tors Tℓ+1,ℓ for ℓ = a+1, . . . , n−1 onto Bethe vectors (4.30) coincide with gln−a-type actions (3.6).
The recurrence relation (4.14) in this case will not affect the sets of Bethe parameters

{
t̄s
}a−1

0
and will coincides with the gln−a-type recurrence relation for the Bethe vector Zk

ℓ · Bgl

({
t̄s
}n−1

a+1

)
,

see (4.22).

� −n ≤ ℓ < k ≤ −a − 1. Using again (4.10) and (4.11), we can observe that the summation over i
and j in the right-hand side of the recurrence relation for the Bethe vector Zk

ℓ · B
(
t̄
)
|t̄a=∅ will be

restricted to the range −n ≤ i ≤ ℓ < k ≤ j ≤ −a − 1. Using arguments of Section 4.3, one can
show that the corresponding recurrence relation for −n ≤ ℓ < k ≤ −a− 1 will be equivalent to the
gln−a-type recurrence relation for B̂

(
t̄
)
, where B̂

(
t̄
)
is the Bethe vector symmetric to B

(
t̄
)
in the

sense of the symmetry introduced in the paper [27]. ■

Remark 4.3. When a = n − 1, the recurrence relations described in the second and third items are
absent and the recurrence relations described in the first item yield the reduction over rank n→ n− 1 of
the recurrence relations for the off-shell Bethe vectors in o2n−1-invariant integrable models.

Remark 4.4 (splitting property). Using the statement of Proposition 4.2 and the rectangular recurrence
relations (4.14) for the off-shell Bethe vectors in o2n+1-invariant integrable models, one can prove a split-
ting property for these vectors, similar to (3.13). Again, the splitting property is a direct consequence of
the presentation of the Bethe vectors within the projection method [23].

Example 4.5. Proposition 4.2 for the case when a = 0 allows to get Bethe vectors in o2n+1-invariant
integrable model from the Bethe vectors of the gln-invariant model. Below we illustrate this in the case
of o5-invariant model. According to the general recurrence relation (4.17) for the Bethe vector Z1

0 · B
(
t̄
)

in the case when n = 2 and t̄0 = ∅, we obtain for the Bethe vector Bo

(
z, t̄1

)
the presentation

Bo

(
z, t̄1

)
=

1

λ1(z)g
(
t̄1, z

) (T0,1(z) · Bgl

(
∅, t̄1

)
+

r1∑
a=1

g
(
t1a, z

)
α1

(
t1a
) g(t̄1a, t1a)
h
(
t1a, t̄

1
a

)T0,2(z) · Bgl

(
∅, t̄1a

))
,

where set t̄1a = t̄1 \
{
t1a
}
and B

(
∅, t̄1

)
are Bethe vectors in gl2-integrable model. Here we restrict the

summation over the index i to the case when cardinality of the set t̄0 is equal to 0. When cardinality∣∣t̄1∣∣ = 1 and t̄1 =
{
t1
}
this formula yields a presentation of the Bethe vector B

(
t0, t1

)
Bo

(
t0, t1

)
=

1

λ1
(
t0
)
λ2
(
t1
)
g
(
t1, t0

)(T0,1(t0)T1,2(t1)+ g
(
t1, t0

)
T0,2

(
t0
)
T1,1

(
t1
))
|0⟩, (4.31)

where we rename z → t0. This formula has the same form as for the analogous Bethe vector Bgl

(
t1, t2

)
.

We can apply the recurrence relation (4.17) to the Bethe vector (4.31) once again to obtain the
presentation for the Bethe vector Bo

({
t01, t

0
2

}
, t1
)
in the form

Bo

({
t01, t

0
2

}
, t1
)
=
(
λ1
(
t01
)
λ1
(
t02
)
λ2
(
t1
)
f
(
t01 + c/2, t02

)
g
(
t1, t01

)
g
(
t1, t02

))−1
(
T0,1

(
t01
)
T0,1

(
t02
)
T1,2

(
t1
)

+ g
(
t1, t02

)(
T0,1

(
t01
)
T0,2

(
t02
)
T1,1

(
t1
)
+ g
(
t02, t

0
1 + c/2

)(
T−2,1

(
t01
)
T1,1

(
t02
)
T2,2

(
t1
)

+ h
(
t1, t02

)
T−1,1

(
t01
)
T1,2

(
t1
)
T1,1

(
t02
))

+ g
(
t1, t01

)
h
(
t1, t02

)(
T0,2

(
t01
)

× T0,1
(
t02
)
T1,1

(
t1
)
+ g
(
t02, t

0
1 + c/2

)
T−1,2

(
t01
)
T1,1

(
t02
)
T1,1

(
t1
))))

|0⟩.

This Bethe vector already differs greatly from the corresponding example for the Bethe vector in the
case of gl3. Indeed, due to the recurrence relations given in the Corollary 3.2, the latter can be written
in the following form

Bgl

({
t11, t

1
2

}
, t2
)
=
(
λ2
(
t11
)
λ2
(
t12
)
λ3
(
t2
)
h
(
t11, t

1
2

)
h
(
t12, t

1
1

)
g
(
t2, t11

)
g
(
t2, t12

))−1

×
(
T1,2

(
t12
)
T1,2

(
t11
)
T2,3

(
t2
)
+ λ2

(
t2
)
g
(
t2, t11

)
f
(
t11, t

1
2

)
T1,3

(
t11
)
T1,2

(
t12
)

+ λ2
(
t2
)
g
(
t2, t12

)
f
(
t12, t

1
1

)
T1,3

(
t12
)
T1,2

(
t11
))
|0⟩.
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5 Conclusion

Using the zero modes method, we describe in this paper the rectangular recurrence relations for the off-
shell Bethe vectors in gln- and o2n+1-invariant integrable models. These relations are presented as sums
of the actions of the monodromy entries Ti,j(z) with i < j on the off-shell Bethe vectors B

(
t̄
)
and sums

over partitions of the sets of Bethe parameters. When one of the set t̄s becomes empty, the recurrence
relations given by Theorem 4.1 describe a factorization of the Bethe vectors and relates to the symmetry
of gln-type Bethe vectors found in the paper [27].

Now that the recurrence relations are obtained, one can deduce recurrence relations for scalar products,
and for their building block, the so-called highest coefficients. One can also compute the norm of the
on-shell Bethe vectors and express it as a determinant. Calculations are under review, and the results
will appear soon.

Finally, the outcome obtained in this paper can be generalized for the Bethe vectors in sp2n- and
so2n-invariant integrable models. The procedure is similar to the one presented here and is currently
under investigation. The issue will be published elsewhere.

A Proof of Theorem 3.1

The proof of this theorem is based on the following lemma.

Lemma A.1. We recall that ūs =
{
t̄s, z

}
. The off-shell Bethe vector B

({
t̄s
}ℓ−1

1
,
{
ūs
}n−1

ℓ

)
for 1 ≤ ℓ < n

can be presented in the form

Zn
ℓ · B

(
t̄
)
=

1

µn
ℓ

(
z; t̄
) ℓ∑

i=1

∑
part

g
(
z, t̄ℓ−1

I

) ℓ−1∏
p=i

ΩR
(
t̄pI , t̄

p
II|t̄p−1

II , t̄p+1
II

)
× Ti,n(z) · B

({
t̄s
}i−1

1
,
{
t̄sII
}ℓ−1

i
,
{
t̄s
}n−1

ℓ

)
, (A.1)

where the sum goes over partitions
{
t̄sI , t̄

s
II

}
⊢ t̄s with cardinalities

∣∣t̄sI ∣∣ = 1 for all s = i, . . . , ℓ − 1, t̄ℓ is
not partitioned with t̄ℓII = t̄ℓ, t̄i−1

II = t̄i−1, t̄i−1
I = ∅, and t̄0I = ∅.

Proof. We prove relation (A.1) through an induction over ℓ. Equality (3.4) can be considered as the
base of this induction since for ℓ = 1 there are no partitions in the right-hand side of (A.1) and it becomes
identical to (3.4).

Assuming that equality (A.1) is valid for some fixed ℓ < n − 1, we multiply it by the normalization
factor µn

ℓ

(
z; t̄
)
and apply to both sides the zero mode operator Tℓ+1,ℓ. Using the action of the zero

modes (3.6), we get from the left-hand side of (A.1)

−χℓµ
n
ℓ+1

(
z; t̄
)
Zn

ℓ+1 · B
(
t̄
)
+
∑
part

(
χℓ+1αℓ

(
t̄ℓI
)
ΩL
(
t̄ℓII, t̄

ℓ
I |t̄ℓ−1, t̄ℓ+1

)
− χℓf

(
t̄ℓI , z

)
ΩR
(
t̄ℓI , t̄

ℓ
II|t̄ℓ−1, t̄ℓ+1

))
×µn

ℓ

(
z; t̄ℓ−1, t̄ℓII, t̄

n−1
)
Zn

ℓ · B
({
t̄s
}ℓ−1

1
, t̄ℓII,

{
t̄s
}n−1

ℓ+1

)
. (A.2)

Here the sum goes over partitions
{
t̄ℓI , t̄

ℓ
II

}
⊢ t̄ℓ with cardinality

∣∣t̄ℓI ∣∣ = 1. In the last line of (A.2), we

wrote explicitly the arguments of the function µn
ℓ

(
z; t̄ℓ−1, t̄ℓII, t̄

n−1
)
for clarification. Using the induction

assumption, relation (A.2) rewrites

−χℓµ
n
ℓ+1

(
z; t̄
)
Zn

ℓ+1 · B
(
t̄
)
+
∑
part

(
χℓ+1αℓ

(
t̄ℓI
)
ΩL
(
t̄ℓII, t̄

ℓ
I |t̄ℓ−1, t̄ℓ+1

)
− χℓf

(
t̄ℓI , z

)
ΩR
(
t̄ℓI , t̄

ℓ
II|t̄ℓ−1, t̄ℓ+1

))
×

ℓ∑
i=1

g
(
z, t̄ℓ−1

I

) ℓ−1∏
p=i

ΩR
(
t̄pI , t̄

p
II|t̄p−1

II , t̄p+1
II

)
Ti,n(z) · B

({
t̄s
}i−1

1
,
{
t̄sII
}ℓ
i
,
{
t̄s
}n−1

ℓ+1

)
. (A.3)

Here the sum goes over partitions
{
t̄sI , t̄

s
II

}
⊢ t̄s with cardinalities

∣∣t̄sI ∣∣ = 1 for all s = i, . . . , ℓ, t̄i−1
II = t̄i−1,

and t̄i−1
I = ∅.

To get (A.2) and (A.3), we have used the equalities

ΩL
(
t̄ℓ, z|t̄ℓ−1, ūℓ+1

)
= 0, ΩR

(
z, t̄ℓ|t̄ℓ−1, ūℓ+1

)
=
g
(
z, t̄ℓ

)
h
(
t̄ℓ, z

) h(t̄ℓ+1, z
)

g
(
z, t̄ℓ−1

) ,
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ΩL
({
t̄ℓII, z

}
, t̄ℓI |t̄ℓ−1, ūℓ+1

)
=

1

h
(
t̄ℓI , z

)ΩL
(
t̄ℓII, t̄

ℓ
I |t̄ℓ−1, t̄ℓ+1

)
,

ΩR
(
t̄ℓI ,
{
z, t̄ℓII

}
|t̄ℓ−1, ūℓ+1

)
= g
(
t̄ℓI , z

)
ΩR
(
t̄ℓI , t̄

ℓ
II|t̄ℓ−1, t̄ℓ+1

)
,

µn
ℓ

(
z; t̄
) g(z, t̄ℓ)
h
(
t̄ℓ, z

) h(t̄ℓ+1, z
)

g
(
z, t̄ℓ−1

) = µn
ℓ+1

(
z; t̄
)
, µn

ℓ

(
z; t̄
)
= h

(
t̄ℓI , z

)
µn
ℓ

(
z; t̄ℓ−1, t̄ℓII, t̄

n−1
)
.

Using the commutation relations [Tℓ+1,ℓ, Ti,n(z)] = −χℓ δℓ,i Tℓ+1,n(z), the action of the zero mode
Tℓ+1,ℓ on the right-hand side of the induction assumption (A.1) reads

−χℓTℓ+1,n(z) · B
(
t̄
)
+

ℓ∑
i=1

∑
part

g
(
z, t̄ℓ−1

I

) ℓ−2∏
p=i

ΩR
(
t̄pI , t̄

p
II|t̄p−1

II , t̄p+1
II

)
ΩR
(
t̄ℓ−1
I , t̄ℓ−1

II |t̄ℓ−2
II ,

{
t̄ℓI , t̄

ℓ
II

})
×
(
χℓ+1αℓ

(
t̄ℓI
)
ΩL
(
t̄ℓII, t̄

ℓ
I |t̄ℓ−1

II , t̄ℓ+1
)
− χℓΩ

R
(
t̄ℓI , t̄

ℓ
II|t̄ℓ−1

II , t̄ℓ+1
))

×Ti,n(z) · B
({
t̄s
}i−1

1
,
{
t̄sII
}ℓ
i
,
{
t̄s
}n−1

ℓ+1

))
. (A.4)

Here the sum over partitions is the same as in (A.3).
Let us compare the coefficients of the twisting parameters χℓ+1 and χℓ in (A.3) and (A.4). Due to

the relations

ΩL
(
t̄ℓII, t̄

ℓ
I |
{
t̄ℓ−1
I , t̄ℓ−1

II

}
, t̄ℓ+1

)
= h

(
t̄ℓI , t̄

ℓ−1
I

)
ΩL
(
t̄ℓII, t̄

ℓ
I |t̄ℓ−1

II , t̄ℓ+1
)
,

ΩR
(
t̄ℓ−1
I , t̄ℓ−1

II |t̄ℓ−2
II ,

{
t̄ℓI , t̄

ℓ
II

})
= h(t̄ℓI , t̄

ℓ−1
I )ΩR

(
t̄ℓ−1
I , t̄ℓ−1

II |t̄ℓ−2
II , t̄ℓII

)
,

the terms proportional to χℓ+1 in (A.3) and in (A.4) are equal, and cancel each other when we equate (A.3)
and (A.4). Then χℓ factorizes globally, and we get a relation with no explicit dependence of the χi

parameters: this is a manifestation of the principle described in Remark 2.2.
On the other hand, using in (A.3) the equality

ΩR
(
t̄ℓI , t̄

ℓ
II|
{
t̄ℓ−1
I , t̄ℓ−1

II

}
, t̄ℓ+1

)
=

1

g
(
t̄ℓI , t̄

ℓ−1
I

)ΩR
(
t̄ℓI , t̄

ℓ
II|t̄ℓ−1

II , t̄ℓ+1
)

we conclude that the equality between (A.3) and (A.4) is equivalent to the relation (A.1) at ℓ → ℓ + 1
due to the identities

g
(
z, t̄ℓ−1

I

)(
h
(
t̄ℓI , t̄

ℓ−1
I

)
−

f
(
t̄ℓI , z

)
g
(
t̄ℓI , t̄

ℓ−1
I

))

=
g
(
z, t̄ℓ−1

I

)
g
(
t̄ℓI , t̄

ℓ−1
I

)(f(t̄ℓI , t̄ℓ−1
I

)
− f

(
t̄ℓI , z

))
=
g
(
z, t̄ℓ−1

I

)
g
(
t̄ℓI , t̄

ℓ−1
I

)(g(t̄ℓI , t̄ℓ−1
I

)
− g
(
t̄ℓI , z

))
=
g
(
z, t̄ℓ−1

I

)
g
(
t̄ℓI , t̄

ℓ−1
I

)
g
(
t̄ℓI , z

)
g
(
t̄ℓI , t̄

ℓ−1
I

)
g
(
t̄ℓ−1
I , z

) = g
(
z, t̄ℓI

)
(A.5)

for i < ℓ and 1− f(t̄iI , z) = g(z, t̄iI) for i = ℓ. This ends the inductive proof of relation (A.1). ■

End of theorem’s proof. To finish the proof of Theorem 3.1 one has to perform an inductive proof
over k for the recurrence relation (3.8). We will consider the induction step k+1 → k taking as induction
base the just proved equality (A.1).

Let us assume that equality (3.8) is valid for Zk+1
ℓ for some k < n. The induction proof means that

this assumption should lead to the equality (3.8) for Zk
ℓ . To perform the induction step, we multiply both

sides of (3.8) at k+1 by the function µk+1
ℓ

(
z; t̄
)
and act on this relation by the zero mode operator Tk+1,k.

Using the equalities

ΩL
(
t̄k, z|ūk−1, t̄k+1

)
=
g
(
t̄k, z

)
h
(
z, t̄k

) h(z, t̄k−1
)

g
(
t̄k+1, z

) , ΩR
(
z, t̄k|ūk−1, t̄k+1

)
= 0,

ΩL
({
t̄kII , z

}
, t̄kIII|ūk−1, t̄k+1

)
= g
(
z, t̄kIII

)
ΩL
(
t̄kII , t̄

k
III|t̄k−1, t̄k+1

)
,

ΩR
(
t̄kIII,
{
t̄kII , z

}
|ūk−1, t̄k+1

)
=

1

h
(
z, t̄kIII

)ΩR
(
t̄kIII, t̄

k
II |t̄k−1, t̄k+1

)
,
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αk(z)µ
k+1
ℓ

(
z; t̄
) g(t̄k, z)
h
(
z, t̄k

) h(z, t̄k−1
)

g
(
t̄k+1, z

) = µk
ℓ

(
z; t̄
)
, µk+1

ℓ

(
z; t̄
)
= h

(
z, t̄kIII

)
µk+1
ℓ

(
z; t̄l−1, t̄ℓ, t̄kII , t̄

k+1
)
,

one can write the left-hand side of the resulting relation as follows:

µk+1
ℓ

(
z; t̄
)
Tk+1,k · B

({
t̄s
}ℓ−1

1
,
{
ūs
}k
ℓ
,
{
t̄s
}n−1

k+1

)
= χk+1µ

k
ℓ

(
z; t̄
)
Zk

ℓ · B
(
t̄
)
+

ℓ∑
i=1

n∑
j=k+1

∑
part

(
χk+1αk

(
t̄kIII
)
ΩL
(
t̄kII , t̄

k
III|t̄k−1, t̄k+1

)
f
(
z, t̄kIII

)
− χkΩ

R
(
t̄kIII, t̄

k
II |t̄k−1, t̄k+1

))
Ξℓ,k+1
i,j

(
z;
{
t̄s
}k−1

1
, t̄kII ,

{
t̄s
}n−1

k+1

)
× Ti,j(z) · B

({
t̄s
}i−1

1
,
{
t̄sII
}ℓ−1

i
,
{
t̄s
}k−1

ℓ
,
{
t̄sII
}j−1

k
,
{
t̄s
}n−1

j

)
. (A.6)

Here for further convenience, the partition resulting from the action of the zero mode operator Tk+1,k is
noted

{
t̄kII , t̄

k
III

}
⊢ t̄k with cardinality

∣∣t̄kIII∣∣ = 1.
On the other hand, the right-hand side of the same equality takes the form

χk+1

ℓ∑
i=1

∑
part

Ξℓ,k+1
i,k+1(z, t̄)Ti,k(z) · B

(
t̄II
)
+

ℓ∑
i=1

n∑
j=k+1

∑
part

Ξℓ,k+1
i,j

(
z; t̄
)∣∣

{t̄kII,t̄kIII}⊢t̄k

×
(
χk+1αk(t̄

k
III)Ω

L(t̄kII , t̄
k
III|t̄k−1, t̄k+1

II )− χkΩ
R(t̄kIII, t̄

k
II |t̄k−1, t̄k+1

II )
)

×Ti,j(z) · B
({
t̄s
}i−1

1
,
{
t̄sII
}ℓ−1

i
,
{
t̄s
}k−1

ℓ
,
{
t̄sII
}j−1

k
,
{
t̄s
}n−1

j

)
, (A.7)

where we used the commutation relation (3.5) and took into account that the summation index i in (A.7)
satisfies the inequalities 1 ≤ i ≤ ℓ < k. Due to the formulas

Ξℓ,k+1
i,k+1

(
z; t̄
)
= Ξℓ,k

i,k

(
z; t̄
)
= g
(
z, t̄ℓ−1

I

) ℓ−1∏
p=i

ΩR
(
t̄pI , t̄

p
II|t̄p−1

II , t̄p+1
II

)
,

Ξℓ,k+1
i,j

(
z; t̄
)∣∣

{t̄kII,t̄kIII}⊢t̄k
= h

(
t̄k+1
III , t̄kIII

)
Ξℓ,k+1
i,j

(
z;
{
t̄s
}k−1

1
, t̄kII ,

{
t̄s
}n−1

k+1

)
,

ΩR
(
t̄kIII, t̄

k
II

∣∣t̄k−1,
{
t̄k+1
II , t̄k+1

III

})
= h

(
t̄k+1
III , t̄kIII

)
ΩR
(
t̄kIII, t̄

k
II

∣∣t̄k−1, t̄k+1
II

)
,

ΩL
(
t̄kII , t̄

k
III

∣∣t̄k−1,
{
t̄k+1
II , t̄k+1

III

})
=

1

g
(
t̄k+1
III , t̄kIII

)ΩL
(
t̄kII , t̄

k
III

∣∣t̄k−1, t̄k+1
II

)
and the identity for the rational functions

g
(
t̄k+1
III , z

)(
h
(
t̄k+1
III , t̄kIII

)
−

f
(
z, t̄kIII

)
g
(
t̄k+1
III , t̄kIII

)) = g
(
t̄kIII, z

)
,

in the equality between (A.6) and (A.7) coefficients at χk cancel each other and coefficients at χk+1

yield (3.8). This finishes the inductive proof of Theorem 3.1. ■
Alternative proof. Theorem 3.1 can also be proven using an induction ℓ → ℓ + 1 and taking as

induction base the relation (A.8), coming from following alternative lemma.

Lemma A.2. The off-shell Bethe vector Zk
1 ·B

(
t̄
)
= B

({
ūs
}k−1

1
,
{
t̄s
}n−1

k

)
for 1 < k ≤ n can be presented

in the form

Zk
1 · B

(
t̄
)
=

1

µk
1

(
z; t̄
) n∑

j=k

∑
part

g
(
t̄kIII, z

) j−1∏
p=k

αp

(
t̄pIII
)
ΩL
(
t̄pII, t̄

p
III|t̄p−1

II , t̄p+1
II

)
× T1,j(z) · B

({
t̄s
}k−1

1
,
{
t̄sII
}j−1

k
,
{
t̄s
}n−1

j

)
, (A.8)

where the sum goes over partitions
{
t̄sII, t̄

s
III

}
⊢ t̄s with cardinalities

∣∣t̄sIII∣∣ = 1 for all s = k, . . . , j − 1, the
set t̄k−1 is not partitioned, t̄k−1

II = t̄k−1, and t̄nIII = ∅.

The proofs of Lemma A.2 and the end of recursion for Theorem 3.1 are similar as above, and we do
not reproduce them in the present paper.
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B Sketch of the proof of Theorem 4.1

The proof of this theorem follows the method described in Appendix A. The starting point is the simple
recurrence relation (4.4) for the Bethe vector B

({
w̄s
}n−1

0

)
.

The recurrence relations (4.14) become the relations (4.19), (4.20), and (4.21) for n = 1. They were
proved in [26]. To prove Theorem 4.1, it is sufficient to consider the cases when n > 1.

Applying the zero mode operator Tn,n−1 to (4.4) and using the commutation relations between the
zero modes and the monodromy entries (4.5) as well as the action of the zero mode operators on the
off-shell Bethe vectors (4.6), we get a relation which involves terms proportional to χn and terms pro-
portional to χn−1. Since the relation involves only Bethe vectors, monodromy matrix entries Tij(z) and
eigenvalues λi(z), due to Remark 2.2, the coefficients of these two independent twisting parameters yield
two recurrence relations, one for the Bethe vectors B

({
w̄s
}n−2

0
, ūn−1

)
= Zn

−n+1 · B
(
t̄
)
and one for the

Bethe vector B
({
w̄s
}n−2

0
, v̄n−1

)
= Zn−1

−n · B
(
t̄
)
. These relations are

Zn
−n+1 · B

(
t̄
)
=

1

µn
−n+1

(
z; t̄
) −n+1∑

i=−n

∑
part

g
(
t̄n−1
I , zn−1

)
ΩR
(
t̄n−1
I , t̄n−1

II |t̄n−2,∅
)

× Ti,n(z) · B
({
t̄s
}n−2

0
, t̄n−1

II

)
, (B.1)

Zn−1
−n · B

(
t̄
)
=

1

µn−1
−n

(
z; t̄
) n∑

j=n−1

∑
part

g
(
t̄n−1
III , z

)
αn−1

(
t̄n−1
III

)
ΩL
(
t̄n−1
II , t̄n−1

III |t̄n−2,∅
)

× T−n,j(z) · B
({
t̄s
}n−2

0
, t̄n−1

II

)
, (B.2)

where
∣∣t̄n−1

I

∣∣ = Θ(−i− n) and
∣∣t̄n−1

III

∣∣ = Θ(j − n).
These recurrence relations allows to get an inductive proof of the formula (4.14) similarly to the one

presented in Appendix A. The only differences for the different steps of this inductive proof are in the
different ranges for the indices ℓ and k that one has to consider, and for which different identities are
needed.

Some of these identities will be different from those used in the proof of the recurrence relations for gln
Bethe vectors because of the following mechanism. To consider the inductive step k+1 → k or ℓ→ ℓ+ 1
in the recurrence relation (4.14) we will apply the zero mode operator Tk+1,k or Tℓ+1,ℓ to the inductive
assumption recurrence relations which correspond to the indices k+1 and ℓ respectively. Since the action
of the zero mode operator Tk+1,k also parts the set of Bethe parameters

{
t̄ki , t̄

k
ii

}
⊢ t̄k, the partition of t̄k

first by the induction assumption and then by the zero mode action, or vice-versa, may lead to different
splittings in the left and right hand sides of the resulting recurrence relation. In the left-hand side the
set t̄k first parts into subsets

{
t̄ki , t̄

k
ii

}
through the action of the zero mode, and then the subset t̄kii is

partitioned into subsets t̄kii ⊢
{
t̄kI , t̄

k
II

}
according to the induction assumption. On the other hand, in the

right-hand side the set t̄k first parts into subsets
{
t̄kI , t̄

k
II

}
through the induction assumption, and then

the subset t̄kII is partitioned into subsets
{
t̄ki , t̄

k
ii

}
⊢ t̄kII by the action of the zero mode. If the value of the

index j is such that according to (4.11) the subset t̄kI is not empty, then the resulting equality after action
of Tk+1,k should be symmetrized over the subsets t̄ki and t̄kI both having the cardinality 1. It will make
appear the subset t̄ki ∪ t̄kI , which may have cardinality 2, hence the cardinality 2 subset t̄kI in the sum over
partitions in the recurrence relation (4.14). This phenomena does not happen for gln Bethe vectors but
is present for the inductive proof of the recurrence relations for the Bethe vectors of other algebra series.

Referring to the calculations presented in Appendix A for more details, we describe below the different
ranges of the indices ℓ, k and the corresponding identities which should be used at each of the inductive
step. Let us divide the whole domain −n ≤ ℓ < k ≤ n of the values of the indices ℓ and k into three
subdomains: 1 ≤ −ℓ, k ≤ n, 0 ≤ ℓ < k ≤ n, and −n ≤ ℓ < k ≤ 0.

For the first subdomain 1 ≤ −ℓ, k ≤ n, the calculations can be performed as a sequence of the following
steps

� Zn
−n · B

(
t̄
)
→ Zn

−n+1 · B
(
t̄
)
and Zn

−n · B
(
t̄
)
→ Zn−1

−n · B
(
t̄
)
. The recurrence relations for the

Bethe vectors B
({
w̄s
}n−2

0
, ūn−1

)
= Zn

−n+1 · B
(
t̄
)
and B

({
w̄s
}n−2

0
, v̄n−1

)
= Zn−1

−n · B
(
t̄
)
are given

by the formulas (B.1) and (B.2) above.

� Zn
−n+1 · B

(
t̄
)
→ Zn

ℓ · B
(
t̄
)
, 1 ≤ −ℓ ≤ n − 1. The recurrence relations (4.14) is proved in these

cases by induction over ℓ starting from the recurrence relation (B.1). In this case, we will not need
to perform the symmetrization described above and the only identity which will be necessary to
consider these cases is the simple identity (A.5).
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� Zn
ℓ · B

(
t̄
)
→ Zk

ℓ · B
(
t̄
)
, −ℓ ≤ k ≤ n− 1. These cases are proved by induction over k starting from

the recurrence relation for the Bethe vector Zn
ℓ ·B

(
t̄
)
which is already proved at the previous step.

This proof will require to use the simple identity (A.5) and a more complicated identity

Sym
y1,y2

(
h(q, y1)

g(y1, x)

g(y1, y2)

h(y2, y1)
− h(y1, x)

g(q, y1)

g(y2, y1)

h(y1, y2)

)
= 0, (B.3)

where for any expression E(y1, y2) we define

Sym
y1,y2

E(y1, y2) = E(y1, y2) + E(y2, y1).

� Zn−1
−n · B

(
t̄
)
→ Zk

−n · B
(
t̄
)
, 1 ≤ k ≤ n − 1. The induction proof of the recurrence relations will

require only the simple identity (A.5).

� Zk
−n · B

(
t̄
)
→ Zk

ℓ · B
(
t̄
)
, k ≤ −ℓ ≤ n− 1. For these cases, the starting point will be the recurrence

relation for the Bethe vector Zk
−n · B

(
t̄
)
proved at the previous step. We will need for these cases

the identities (A.5) and (B.3).

For the second domain 0 ≤ l < k ≤ n, the most simple way to prove the recurrence relations (4.14)
can be depicted as the sequence of the following steps.

� The first step of the induction Zn
−1 ·B

(
t̄
)
→ Zn

0 ·B
(
t̄
)
is simple. It will not require any complicated

rational functions identities, but fixes the function ψ0

(
z; t̄
)
in (4.8).

� The next step Zn
0 · B

(
t̄
)
→ Zn

1 · B
(
t̄
)
is also particular. It is the first step for which partitions

with |t̄0I | = 2 appear. To get the recurrence relation, we use the identities

f(t, z)− f(z, t)

f(z1, t)
= −g(z0, t) (B.4)

and

Sym
y1,y2

(
g(y2, z0)

g(x, y1)

(
f(y1, y2)f(x, y1)

f(z, y1)

f(z1, y1)
− f(y2, y1)

))
= g(z, ȳ)h(x, z), (B.5)

where ȳ = {y1, y2}.
� Then, to prove Zn

ℓ · B
(
t̄
)
, ℓ > 1, starting from Zn

1 · B
(
t̄
)
, we use the identities

g(z, x̄)

(
h(t, x̄)− f(t, z)

g(t, x̄)
− h(t, z)

)
= g(z, t) (B.6)

and

Sym
y1,y2

(
h(y2, z)

(
h(y1, x̄)

g(q, y1)

g(y2, y1)

h(y1, y2)
− f(y1, z)

h(q, y1)

g(y1, x̄)

g(y1, y2)

h(y2, y1)

))
=
g(z, ȳ)h(q, z)

g(z, x̄)
, (B.7)

where x̄ = {x1, x2} and ȳ = {y1, y2}.
� For the steps Zn

ℓ · B
(
t̄
)
→ Zk

ℓ · B
(
t̄
)
, 0 ≤ ℓ < k ≤ n, besides the simple identity (A.5), the

identity (B.3) should be used.

Finally, for the third domain −n ≤ l < k ≤ 0, the recurrence relations (4.14) is proved in several steps,
involving the two particular cases corresponding to k = 0 and k = −1. Among the recurrence relations
corresponding to this domain there are the so called shifted recurrence relations, when the sets of Bethe
parameters t̄s are extended by the shifted parameter zs = z − c(s− 1/2).

� Z1
−n ·B

(
t̄
)
→ Z0

−n ·B
(
t̄
)
. This step is simple. No complicated identities should be used, but it fixes

the function ϕ0
(
z; t̄
)
in (4.9).

� Z0
−n ·B

(
t̄
)
→ Z−1

−n ·B
(
t̄
)
. Here the proof relies on the identities (B.4) and an identity equivalent to

(B.5).

� For Z−1
−n · B

(
t̄
)
→ Zk

−n · B
(
t̄
)
, −n < k < −1, we need identities which appear to be equivalent

to (B.6) and (B.7).

� Zk
−n · B

(
t̄
)
→ Zk

ℓ · B
(
t̄
)
, −n ≤ ℓ < k ≤ 0. This final step will require identities (B.3).
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